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Abstract. Algorithms for the problem of identifying a maximum edge-weight
planar subgraph of a given edge-weighted graph G are relevant in a wide vari-
ety of application areas. In this paper, we propose a new local search construc-
tive heuristic for this NP-hard problem, along with a GPU-based algorithm
designed to accelerate its computational process. The experimental findings
demonstrated that considerable speedup is attainable while maintaining good-
quality results.

1. Introduction
The analysis of various systems of discrete objects is often facilitated by depicting the
system as a network where nodes generally represent the objects (such as stocks, facilities,
electrical junctions, proteins or social groups) and the arcs represent the relationships
between them. It is often useful to visualise the data by drawing the network in the
plane (without arcs crossing). For all but trivial instances this requires that only a strict
subset of the arcs can be included. The arcs are usually nonnegatively weighted (e.g.,
being correlations between the objects). Hence, it is commonly assumed that the best
balance between the retention of relationship information and the clarity of the network
drawing involves identifying the planar subnetwork of maximum total arc weight of a
given arc-weighted graph. Planarity ensures easy visualisation of the object relationships
by enabling the network to be drawn without arcs crossing. Henceforth, we use graph
theoretic notation and terminology to analyse the above-mentioned problem. A formal
description of the problem in terms of graph theory is given next.

This work focuses on complete, undirected, simple graphs G = (V,E), with finite
vertex set V and edge set E, where |V | = n and |E| = m. G is termed planar if it can be
drawn in the plane, such that no two of its edges intersect geometrically, except at a vertex
with which they are both incident; and maximally planar if it is planar and no further edge
can be added to it without rendering it no longer planar (nonplanar). Furthermore, it is
assumed that G is nonnegatively edge-weighted in the sense that there exists a function
w : E → R+.

Given a complete, edge-weighted graph G, the Maximum-Weight Planar Sub-
graph Problem (MWPSP) involves searching for a planar subgraph G′ = (V,E ′), with
the highest sum of edges weights

∑
e∈E′ w(e). Since the edge weights are all nonnega-

tive, there will always be a solution (V,E ′) that is maximally planar. The special case
where the edge weights are all equal, i.e. w(e) = c, c ∈ R+, ∀ e ∈ E, degener-
ates to finding a planar subgraph with 3n − 6 edges and can be solved in O(n) time
[Jünger and Mutzel 1993].



The MWPSP has important applications in a variety of fields, including: (i) fi-
nancial analysis, where the vertices and edges represent stocks and the correlations be-
tween them, respectively [Tumminello et al. 2005, Massara et al. 2017]; (ii) as a sub-
problem of the plant (facility) layout problem, where the vertices and edges represent
the activities of the facility and the adjacencies between some of them, respectively
[Seppänen and Moore 1970, Pesch 1999, Ahmadi-Javid et al. 2015]; (iii) integrated cir-
cuit design, where vertices and edges represent electrical elements and the physi-
cal connections between them [Lengauer 2012]; (iv) systems biology, where vertices
and edges represent proteins and the interactions between them in a metabolic net-
work [Song et al. 2007]; and (v) social systems, where the vertices and edges rep-
resent social agents (e.g. individuals, groups or companies) and social interaction
[Easley and Kleinberg 2010]. The nature of applications (ii) and (iii) dictates that any
feasible solution to the problem must be a planar subgraph. However subgraphs regarded
as solutions to (i), (iv) and (v) need not necessarily be planar – in these cases the require-
ment of planarity is introduced as a soft constraint, added only to promote visualisation.

This article addresses the following research question: How to improve approxi-
mate MWPSP solutions, allowing larger instances to be efficiently resolved? We propose
a new heuristic method, termed here Restricted Seeds. In this method, we construct the
solution not only by applying face dimpling but also edge dimpling as well, as explained
in Section 3. The remainder of the method proceeds in the same way as a previously re-
ported heuristic method known as face dimpling (FD), but selects only a relatively small
subset of the K4s of the input graph, instead of working with the entire possible set of
such subgraphs. Combining these changes makes the method not only faster, but also
improves solution quality compared to the FD heuristic. A GPU parallel implementation
of the proposed method is described and computational results obtained with numerical
instances (including some of relatively large-scale), both from the literature and synthet-
ically constructed are reported. Another algorithm, called here All Seeds, is an extended
version of the Restricted Seeds method but tests all possible seeds instead.

