
Impact of a dynamic Allocation Policy for Resource and Job
Management Systems in deadline-oriented Scenarios

Barry Linnert1, Cesar Augusto F. De Rose2, Hans-Ulrich Heiss1

1Fakultät für Elektrotechnik und Informatik – Technische Universität Berlin

2Faculdade de Informática – Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)

{barry.linnert,hans-ulrich.heiss}@tu-berlin.de, cesar.derose@pucrs.br

Abstract. As High Performance Computing (HPC) becomes a tool used in many
different workflows, Quality of Service (QoS) becomes increasingly important.
In many cases, this includes the reliable execution of an HPC job and the gen-
eration of the results by a certain deadline. The Resource and Job Management
System (RJMS or simply RMS) is responsible for receiving the job requests and
executing the jobs with a deadline-oriented policy to support the workflows. In
this paper, we evaluate how well static resource management policies cope with
deadline constrained HPC jobs, and explore two variations of a dynamic policy
in this context. Our preliminary results clearly show that a dynamic policy is
needed to meet the requirements of a modern deadline-oriented RMS scenario.

1. Introduction
In recent years, High Performance Computing (HPC) has become a much-used tool in
many application domains, such as science and development, as well as business and
industry. Many new applications in this broad range of fields are being developed to
take advantage of the ever-increasing number of nodes that make up HPC systems, also
known as supercomputers. This challenge of implementing new approaches to parallel
programming that make meaningful use of the enormous compute power is accompanied
by the need to embed these applications into some high-level workflows.

This use of supercomputers, as well as the integration into specific workflows,
is familiar from science, where deadline-driven workflows are common, but is also im-
portant for many other application scenarios in development and industry. For example,
when developing a new type of airplane engine, data from current engine versions are
incorporated alongside objectives such as reducing noise and fuel consumption. Simula-
tions implemented as finite element method (FEM) therefore have to provide the results
for optimizations of the engine blades or combustion chamber in time for the engineering
team so that the prototype and subsequently the final product can be built as previously
planned. In this context the resource management system (RMS), which is sometimes
also referred to as resource and job management system (RJMS), is responsible for allo-
cating HPC resources efficiently to incoming jobs to improve throughput and also has to
guarantee job deadlines in order to provide the quality of service (QoS) requested by the
users [Fan 2021][Fan et al. 2022]. Therefore, in a QoS-oriented environment, the RMS
has to decide if a job request submitted to the HPC system can be accepted, taking into
account the deadline of the job, when and where on the machine the job is to be exe-
cuted [Le Hai et al. 2020]. Only when all questions are answered positively can QoS be



guaranteed and the job can be scheduled and afterwards executed on the HPC system.
This is the only way to ensure that the deadline specified by the workflow in which the
compute job is embedded is met. This is a challenging task because the final execution
time of a job depends on several factors that are hard to predict, such as resource demand
and availability throughout the execution, their specific communication patterns, and how
well these patterns match the machine’s memory hierarchy and network topology. The
latter is especially true for any system that implements a multi-level network topology,
and is even more important in the context of the fastest supercomputers, such as the for-
mer number 1, the Titan supercomputer, or Fugaku the current number 2 in the current
TOP 500 list [Strohmaier et al. ]. When users are asked to give the execution times for
their jobs, they usually fail to give good estimates because they have no running history
or technical knowledge to make predictions, or because they want to trick the system to
get ahead of other users.

Specifically, our contributions to the state of the art in this paper are as follows:
• We examined how state of the art RMSs with static allocation policies would cope

with deadline-oriented scenarios.
• We apply a dynamic resource allocation policy to an RMS and evaluate how a

contiguous and a non-contiguous variant compares to the static policy.
• Based on the analysis of results obtained through an extensive number of sim-

ulations under different workload conditions, we demonstrate the advantages of
dynamic policies in deadline-oriented scenarios over the state of the art.

