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Abstract. The knapsack problem is a classic and fundamental optimisation
problem that serves as a subproblem in various optimisation algorithms. Thus, it
is of great importance that we manage to solve several instances of the knapsack
problem in a fast and efficient way. In this work we present a parallel algorithm,
based on dynamic programming, that can take advantage of parallelism as more
knapsacks need to be solved. The algorithm makes use of fine-grained data par-
allelism and is easily mapped to GPU accelerators. Extensive experiments with
diverse datasets demonstrate the superiority of the proposed algorithm, achiev-
ing relevant speedups compared to a serial algorithm.

Keywords. Multidimensional Knapsack, Graphics Processing Unit, MKP, GPU,
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1. Introduction
The 0–1 Multidimensional Knapsack Problem (MKP) belongs to the class NP-

hard [Kellerer et al. 2004]. The objective of the MKP, given a set of objects associated
with values (gain) and weights (cost), is to select a subset of these objects, maximising
the total gain while respecting the capacity limitations in each of its dimensions.

Graphics Processing Units (GPUs) are widely recognised and applied in the realm
of game development for graphical rendering and image processing. GPUs also facilitate
parallel processing in general-purpose applications. This technique is known as General-
Purpose Graphics Processing Unit (GP-GPU), involving the utilisation of GPUs to solve
problems commonly unrelated to graphical aspects. Consequently, besides being an ef-
ficient means for processing large volumes of data, the GP-GPU can prove effective in
resolving substantial instances of optimisation problems, such as the MKP. It can also be
beneficial when multiple instances of the same problem need to be repeatedly solved to
contribute to the solution of a larger problem.

The MKP has numerous applications in domains such as combinatorial optimisa-
tion, cryptography, logistics problems, decision-making, and more. Literature reports
showcase diverse applications ranging from capital budgeting and resource allocation
[Lorie and Savage 1955], cargo transportation planning [Bellman 1957, Shih 1979], ma-
terial cutting [Gilmore and Gomory 1966], processor and database allocation in large dis-
tributed systems [Gavish and Pirkul 1982], to devising strategies for pollution control and
prevention [Bansal and Deep 2012], among many others.

Despite its great usefulness in different domains to model practical problems, even
the two-dimensional case of the MKP is generally hard to solve in practice. However, the



need to solve multiple reduced-dimensional sub-instances of an MKP instance (typically
with at most three dimensions) can occur as a sub-problem in different MKP resolution
approaches. For example, in algorithms that use the Branch-and-Price technique to solve
an Integer Linear Programming (ILP) MKP model, this is one of the tasks with the highest
processing expense during the search for a viable or optimal solution.

Therefore, in this work we focus on solving the two-dimensional variant of the
MKP, denoted here as KP2. Firstly, we describe algorithms for both sequential and
parallel resolution of the KP2. Section 4.3 formally defines a new problem regarding
the simultaneously solving multiple KP2 instances and introduces a parallel approach to
solving it using GPU. We propose a dynamic programming-based exact algorithm specif-
ically designed for tackling this problem, which can be readily extended to variants of the
problem that encompass more than two dimensions. The algorithm operates on the prin-
ciple of maximising the workload performed on the GPU and computational experiments
conducted using implementations of this algorithm exhibit a significant improvement in
efficiency when compared to its sequential counterpart.

The rest of this article is organised as follows. Section 2 outlines some of the
works related to solving the MKP using GPUs. Section 3 introduces the notation em-
ployed throughout the remainder of the article and formally defines the specific cases
addressed. Subsection 4.1 presents a sequential resolution of the KP2. Subsection 4.2
elucidates the transformation of the sequential KP2 resolution algorithm into its fine-
grained parallel counterpart. Subsection 4.3 presents strategies for solving multiple in-
stances of the KP2 as a given set. Section 5 is dedicated to the computational results
obtained through testing some of the algorithms described in Section 4. Lastly, Section 6
provides final considerations and some prospects for future work.

2. Related Work

Many approaches have been put forth to harness GPU acceleration for solving
the MKP. While the majority of the existing literature focuses on exploring parallelism
through heuristic-based approximate solutions, there exists a subset of studies that have
employed GPU parallelism for exact problem-solving using dynamic programming tech-
niques. In the following section, we highlight a selection of these existing works in the
field. However, we did not come across any work that specifically focuses on solving
multiple instances of the knapsack problem.

Publications employing GPUs for approximative solutions investigate diverse
heuristics within their methodologies. In [Zan and Jaros 2014], the utilisation of the Parti-
cle Swarm Optimization technique for solving the MKP is discussed. [Fingler et al. 2014]
proposes a parallelisation in GPUs of the meta-heuristic Ant Colony Optimisation, a tech-
nique that uses “artificial ants” to explore possible solution sets for an instance of the
MKP. In the study by [de Almeida Dantas and Cáceres 2014], neural networks are em-
ployed in addressing the MKP to prevent the best solution from being confined within
the vicinity of a local maximum. In [de Almeida Dantas and Cáceres 2015] a resolution
method is presented based on the GRASP meta-heuristic (Greedy Randomised Adap-
tive Search Procedure), implemented in parallel. These authors also presented a solution
in GPGPU with the probabilistic meta-heuristic Simulated Annealing and the GRASP
heuristic [de Almeida Dantas and Cáceres 2016, de Almeida Dantas and Cáceres 2018].