The remaining of the text is organised as follows. The next section briefly presents
the related work on algorithms for the MWPSP and Section 3 outlines some existing
construction procedures that build up a planar subgraph step by step. These procedures are
utilised to develop new, faster, parallel heuristic algorithm in Section 5. Section 4 defines
some parallel algorithms concepts used here and briefly talks about GPU and CUDA.
Computational experience is reported in Section 6 and a summary and some conclusions
round out the paper in the last section.

2. Related Work

Numerous exact and heuristic algorithms for the MWPSP have been reported over the last
50 years. The heuristic algorithms are commonly based on vertex-by-vertex construction,
local search improvement and learning metaheuristics. The improvement algorithms in-
volve local topological moves, including edge substitution and the relocation of vertices
from one face of a planar subgraph to another. As the MWPSP is known to be strongly
NP-hard [Giffin 1984], it is no surprise that even the best current exact MWPSP algo-
rithms are able to resolve instances with only a relatively small number of vertices.

[Massara et al. 2017] recently proposed a heuristic MWPSP method that uses var-



ious construction moves, called the TMFG algorithm. The method starts from a K4 (a
complete graph on four vertices), termed here as seed, and adds vertices one at a time by
using the face dimpling move (see Figure 1). They note that the TMFG algorithm can be
extended to include the edge dimpling move (see Figure 1) and improvement moves as
well. At each step, the actual move implemented is chosen in order to maximise a score
function, most naturally, the sum of the weights of the edges to be added. When confined
to face dimpling, the TMFG method is more flexible than the well known deltahedron
method of [Foulds and Robinson 1978], as it does not involve a pre-ordering of the ver-
tices. Like the deltahedron method, at each iteration, TMFG computes the increase in
score that would be achieved by inserting any of the remaining vertices in any currently
existing face. The dimpling move is applied to the vertex-face pair that induces the maxi-
mum increase in score. At first glance, this requires the calculation of the increase in score
for every feasible vertex-face pair, requiring O(n2) calculations at each iteration, leading
to an overall complexity of O(n3). Importantly, this computational burden has been sig-
nificantly reduced by maintaining a cache that records only the best possible vertex-face
pair and updating only the records affected by the corresponding face dimpling move. The
maintenance of the cache requires O(n) running time and the complexity of the TFMG
algorithm reduces to only O(n2).

During this Millennium breakthroughs in information technology have had signifi-
cant effects on discrete optimisation. In particular, the rapid growth and widespread avail-
ability of parallel processors [Kirk and Wen-Mei 2016] has meant that its use for various
large-scale, difficult discrete optimisation problem instances in operational research is a
growing trend [Migdalas et al. 2013]. While parallel processing is not expected to signifi-
cantly reduce the worst-case run time of large-scale numerical instances of combinatorial
optimisation problems that are strongly NP-hard (which would require an exponential
number of processors), optimal solutions to moderately-sized instances can be obtained
via parallel processing in a reasonable amount of time. In addition, the execution time
of various heuristic algorithms for many hard combinatorial problems is polynomially
bounded and, in these situations, parallel processing can sometimes significantly increase
the size of solvable instances, while keeping the time relatively low.

Thus, to reduce the processing time of well-established sequential methods on
reasonably large MWPSP instances, modern parallel architectures that use multiple cores
might be considered. Today, virtually all CPUs (Central Processing Units) support paral-
lelism through the use of multiple cores. In a similar way, many-core architectures such as
GPUs (graphical cards used for general purpose computing) have dramatically increased
the number of available cores – sometimes in the thousands. Many-core processors, also
known as accelerators, work with relatively simple and slower cores and are becoming
increasingly affordable due to mass marketing in the gaming industry. They are designed
for massive, multi-threaded systems and require a significant number of threads. This
imposes some constraints in developing appropriate algorithms, requiring the design of
novel solutions and new implementation approaches.