2. State of the Art in HPC Resource Management

Figure 1. Example of a
mapping with Hilbert
curve

Current RMSs implement static allocation policies assigning
a set of compute nodes or CPU cores for the entire execution
of a job at start time. The parallel program then assigns the
processes of the job to the nodes of CPU cores at runtime,
often with assistance from middleware and the RMS. This
typically results in over-provisioning for programs with dy-
namic runtime behavior in order to guarantee that additional
resources needed during execution are available, and reduces
resource utilization. When the job is finished, or when the
specified end time of the job is reached, the CPU core or
compute nodes are released and marked as free to be as-
signed to the next job or set of jobs. Like the SLURM work-
load manager [Yoo et al. 2003], a queuing-based resource

management system widely used in the area of HPC that implements a batch job-based
static strategy for handling job requests. In fact, it is the most popular RMS for the HPC
systems summarized in the TOP500 list. The system can also be extended to support
advance reservation [Becker 2021] in order to provide a higher level of QoS needed to
support deadline-oriented resource management.

Since the shape of the partition to which the job is assigned is important to mini-
mize the communication overhead for many parallel applications and HPC systems, espe-
cially those implementing a mesh/grid or torus topology such as the previously mentioned
Titan and Fugaku, the SLURM workload manager aims to provide compact, contiguous
partitions to the jobs.



Figure 2. Runtime behavior
of a Monte Carlo-like
program

Therefore, SLURM uses a shaping component that
makes use of a Hilbert curve approach. When using the
Hilbert curve, the neighborhood relationship, which is the
basis for creating compact partition shapes, is transferred
from two- or more-dimensional grid or torus topology to a
one-dimensional line of nodes (see the red line in Figure 1).

With this Hilbert curve, the SLURM workload man-
ager uses a first fit approach (by following the red line) in
order to find a partition with sufficient number of nodes or
CPU cores for the job request and still form compact parti-
tions that should help to reduce the communication overhead
for the job. The partition formed using the Hilbert curve is then assigned to the job and
can be used by the parallel program over the entire runtime, scheduled by the RMS. The
SLURM workload manager uses the Hilbert curve approach primarily to support three-
or more-dimensional grid or torus topologies. In order to investigate the approach, it has
also been implemented for two-dimensional grid topologies.

Figure 3. Runtime behavior
of a BSP-based pro-
gram

Nevertheless, the RMS today – in addition to provid-
ing resource for the job – is more and more responsible for
providing a certain level of quality of service (QoS). When
it comes to supporting higher-level workflows, this level of
QoS is, as mentioned earlier, related to the reliable execution
of the parallel program that is submitted to the HPC system
as a job. In this case, reliable execution is often embedded in
some form of contract – the Service Level Agreement (SLA).
In a SLA the service provider – the provider of the HPC re-
source – regularly guarantees the agreed quality of service
and would pay some kind of fee if the level of quality of ser-
vice is not achieved. Therefore, in these environments, the
execution of the job must be completed before the deadline
specified in the SLA. Hence, resource management systems
for HPC systems have to be examined to determine whether
they currently meet these QoS requirements, and if not, new
approaches need to be developed. Since there are different
types of parallel programs running on the supercomputers, the examination has to be per-
formed with respect to these different types of applications.

3. Parallel Applications and Load of HPC Jobs
Because the range of applications domains that make use of HPC is enormous, there are
different approaches to creating parallel applications and, consequently, different types
of resource requirements for these programs [Frank 2022]. In many cases, the parallel
programs use message passing to distribute and collect data to be processed by the various
processes that make up the running program – the compute job. In the era of multi-
core node architectures, the use of shared memory provided by these nodes also comes
into play. Since the characteristics of the different programs resulting from the different
programming approaches play an important role in providing efficient support for these
parallel applications, a closer look at the runtime behavior of the programs is needed.