[Massara et al. 2017] suggested the use of parallel and GPU computing in the
MWPSP resolution approaches. However, apparently, these authors have not followed
through. [Coelho et al. 2016] proposed a successful method, termed here asFD heuristic,
which starts from each of the possible seed of a graph, using fine-grained parallelism in



GPU’s, builds solutions from the successive application of face dimpling, described in
Section 3, and returns the best result found. But, as Coelho et al. points out, testing all
possible seed is a bottleneck in their method, as his computational results showed that
only a few seeds led to good results and most of them lead to unsatisfactory results. In
fact, only one seed matters in the whole process: the one that produces the best solution!

3. The vertex-by-vertex construction approach to the MWPSP
As mentioned earlier, many of the existing sequential MWPSP heuristics are based on
construction procedures. We discuss some of these strategies and their results, with a
view to developing parallelised MWPSP heuristics. A given maximal planar graph can be
transformed into a new one by various step-by-step local topological moves. The choice
of the actual move at each step is often made greedily on the basis of the highest increase
in total subgraph weight. We now describe some commonly-used moves for sequentially
constructing a solution to the MWPSP. These moves are shown on the complete vertex-
labelled graph with four vertices K4, termed here a tetrahedron.

To illustrate the moves, suppose G = (V,E) is a maximally planar graph with a
set of faces F . In the first move, at each iteration, a vertex is inserted into a triangular face
of the current graph and three edges are added by connecting the newly inserted vertex
to the vertices of the triangular face. This procedure is termed here as face dimpling
(denoted as T2 by [Massara et al. 2017]), as illustrated in Figures 1a and 1b. Suppose
n ⩾ 3, {a, b, c} ∈ F and there is a potential vertex u /∈ V . The face dimpling move
inserts u into the face defined by vertices a, b and c to transform G into the maximally
planar graph G′ = (V ′, E ′) where V ′ = V ∪ {u}, E ′ = E ∪ {{a, u}, {b, u}, {c, u}},
F ′ = (F \ {{a, b, c}}) ∪ {{a, b, u}, {b, c, u}, {a, c, u}}. Clearly, the move preserves
planarity at each iteration.

A second construction move is called here edge dimpling (termed the “A move”
by [Massara et al. 2017] in honour of its inventor, [Alexander 1930]). The edge dim-
pling operation removes an existing edge and inserts a new vertex and four edges, as
shown in Figures 1a and 1c. Suppose n ⩾ 4, {a, d} ∈ E and there is a poten-
tial vertex u /∈ V . In this move, the edge {a, d} is replaced by the vertex u, which
is connected to vertices a, b, c and d to transform G into the maximal planar graph
G′ = (V ′, E ′) where V ′ = V ∪ {u}, E ′ = (E\{a, d}) ∪ {{a, u}, {b, u}, {c, u}}, {d, u}},
and F ′ = F ∪ {{a, b, u}, {a, c, u}, {b, d, u}, {c, d, u}}\{{a, b, d}, {a, c, d}}. Once again,
the move preserves planarity at each iteration. Unlike face dimpling, where each insertion
produces a vertex of degree 3, edge dimpling produces a vertex of degree 4.

A third general construction move, termed here face-edge dimpling, chooses be-
tween a face or an edge dimpling move at each construction step of a maximal planar
subgraph. In MWPSP, this choice is made greedily, based on the largest overall increase
in the total edge weight of the current subgraph.

4. Parallelism and GPU
The following sections presents an overview of the GPU (graphical processing unit) ar-
chitecture, which serves as the primary hardware for parallelism in this work. A funda-
mental concept in parallel computing, the speedup measures the performance improve-
ment achieved by executing a parallel algorithm compared to its sequential counterpart.
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within edge {a, d}).