Figure 4. Runtime behav-
ior of a program us-
ing OpenMP

Parallel programs, designed as so-called Monte Carlo
applications, consist of a fixed number of processes process-
ing randomly generated data (see Fig. 2, where light gray
circles symbolize start and end nodes of the program; light
green circles symbolize the execution of instructions (com-
putations) of the processes). The processes of the job run
independently and do not exchange intermediate data. The
only utilization of network resources occurs when input data
is distributed to the processes and the results are received
in order to be evaluated and output is provided. This type
of application is used primarily when statistical evidence is
needed, such as for discrete event simulations that simulate
technical entities like HPC or Grid environments. However,
this type of application is also used for implementing var-
ious approximation approaches and for simulating physical
processes. Nowadays, HPC systems are also used to train

machine learning (ML) models. These types of applications also exhibit this type of run-
time behavior.

Figure 5. Dynamic run-
time behavior of a
program using MPI-2

Another type of parallel programs is also based on
a fixed number of processes, but the processes do not run
independently (see Fig. 3). Instead, they exchange data dur-
ing processing in order to provide intermediate data or re-
sults to other processes and to obtain new input data for the
next step of computation itself. One of the most commonly
used models for building such a parallel program is the Bulk-
Synchronous Parallel model (BSP) [Valiant 1990].

The BSP approach is often used to build applications
that simulate sections of the real world that are geometrically
divided into individual parts. These parts are interconnected
and represent an area of the real world with a certain state
which depends on the development of the states of the sur-
rounding areas. An example of such an application of the
finite element method (FEM) is the simulation of the flow
behavior around an airplane engine blade. Other examples
include the simulation of natural systems such as weather
or the Earth’s climate. In recent years, the introduction of
multi-core CPUs on the one hand and of the development of
new features for the Message Passing Interface (MPI) lead-
ing to the new standard MPI-2, as well as the increased use of
OpenMP in combination with message passing approaches
on the other hand, have led to the emergence of new types of
parallel programs with new runtime behavior (see Fig. 4). In

order to utilize multiple cores of a CPU or the processors of a node, OpenMP is used to
launch additional processes. The creation of new and additional processes can be based
on the design of the application, so that the number of processes to be started is known
before the job is started, or the start of additional processes can be controlled by the pro-



gram at runtime. This creation of additional processes based on runtime decisions, e.g.,
about the amount of work to be processed, has already been introduced in approaches
such as the bag-of-task or the manager-worker approach, but is increasingly used in ap-
plications implementing finite elements methods. Simulations of particles and molecules
also benefit from this approach, which leads to dynamic runtime behavior of the pro-
grams. The creation of additional processes can be used in a more flexible way when
using the new features provided by the MPI-2 standard. With MPI-2, new processes can
be created on different nodes and the start of the additional processes or threads is not
limited to the local node, already used by some MPI processes of the job (see Fig. 5)
[Perez et al. 2017][Aguilar Mena et al. 2022]. The models presented here are only exam-
ples of very small programs. In real scenarios and during evaluation, the number of tasks
reaches up to billions, especially for programs with dynamic runtime behavior.

4. Dynamic Allocation of HPC Resources

For parallel programs implementing a more static runtime behavior, such as Monte Carlo-
like applications or BSP programs (types 0 and 1), the static allocation as provided by
the current RMS, like the SLURM workload manager, should be well suited to support
these types of runtime behavior in a deadline-oriented workflow scenario. However, for
the applications with dynamic runtime behavior (types 2 and 3), it can be assumed that
this approach is not appropriate because the number of compute resources changes during
runtime [Álvarez et al. 2022][Li et al. 2023]. Therefore, a more dynamic way of resource
assignment can be beneficial. This means the resources required by the running job are
assigned at the time the resource is needed and is released immediately after use.

Figure 6. Search for first nodes us-
ing the Leak approach

In order to implement such dynamic al-
location of HPC resources and support de-
centralized and distributed resource manage-
ment, the leak approach was introduced in
[Heiss 1994], [De Rose 1998], and discussed in de-
tail in [De Rose et al. 2007]. In this work we have
adapted it to work with RMSs.

In the leak approach, the parallel program
resembles a liquid that is dropped into a – usually
partially occupied – container. Due to its properties,
the job occupies a free part of the container or dis-
places another job until an equilibrium is reached.
Since parallel programs – especially those with dy-
namic runtime behavior – change their properties, such as the number of processes run-
ning in parallel, the equilibrium and thus the number of resources used by the different
jobs can change over time. This breath-like expansion of the number of CPU cores or
nodes used by the parallel program ideally fits into a phase of reduced node utilization
of other jobs. Thus, the jobs should complement each other in terms of resource utiliza-
tion. Thus, when a job is submitted to the local resource management system, the job is
accepted – no further check is performed.

The job is then started at the earliest possible start time. To start the first process
of the parallel program, an empty compute node or CPU core is searched for. The distri-



Figure 7. Search for nodes using the Non-contiguous Leak approach: after the
initial partition is created in the first row (red nodes), nodes are released in
the second row during execution, and new nodes are assigned when new
processes are created

bution of the different jobs over the entire HPC system is supported by the use of different
nodes from which the search is started. If the entry node is occupied and therefore unable
to accommodate the new process, a next node is examined. The search for a first CPU
core or node for the new job is performed sequentially for all nodes or core of the same
row for grid or torus topologies, as shown in Figure 6. Thus, the search sequence for a
first node for the starting job resembles a snake. In case no node or CPU core is available
for the job to be started, the job is rejected.

After starting the program some other processes can be created. In connection
with the creation of the process there is a search for a CPU core or nodes on which the
process is to be started. The search for the core or node is performed starting from the
node or CPU core to which the creating process is assigned. First, all of the neighboring
nodes or cores are checked. If no core or node of these adjacent nodes or cores is available,
all other nodes or cores used by the parallel program are used to check the neighbors of
these nodes or CPU cores. In this way, a compact partition of nodes should be created
for the processes of the running program. In case no free node or CPU core from the
set of neighboring nodes is available to satisfy the current request, the search for other
nodes can be performed like the search for a start node as described before (see Fig. 7).
This results in non-contiguous partitions for the job. If only neighboring nodes or CPU
cores are considered to be included into the partition, this is referred to as contiguous
leak approach. When the process using a node or CPU core is finished, this node or core
is released and the then free node can be used by other processes of the same or other
running parallel programs.

5. Evaluation
Based on the observations presented earlier and with respect to the different types of
parallel programs, the examples of static and dynamic resource allocation were examined.
In order to evaluate the different approaches of resource management systems in terms of
their suitability to provide the required quality of service and the ability to ensure the
completion of the job at a given time, we used the ApplOXSim simulation environment
presented in [Schneider and Linnert 2014] and used in [Linnert et al. 2014] to study the
impact of data structures and static allocation policies.



In order to evaluate the dynamic allocation policies, the two variations of the leak
approach were implemented to be used in this simulation environment (contiguous and
non-contiguous). The search for a new CPU core is performed when a process invokes
a fork system call and the CPU core is released when a join call is performed by the
process. Furthermore, the simulator is able to support different configurations of HPC
machines. The configurations used for the evaluation presented in this paper are based
on the performance values of the supercomputer HLRN-II, which was in operation at the
Zuse Institute Berlin (ZIB). Here, the system is used with 512 CPU cores on 128 compute
nodes connected by a grid topology. To provide a reasonable load for the RMS to handle,
the workload generator by Feitelson [Feitelson et al. 2014] was used and the resulting
traces were extended to include the type of the runtime behavior of the parallel programs
as well as the earliest start time and deadline for the job. Since deadlines are defined by
the users and the higher-level workflow in which the job is embedded, it is reasonable to
assume that the deadline leaves some leeway for the management system. This slack time
usually depends on the importance and the size of the job, as the user would want to reduce
the risk of canceling the job if the results are important. The workload generator can be
configured to provide different load levels in the form of arrival rates. In addition to the
recommended and common load, which is referred to as normal load and is determined
with an interarrival factor of 1500, two other load situations were examined. The very
heavy load (interarrival factor of 1), where a new job request is submitted to the RMS
every second on average. Between the normal and very heavy load, a heavy load situation
was investigated with an interarrival factor of 150.