Figure 1. The face and the edge dimpling move.

It quantifies the reduction in execution time when utilising multiple processing units con-
currently. The speedup of a parallel algorithm can be calculated by dividing the execution
time of the sequential algorithm by the execution time of the parallel algorithm. Math-
ematically, the speedup (S) is defined as: S =

Tsequential

Tparallel
; where Tsequential represents the

execution time of the sequential algorithm, and Tparallel represents the execution time of
the parallel algorithm. A speedup value greater than 1 indicates that the parallel algorithm
is faster than the sequential algorithm. For example, if the speedup is 2, it means that the
parallel algorithm executes in half the time of the sequential algorithm. The larger the
speedup, the more efficient the parallelization.

4.1. GPU architecture and CUDA
Graphics Processing Units (GPUs) initially became popular with their use for graphic
rendering and image processing, especially in gaming applications. However, their par-
allel processing structure makes them a great alternative for efficient processing of large
data blocks. Computers contain a Central Processing Unit (CPU), where most of the
processing is done. A typical CPU is designed to perform serial tasks quickly and with
low latency. Additionally, CPUs are designed to easily switch between tasks. GPUs, on
the other hand, are designed to optimize the number of tasks executed per unit of time
(throughput) by processing tasks in parallel. Thus, a processing core (core) of a GPU
usually has a higher latency than a CPU core, but the GPU focuses on processing more
data tasks through a much larger number of cores performing in parallel.

In a GPU there are multiple streaming multi-processors (SM) and each one contain
multiple single processors (SP). During a clock cycle, all the SPs within an SM execute
the same instruction, but with different data. Thus, each SM is considered a SIMD (single
instruction multiple data) processor, and if different SPs within an SM need to perform
different instructions, these instructions are executed serially. A GPU also contains a
global memory, with access available to all SPs, and a high-speed shared memory for the
SPs of each SM.

CUDA (Compute Unified Device Architecture) is a parallel computing platform
and programming model developed by NVIDIA. It allows developers to harness the
power of GPUs for general-purpose computation. In CUDA, computations are divided
into threads, which are executed on the GPU. A thread is the basic unit of execution
in CUDA. It represents an independent sequence of instructions that can be executed in
parallel. Threads are organized into thread blocks, and multiple thread blocks can be ex-
ecuted concurrently. Each thread is identified by a unique thread index within a block. A



block is a group of threads that can cooperate with each other by sharing data and syn-
chronizing execution. Threads within a block can communicate using shared memory. A
block is executed on a single streaming multiprocessor (SM) of the GPU. The number of
threads in a block is limited by the hardware resources of the SM, such as the number of
available registers and shared memory.

In CUDA programming, a kernel refers to a function that runs on the
GPU and is executed in parallel by multiple threads. When calling a CUDA
kernel, we specify the launch configuration, which includes the number of
thread blocks and threads per block. A CUDA kernel is called as follows:
kernelFunction<<<numberOfBlocks, numberOfThreads>>>(args); where
kernelFunction is the name of the CUDA kernel function and
<<numberOfBlocks, numberOfThreads, sizeOfSharedMemory>> denotes the
launch configuration and args are the arguments passed to the kernel function.

The numberOfBlocks parameter represents the number of blocks, and the
numberOfThreads parameter specifies the number of threads per block. The actual
number of threads executed in parallel will be the product of numberOfBlocks and
numberOfThreads. The sizeOfSharedMemory parameter specifies the size of shared
memory (in bytes) to be allocated per block. This allows developers to explicitly man-
age and optimise the use of shared memory, which can lead to significant performance
improvements in certain GPU algorithms.

5. Proposed parallelized restricted-seeds heuristic
The FD heuristic, proposed by [Coelho et al. 2016], uses the face dimpling move, de-
scribed in Section 3, to greedily build a solution to an MWPSP instance, starting from
every possible seed (all tetrahedra of G). Since the number of seeds is O(n4) and each is
used to construct a solution in O(n3) topological moves, the overall time complexity of
the FD heuristic is O(n7/p), where p is the total number of threads available. However,
it can be assumed that only a subset of the seeds actually leads to high quality solutions.
Thus, the new Restricted Seeds heuristic works similarly to the FD heuristic, but it does
not process the entire set of seeds, only a strict subset of them, and also uses the edge
dimpling subroutines, instead of only face dimpling.

The choice of this subset is the key to a good performance of the Restricted Seeds,
regarding processing time and, more importantly, the quality of returned solutions. There-
fore, an efficient way to obtain subsets with the smallest possible number of seeds that can
potentially lead to high quality solutions is proposed. An intuitive way of doing this is
to consider the weight of each seed considered (the sum of its edge weights), since it is
common sense that seeds with relatively high weights are usually likely to lead to good
quality solutions.

The proposed method comprises a pre-processing phase concerning the complete
set of all

(
n
4

)
possible seeds that can be extracted from G. This phase sorts all these seeds

in non-increasing order according to their weight, with a time complexity O(n4 · log(n)).
Since this sorting phase must be performed only once before the runs of the restricted
seeds heuristic, it does not affect the complexity of the main part of the method, which has
time complexity O((y + z)n3), given the parameters y and z described below. However,
if y + z = O(1), then the final complexity of the proposed heuristic is O(n3), without a



significant loss in the final quality of the best solution, if we test all seeds, as discussed in
Section 6.1.

Let C denote the subset of filtered (finally chosen) seeds. Only the first heaviest
x seeds in the ordered set of seeds are considered for the filtering process. Initially, the
first y (where y ⩽ z) heaviest seeds are added to C. Next, z more seeds (y + z ⩽ x)
are randomly chosen among the (x − y) remaining seeds and are added to C. Then,
an algorithm, called here as Face-Edge Dimpling (FED), is applied to each seed in C.
The reason for randomly choosing some additional seeds is to improve the chances of
escaping from an eventual local optima that could be reached if only the heaviest y seeds
were used. The approach used to apply parallelism in this new method was not different
from the one used in the FD, the major difference being that in order to sort the seeds in
the set C, it used a parallel sorting algorithm as well.

The pseudocode of the Restricted Seeds is presented in two parts. The first part
(Algorithm 1) details the processing done at the CPU level, and how the kernel was called.
First, at step 1, we select the set of seed that will be used, in a process described before,
and store it at C. After it, we move both the graph G and the seeds C to the GPU (steps 2
and 3), as it will be used in the construction of the solution. The steps 4 - 6, defines the
values that will be used in the kernel configuration. The step 7 call the kernel function,
that will be detailed in 2. This kernel will be responsible to construct the solution. Finally,
the maximal subgraph obtained will be returned at step 8.

Algorithm 2 details the kernel itself, wich run for each thread. In the first step 1,
we move the input graph G to the shared memory of the GPU. In the step 2 we construct
a unique index k for the current thread, where 0 ≤ k ≤ totalNumberOfThreads =
numberOfBlocks · threadsPerBlock. The value of totalNumberOfThreads can be
obtained using CUDA built-in variables. The construction of the solution for each seed
(seed growth) is done between the steps 3 and 14. In these steps is successively applied
between the face dimpling or edge dimpling movement, accordingly with the greatest
local improvement. Variables Ck and S, defines, respectively, the initial seeds and the
vertices that were not inserted in the solution yet. Sets E andF defines the edges and faces
of the current solution, respectively. Steps 8 to 15 show the process of applying the face
dimpling and edge dimpling routines. Since the quantity of edges and faces in a maximal
planar graph with n vertices are 3n− 6 and 2n− 4 respectively, and at each construction
step we look at every face vertex and edge vertex combination, then the complexity of a
seed growth is

∑n
i=4 i · (2i − 4 + 3i − 6) ∈ O(n3). The edges of every final solution,

for each seed, are stored in R (step 16). This step is done in O(n). Every other step in
this method is done in O(1). The index k is increased by the totalNumberOfThreads
in step 17, which guarantees that each thread processes a disjoint subset of seeds, which
together form the set C. Finally, in the step 18 we get the edges that form the solution with
greatest weight, and return it together with the initial set of vertices forming a maximal
planar subgraph, hopefully with the greatest weight as possible, in the step 19. Since both
the face and the edge dimpling seed growth are done in O(n3) and y+ z seeds are tested,
the overall complexity is O((y + z)n3).