The traces provide 1000 job requests over a simulation time of about 65 days for
the heavy and very heavy load configurations, and about 74 days for the normal load
traces. By using these configuration values combined with Feitelson’s workload gen-
erator, based on the extensive empirical research in the field [Feitelson et al. 2014], our
results can be compared with other approaches from related work. The running paral-
lel programs were derived from the different runtime behavior types and adapted to the
specifications as given in the job description of the individual trace file.

In addition to the simulation of traces with jobs following the same runtime be-
havior type (models 0 to 3), a mixture of the types was used according to a uniform
distribution of the behavior types (model uniform). For each configuration – application
type, communication behavior, load – 320 different traces were generated and used for
simulation in order to obtain significant results for the performance of the different ap-
proaches. In total, about 30,000 different simulation runs were performed to obtain the
results resented in this paper. [CURTA ]

5.1. Job Canceling Rate
The comparison of the two different approaches – static and dynamic resource assignment
– in terms of the number of successfully scheduled jobs suggests that not all jobs can be
completed successfully – especially for dynamic allocation. The results for the leak ap-
proach confirm this assumption for both the contiguous and the non-contiguous version of
the leak approach (see Fig. 8(a)) even under normal load. However, a significant number
of canceled jobs is also observed for the Hilbert curve-based approach used by SLURM.

As expected, the share of canceled jobs increases with load in the dynamic ap-
proaches (see Fig. 8(c)). In the static approach, this is due to the congestion situation in



the network, and in the dynamic approaches it is due to the case where no free node or
CPU core is found at the time a new process is created. The latter is even more relevant
if the number of nodes to be examined is reduced, since only nodes in the neighborhood
of the existing partition are considered, as is the case with the contiguous leak approach.
Nevertheless, the results for the very heavy load show that the increased communication
overhead associated with a more scattered assignment, due to the need to use more dis-
tant nodes in the case of non-contiguous leak, and a higher load on the network links
themselves results in worse performance for the non-contiguous leak compared to the
contiguous leak for the job with dynamic runtime behavior.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

model #0 model #1 model #2 model #3 model
uniform

# canceled jobs / # succ sched jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(a) Normal load

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

model #0 model #1 model #2 model #3 model
uniform

# canceled jobs / # succ sched jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(b) Heavy load

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

model #0 model #1 model #2 model #3 model
uniform

# canceled jobs / # succ sched jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(c) Very heavy load

Figure 8. The canceling rate depends on the combination of load, behavior
model, and approach, but in almost all configurations, the non-contiguous
leak approach (green) outperforms the Hilbert curve-based approach
(blue).

While for the dynamic assignment approaches the share of canceled jobs is related
to the number of canceled jobs, the normalized number of canceled jobs also increases for
the SLURM system – except for the Monte Carlo-like programs (runtime behavior type 0).
Since communication is concentrated at the start and end of the runtime, communication
overhead is not as important to the runtime as it is for other types of runtime behavior.
Moreover, the higher load – which comes with a reduction in interarrival time – in case
of static assignments reduces the advantage of smaller jobs. If all job requests arrive
at the same time and the decision to schedule some of the jobs based on the number
of available nodes or CPU cores, all jobs have an equal chance of being selected, and
the preference for smaller jobs that fit into some holes in an already existing schedule is
negligible. Since the larger jobs are associated with higher slack time, these jobs have
a higher probability to get finished before the specified deadline. However, due to the
better support of the runtime behavior of the jobs, especially those with dynamic runtime
behavior, the dynamic allocation performs better than the static approach based on the
Hilbert curve when it comes to the share of canceled jobs.