Some pseudocode details have been consciously omitted. For example, the way
the results of different threads are combined is not detailed, as it was considered that this
does not affect the understanding of the described method and because it is a trivial task



used in many other parallel algorithms. Thus, the focus is on the most important steps of
the proposed method itself.

Algorithm 1: RestrictedSeeds
Input: Graph G = (V,E) and parameters x, y, z ∈ N that reduce the search space of viable

solutions
Output: Maximal planar subgraph G′, filtered from G.

1 C ← FilteredSeeds(G, x, y, z);

2 Store G in GPU;
3 Store C in GPU;
4 threadsPerBlock ← 29;
5 numberOfBlocks← ⌈ |C|

threadsPerBlock ⌉
6 sharedMemorySize← |G|;
7 G′ ← FaceEdgeDimpling

<<< numberOfBlocks, threadsPerBlock, sharedMemorySize >>>(G, C);
8 return G′.

Algorithm 2: FaceEdgeDimpling( G,C ) // kernel function
Input: Graph G = (V,E), C as a set of seeds
Output: Maximal planar subgraph G′, filtered from G.

1 moveToSharedMemory(G)

2 k ← current thread index

3 while k ≤ |C| do
4 Ck ← {vk1 , vk2 , vk3 , vk4} ∈ C
5 S ← V (G)− {Ck}
6 E ← {{vk1 , vk2}, {vk1 , vk3}, {vk1 , vk4}, {vk2 , vk3}, {vk2 , vk4}, {vk3 , vk4}}
7 F ← {{vk1 , vk2 , vk3}, {vk1 , vk2 , vk4}, {vk1 , vk3 , vk4}, {vk2 , vk3 , vk4}}
8 while (S ≠ ∅) do
9 face_move← {max gain with {s, f}, ∀ f ∈ F e s ∈ S}

10 edge_move← {max gain with {s, e}, ∀ e ∈ E e s ∈ S}
11 if (face_move > edge_move) then
12 Call Face Dimpling routine;
13 else
14 Call Edge Dimpling routine;
15 Update the sets F , E and S;
16 R ← R∪ E ;

17 k ← k + totalNumberOfThreads;

18 M′ ← max(R);
19 return G′ = (V,M′).

6. Some computational results
The tests with the sequential version of Restricted Seeds (Section 6.1) were conducted on a
personal computer with 16GB of RAM, 11th Gen Intel® Core™ i7-1165G7 @ 2.80GHz,
8x2 cores, processor, and Ubuntu 20.04 operating system. It was was used the best possi-
ble sequential implementation, in terms of asymptotic complexity, of this algorithm. We
achieved O((x + y)n2log(n)), as we took advantage of sparse structures that don’t work
very well on GPUs, with the steps 8–15 spending O(n2log(n)). The parallel versions of
Restricted Seeds, All Seeds (applying FED using all the seeds) and FD were tested using



an Intel(R) Xeon(R) CPU @ 2.30GHz, 2x2 cores, model 63 and a Tesla T4 GPU with
2560 CUDA Cores, both devices with 16GB of main memory. The results presented are
the average outcomes of 10 independent runs, taking into account both processing and
transfer times (GPU only).

The experiments used synthetically generated instances (Kn, n = 10, 25, . . . ,
100), originally proposed by Coelho et al., [Coelho et al. 2016], termed here as Coelho’s
Instances with weights w(e), e ∈ E(Kn) randomly generated in the range [0, 199]1. These
instances were generated in a way that was specially hard to solve in an optimal manner,
or close to it. We also used the 100-vertex Tumminello Instance [Tumminello et al. 2005],
which is based on a real empirical study of practical financial data derived from the US
stock market, with vertices and edges representing stocks and given correlation coeffi-
cients between them, respectively.