5.2. Overall Performance
The unexpected high number of canceled jobs in combination with the rejection of jobs
due to the allocation of static partitions provided by the Hilbert curve-based SLURM ap-
proach leads to reduced performance in terms of the number of successfully executed jobs.
This holds true for the jobs with dynamic runtime behavior, where only half the number of
jobs can be completed before the deadline compared to the leak approaches under normal
load (see Fig. 9(a). The results are even more evident for the other load situations (see
Fig. 9(b) and Fig. 9(c)). However, also for the jobs, implementing a static runtime behav-
ior using the static partition approach is beneficial only for Monte Carlo-like applications



0
100
200
300
400
500
600
700
800
900

1000

model #0 model #1 model #2 model #3 model
uniform

# succ exec jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(a) Normal load

0
100
200
300
400
500
600
700
800
900

1000

model #0 model #1 model #2 model #3 model
uniform

# succ exec jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(b) Heavy load

0
100
200
300
400
500
600
700
800
900

1000

model #0 model #1 model #2 model #3 model
uniform

# succ exec jobs

Hilbert curve appr. contiguous leak non‐cont. leak

(c) Very heavy load

Figure 9. Due to the high acceptance rate and the canceling rate, the leak ap-
proaches (red and green) perform better than the Hilbert curve-based ap-
proach (blue) in terms of successfully executed jobs, especially for the
jobs with dynamic runtime behavior.

at very heavy load compared to the contiguous leak approach, while the non-contiguous
leak performs better even for this type of applications. Thus, the characteristics of the
static partition approach, which comes with a guarantee to the job that there will always
be enough compute nodes or CPU cores available to start the processes, and the shape that
reduces communication overhead, do not compensate for the specific requirements asso-
ciated with more sophisticated new programming approaches implementing a dynamic
runtime behavior. The fundamental results observed for the programs with asynchronous
communication generally hold for the jobs with synchronous communication patterns,
although there are some increases for certain configurations. For the SLURM RMS and
the contiguous leak approach, the synchronization of the processes through synchronous
communication leads to a decrease in the number of canceled jobs and thus to an increase
in the number of successfully executed programs compared to the job with asynchronous
communication. This can be seen particularly well when looking at the results for the jobs
implementing a BSP-like runtime behavior (type 1) in combination with the contiguous
leak approach. In this case, the occasional mapping of the child process to the node of the
parent process, since no free node is available in the neighborhood of the partition, leads
to a reduction of the communication overhead and can at least partially compensate for
the overload situation on the respective node.

6. Related Work

A lot of research is being done in the field of HPC management
[Reed et al. 2023][Shilpika et al. 2022][Alam et al. 2022]. Besides the development
of novel applications [Qiu et al. 2022][Nesi et al. 2022] [Aguilar Mena et al. 2022]
and the improvement of RMS, such as SLURM, research continues in many ways on
scheduling of HPC jobs [Nichols et al. 2022] [Ueter et al. 2022] [Zrigui et al. 2022]
or the mapping of the processes as part of the programs to the processors or nodes
[Frank 2022][Li et al. 2022][Zrigui et al. 2022]. In addition, the requirement that appli-
cations must have generated the result by a certain deadline is also increasingly taken
into account [Le Hai et al. 2020] [Fan 2021]. All these aspects and requirements have
to be considered in order to develop a reliable solution for the next generation of HPC
resource management systems. Nevertheless, to the best of our knowledge, there is no
other work that has explored and analyzed the impact of a dynamic RMS strategy in
the context of deadline-oriented execution scenarios – and its impact on scheduling,



mapping, application performance and throughput - with respect to the different types of
runtime behavior.