6.1. Parallel Restricted Seeds results

Table 1 compares the results obtained with those of the heuristics FD
[Coelho et al. 2016], Restricted Seeds, All Seeds and TMFG [Massara et al. 2017]
using Coelho’s Instances. The parameters y and z, described in 5, were both fixed at 95,
so O(y + z) is O(1).

Table 1. Results from the Restricted Seeds and the All Seeds heuristics.

Instance All Seeds Face Dimpling TMFG Restricted Seeds

nnn σσσ GPU (sss) Value GPU (sss) gap (%) gap (%) Seq. (sss) GPU (sss) Value (µ) gap range (%) speedup

10 50.14 0.004 2107 0.368 0.00 4.74 0.031 0.004 2107.0 [0,00, 0.00] 7.45
15 56.17 0.022 5772 0.362 0.50 0.97 0.064 0.012 5772.0 [0.00, 0.00] 4.98
20 55.30 0.053 8321 0.365 3.12 6.89 0.165 0.028 8266.6 [0.42, 0.89] 5.80
25 58.70 0.131 11431 0.370 1.22 4.13 0.287 0.047 11364.9 [0.46, 0.70] 6.05
30 55.93 0.352 13644 0.375 1.53 4.85 0.454 0.077 13470.5 [1.14, 1.40] 5.87
35 58.93 0.667 17028 0.412 1.15 2.89 0.679 0.117 16793.8 [1.33, 1.42] 5.76
40 56.44 1.460 19454 0.489 1.14 3.54 1.047 0.150 19349.2 [0.45, 0.63] 6.94
45 56.57 2.993 21669 0.663 0.84 2.15 1.572 0.209 21466.2 [0.89, 0.98] 7.50
50 57.30 6.706 25126 0.995 1.11 1.89 2.448 0.306 24919.3 [0.77, 0.88] 7.99
55 58.20 11.648 27771 1.698 1.12 3.02 3.401 0.324 27621.2 [0.50, 0.58] 10.48
60 57.04 22.613 30432 2.801 1.14 3.65 4.699 0.356 30069.6 [1.01, 1.37] 13.19
65 56.39 37.106 33119 4.309 0.69 2.12 6.361 0.416 32884.5 [0.59, 0.83] 15.28
70 58.26 62.602 36410 7.844 0.84 2.74 8.790 0.428 36071.5 [0.86, 1.00] 20.52
75 57.50 100.736 38953 12.733 0.91 2.41 11.585 0.510 38656.9 [0.72, 0.80] 22.68
80 57.39 161.685 41771 20.062 0.66 2.23 15.015 0.587 41433.1 [0.79, 0.82] 25.53
85 57.47 241.985 44268 30.921 0.73 2.53 21.052 0.643 44045.6 [0.45, 0.56] 32.73
90 57.37 375.967 47301 47.297 0.68 3.11 26.935 0.837 46933.0 [0.78, 0.78] 32.15
95 57.48 603.318 49961 69.420 0.58 1.80 37.986 0.865 49587.0 [0.67, 0.82] 43.89

100 58.57 866.924 53377 100.670 0.64 2.65 46.129 1.025 52922.5 [0.79, 0.92] 45.00

Average gaps/speedup (%) 0.98 2.92 [0.66, 0.81] 16.83

Table 1 has five column blocks. The first block concerns the characteristics of the
instances and the following four blocks shows the results achieved by the All Seeds, Face
Dimpling, TMFG and Restricted Seeds heuristics. Columns labelled nnn and ΣΣΣ contains
the number of vertices and the standard deviation of the edges weights of each instance.
Columns labelled GPU contain the processing times (in seconds) in the parallelised ver-
sions of the heuristics, Seq. (s) column shows the running times (in seconds) of the
Restricted Seeds method in the sequential version and columns labelled Value contain the