7. Conclusion and Outlook

In this paper, we evaluate how well RMS static resource management policies cope with
deadline-constrained HPC jobs and explore two variations of a dynamic policy in such
scenarios. Deadline enforcement is crucial in environments where a higher level of quality
of service (QoS) is implemented through the use of service level agreements (SLA) in
order to support advanced workflows.

We perform extensive simulation experiments using SLURM, the state of the art in
resource management systems, as a static baseline and compare its results with a dynamic
policy adapted to this context.

Our preliminary results clearly show the impact of the runtime behavior of the
parallel applications running on these HPC systems on the results, as was also suggested
in [Fan 2021], and that a static policy is not able to meet the requirements of a mod-
ern deadline-oriented RMS scenario, especially in terms of resource utilization and the
number of jobs that are successfully executed as agreed in the SLA.

Rather, the results for the dynamic assignment approaches – the contiguous ap-
proach and even more so the non-contiguous leak approach – show the need to support
dynamic runtime behavior of the jobs in the form of providing additional compute nodes
or CPU cores at the time a new process is created. The neighborhood relationship be-
tween the nodes of the partition is important in reducing the communication overhead
associated with the message passing of the parallel applications, but has less impact than
the timely provisioning of additional compute power. Since this effect may be of minor
importance in queueing-based resource management systems where the runtime of the
job can be extended without major impact (except for optimizations implementing back-
filling [Frachtenberg et al. 2003]) and the reduction in utilization associated with static
partitions can be accepted, any aspect that threatens the deadline has to be omitted in the
area of SLA-based RMS.

However, the results for the dynamic partitioning – the leak approaches – also
show that the resource requirements of parallel programs with the same runtime behavior
type can match in such a way that one program can use the currently freed resources that
were previously used by another program. This effect can greatly increase the number
of jobs executed on the HPC system. Though the mixture of parallel applications with
different runtime behavior types can reduce this effect.

Therefore, our preliminary results clearly show that RMS should adopt dynamic
policies, but more detailed information about the – future – runtime behavior of the par-
allel program should be incorporated in the scheduling and mapping decisions performed
by the RMS. Future work will address this feature and pursue a resource management ap-
proach that is capable of providing a reliable service for the execution of parallel programs
with deadlines by taking into account the runtime behavior and resource requirements of
the HPC jobs in order to support SLAs.



References

Aguilar Mena, J., Shaaban, O., Beltran, V., Carpenter, P., Ayguade, E., and Labarta Man-
cho, J. (2022). Ompss-2@ cluster: Distributed memory execution of nested openmp-
style tasks. In Euro-Par 2022: Parallel Processing: 28th International Conference on
Parallel and Distributed Computing, Glasgow, UK, August 22–26, 2022, Proceedings,
pages 319–334. Springer.

Alam, S. R., Bartolome, J., Carpene, M., Happonen, K., s LaFoucriere, J.-C., and Pleiter,
D. (2022). Fenix: A Pan-European Federation of Supercomputing and Cloud e-
Infrastructure Services. Communications of the ACM, 65(4).

Álvarez, D., Sala, K., and Beltran, V. (2022). nos-v: Co-executing hpc applications using
system-wide task scheduling. arXiv preprint arXiv:2204.10768.

Becker, R. P. (2021). Entwurf und Implementierung eines Plugins für SLURM zum pla-
nungsbasierten Scheduling. Bachelor’s Thesis, Freie Universität Berlin.

CURTA. Curta: A General-purpose High-Performance Computer at ZEDAT, Freie
Universität Berlin. https://doi.org/10.17169/refubium-26754 (visited
May 19, 2021).

De Rose, C. A. (1998). Verteilte Prozessorverwaltung in Multirechnersystemen. PhD
thesis, Universität Karlsruhe (Technische Hochschule).

De Rose, C. A., Heiss, H.-U., and Linnert, B. (2007). Distributed dynamic processor
allocation for multicomputers. Parallel Computing, 33(3):145–158.