1https://github.com/viniscoelho/dimpling/tree/master/inputs.

https://github.com/viniscoelho/dimpling/tree/master/inputs


weight of the planar graph obtained (in the RS heuristic it is the average value obtained in
ten runs of the method). The gap (%) columns shows the percentage difference between
the value obtained by the respective heuristic and the All Seeds method (a gap of 0.00%
means that the solution is as good as the All Seeds). Finally, the last column contains the
speedup of the parallel version of the Restricted Seeds heuristic compared to its sequential
version. The average value presented for the Restricted Seeds heuristics is due a random
step in the seed filtering method, as explained in Section 5, and the gap range (%) is an
interval with a confidence level of 95% for the gaps obtained in ten runs of the method.

The variation in the standard deviations of the edge weights between the used
instances is very low (less than 3.3 from n=15 to n=100). Although it is not a general
rule, with more homogeneous weight distributions (smaller standard deviations), as in
n ∈ {20, 25, 30}, the Face Dimpling and TMFG heuristics tend to obtain results with
larger gaps. On the other hand, this feature seems to have less impact on the behaviour of
the Restricted Seeds heuristic.

To better evaluate the relationship between parameter configuration and expected
values, tests were performed with different instances and parameter configurations. The
box plot graph in Figure 2 presents the results obtained using the Tumminello Instance.
In this experiment, parameters x, y, and z were configured using variables X ′, Y ′ and Z ′,
respectively, where X ′ is a percentage of the total number of seeds. For example, if T is
the total number of different seeds for a graph G, setting X ′ = 10 implies x = 10%T .
Similarly, Y ′ and Z ′ configure the parameters y and z as percentages of the value x. For
instance, if Y ′ = 5 and Z ′ = 10, then y = 5%x and z = 10%x.
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Figure 2. Solution over different configurations for the Tumminello instance.

The graph displays different configurations: the blue boxes represent configura-
tions where Y ′ = 5 and Z ′ = 10, red boxes represent Y ′ = 1 and Z ′ = 2, and green boxes



correspond to a configuration that tests all the seeds. This last case is essentially the All
Seeds method. The parameter X ′ varies along the horizontal axis, starting at 10 and in-
creasing by 10 up to 100. The vertical axis represents the gap between the solutions and
the known upper bound for the Tumminello Instance. In contrast to the previous table, the
graph includes every solution value obtained by running the algorithm 30 times with dif-
ferent configurations, except for the green configurations, which remains constant. Each
configuration setting generates multiple solution values, and these are plotted to illustrate
the range of solutions obtained.

The bar graph in Figure 3 illustrates the runtime in seconds for each configura-
tion. By examining these graphs, we observe that the blue configuration at X ′ = 30
consistently yields the same solution as the all seeds method but requires significantly
less time to compute.
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Figure 3. Runtime (secs) over different configurations for the Tumminello instance.

7. Conclusions
The solution approach proposed here considers only a subset of the possible seeds of a
graph, instead all the seeds, and it also includes the edge dimpling move in the solution
construction. The aim of this is to improve the solution quality and running time of the
FD heuristic. Moreover, parallelism played a fundamental role in the approach, being on
average 16 times faster for Coelho’s Instances. The solution quality did not a great impact
in comparison with the All Seeds method, but it was better than the TMFG method and
the FD heuristic, using the Coelho’s Instances. In the case of the Tumminello Instance
[Tumminello et al. 2005], we showed how we could get the same result as the All Seeds
method with only a small fraction of time.

Despite our progress in developing an approximate solution for MWPSP to handle
more complex problem instances, our proposed approach does have limitations. First, it
requires a data preprocessing step involving the sorting of all seeds. Second, the selection
of the heaviest seeds combined with a random set requires parameterization that depends
on experimental trials. Finally, the utilisation of a single GPU can pose limitations due to
the demand for greater memory in handling larger problems. These aspects are areas we
intend to address in our future work.
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