Fan, Y. (2021). Job scheduling in high performance computing. Horizons in Computer
Science Research, 18.

Fan, Y., Lan, Z., Rich, P., Allcock, W., and Papka, M. E. (2022). Hybrid workload
scheduling on hpc systems. In 2022 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 470–480. IEEE.

Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the parallel
workloads archive. Journal of Parallel and Distributed Computing, 74(10):2967–2982.

Frachtenberg, E., Feitelson, D. G., Fernandez, J., and Petrini, F. (2003). Parallel job
scheduling under dynamic workloads. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 208–227. Springer.

Frank, A. (2022). Reducing resource waste in HPC through co-allocation, custom check-
points, and lower false failure prediction rates. PhD thesis, Johannes Gutenberg-
Universität Mainz.

Heiss, H.-U. (1994). Prozessorzuteilung in Parallelrechnern. BI-Wiss.-Verlag.

Le Hai, T. H., Trung, K. P., and Thoai, N. (2020). A working time deadline-based back-
filling scheduling solution. In 2020 International Conference on Advanced Computing
and Applications (ACOMP), pages 63–70. IEEE.

Li, B., Fan, Y., Dearing, M., Lan, Z., Rich, P., Allcock, W., and Papka, M. (2022). Mrsch:
Multi-resource scheduling for hpc. In 2022 IEEE International Conference on Cluster
Computing (CLUSTER), pages 47–57. IEEE.



Li, J., Michelogiannakis, G., Cook, B., Cooray, D., and Chen, Y. (2023). Analyzing
resource utilization in an hpc system: A case study of nersc perlmutter. arXiv preprint
arXiv:2301.05145.

Linnert, B., Schneider, J., and Burchard, L.-O. (2014). Mapping algorithms optimizing
the overall Manhattan distance for pre-occupied cluster computers in SLA-based Grid
environments. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 132–140. IEEE.

Nesi, L. L., Schnorr, L. M., and Legrand, A. (2022). Multi-phase task-based HPC appli-
cations: Quickly learning how to run fast. In 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 357–367. IEEE.

Nichols, D., Marathe, A., Shoga, K., Gamblin, T., and Bhatele, A. h. (2022). Resource
utilization aware job scheduling to mitigate performance variability. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 335–
345. IEEE.

Perez, J. M., Beltran, V., Labarta, J., and Ayguadé, E. (2017). Improving the integration
of task nesting and dependencies in openmp. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 809–818. IEEE.

Qiu, H., Xu, C., Li, D., Wang, H., Li, J., and Wang, Z. (2022). Parallelizing and balancing
coupled DSMC/PIC for large-scale particle simulations. In 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 390–401. IEEE.

Reed, D., Gannon, D., and Dongarra, J. (2023). Hpc forecast: Cloudy and uncertain.
Communications of the ACM, 66(2):82–90.

Schneider, J. and Linnert, B. (2014). List-based data structures for efficient management
of advance reservations. International Journal of Parallel Programming, 42(1):77–93.

Shilpika, S., Lusch, B., Emani, M., Simini, F., Vishwanath, V., Papka, M. E., and Ma, K.-
L. (2022). Toward an in-depth analysis of multifidelity high performance computing
systems. In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 716–725. IEEE.

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M., and Meuer, H. Top500 list. https:
//www.top500.org/ (visited April 25, 2021).

Ueter, N., Günzel, M., von der Brüggen, G., and Chen, J.-J. (2022). Parallel path progres-
sion DAG scheduling. arXiv preprint arXiv:2208.11830.

Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111.

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). Slurm: Simple Linux utility for re-
source management. In Workshop on job scheduling strategies for parallel processing,
pages 44–60. Springer.

Zrigui, S., de Camargo, R. Y., Legrand, A., and Trystram, D. (2022). Improving the
performance of batch schedulers using online job runtime classification. Journal of
Parallel and Distributed Computing, 164:83–95.