A few studies focus on utilising GPUs for the exact solution of the MKP using
dynamic programming, and we highlight two of them here. [Berger and Galea 2013] put
forward a parallelisation approach for grouping threads in dynamic programming within
the CUDA framework. They demonstrate the effectiveness of this approach, particu-
larly in the context of the MKP, where the computation of multi-dimensional indices
is resource-intensive. [Biswas and Mukherjee 2022] introduce an implementation of an
efficient dynamic programming technique tailored for efficiently solving the Bounded
Knapsack Problem (BKP) in a GPU-based system using CUDA. The handling of large-
scale problems involves minimal CPU-GPU interactions, optimising memory usage in the
GPU for enhanced efficiency. The authors show that this GPU-centric parallel approach
exhibits significant speedup compared to an equivalent sequential implementation,

3. Preliminary definitions

The MKP is defined by the following elements: a knapsack of m dimensions; a
capacity ck in the kth knapsack dimension, k = 1 . . .m; n objects, where the ith object
has a weight wi,k in the kth knapsack dimension, and a profit pi, i = 1 . . . n. The objective
of MKP is to select a subset of the n objects with maximum sum of profits, such that the
sum of their weights does not exceed any of the capacities ck, k = 1 . . .m.

Let zj(c1, . . . , cm) be the maximum sum of profits that can be feasibly obtained
by considering just the first j objects, for some j, where 1 ⩽ j ⩽ n, while respecting the
given fixed capacities c1, . . . , cm, of the m knapsack dimensions. The optimal value of
zj(c1, . . . , cm) is provided by the following recurrence relation:

zj(c1, . . . , cm) =



0, j = 0;

zj−1(c1, . . . , cm), ck < wj,k,
k∈{1,...,m};

max

{
zj−1(c1, . . . , cm),

zj−1(c1 − wj,1, . . . , cm − wj,m) + pj

}
, ck ⩾ wj,k,

k=1,...,m.

(1)

The relations in (1) are explained as follows. In the base case (j = 0) no objects
are considered and, trivially, the maximum possible profit is 0. In the second case, it is
supposed that the kth dimension capacity ck of the knapsack for some k ∈ {1, . . .m} is
not large enough to contain the weight wj,k of the respective object j. Thus, object j. can-
not be added to the current solution subset, which will contain only objects with indices
smaller than j. In the final case, it is assumed that all knapsack dimensions accommo-
date the object j. Therefore, the value of zj(c1, . . . , cm) is the maximum total profit to be
obtained with the inclusion, or not, of the object j in the solution subset. In the case of
inclusion, the capacities of all dimensions are reduced accordingly.

The optimal value of the recurrence (1), considering all objects, can be obtained
by combining the techniques of dynamic programming, using the top-down strategy, and
of memoization [Pfeffer 2007]. The approach considered in this work was bottom-up,
due to the ease of its parallelisation, as described in Subsection 4.2. This approach is
characterised by first solving trivial subproblems and then using their solutions to solve
more complex subproblems, until the solution of the original problem is reached.



4. KP2 solving approaches
The notation &, used in the algorithms listed in this section, denotes the logical

operation AND applied bit to bit to two positive integers. A useful task that can be effi-
ciently implemented using this logical operation is the parity check of positive integers,
i.e., given a positive integer n, n&1 = 0 if n is even, or 1 if it is odd. This expression
is used in the following algorithms in order to quickly switch to the entries of the first
and the second rows of two-row, multicolumn, matrices, i.e., to toggle between the row of
index 0 and the row of index 1. The notation A[m][n]← {0}, denotes both the definition
of an array A of dimension m × n and the initialisation of all its entries with the value 0
(a similar notation was also used for one- and two-dimensional matrices).

The fine-grained parallel algorithms described in this work use the principles of
the CUDA API (see e.g. [Kirk and Hwu 2016, Nvidia 2023] for more details about GPU
and CUDA). In CUDA the data accessed by the kernel (a procedure or code) that is exe-
cuted in parallel on GPU) must be in the GPU memory and not in the CPU main memory.
Thus, before executing a kernel, the necessary data must be copied to the GPU memory
and afterwards any useful data must be copied back to the main memory. A program
being executed on the CPU can call a kernel subroutine by specifying the number of GPU
blocks that will be used and how many threads per block will be launched. The suffix
GPU was used for explicit structures existing only in GPU memory, as in the statement
A← AGPU , which indicates the copy of data from GPU memory to the CPU memory.

Parameters qtyB and qtyT of the parallel algorithms described in Subsection 4.2
are, respectively, the number of blocks and the number of threads per block launched
in the GPU. The following functions were used to simplify the description of the al-
gorithms: obtainQtyBlocks() returns qtyB; obtainQtyThreadsBlock() returns qtyT ;
obtainThreadId() returns the tId identifier of the thread within the block, 0 ⩽ tId <
numT ; and getBlockId() returns the block identifier bId, 0 ⩽ bId < qtyB.

4.1. A sequential algorithm

A sequential solution algorithm for KP2, with asymptotic time and space com-
plexities O(n·c1·c2), which is strongly based on the recursion (1) and which uses the dy-
namic programming technique with the bottom-up strategy, is presented in Algorithm 1.
Its first phase is the construction of a solution to the subproblem comprising the first n′

objects. For this, only the solutions to the subproblems comprising the first (n′ − 1) ob-
jects are needed (as is evident from the recurrence 1). Thus, both in Algorithm 1 and
in the other algorithms presented in this Section, the state matrices M are defined with
dimension 2×(c1 + 1)×(c2 + 1) only and not n×(c1 + 1)×(c2 + 1). The reason for this
is that it is only necessary to alternate between the solutions constructed in the current
iteration and in the immediately previous iteration of the algorithms, i.e. it is enough to
alternate between only the two rows of M .

Each entry M [n′ &1][c′1][c
′
2] stores the value of a solution to the subproblem con-

sidering objects with indices less than or equal to n′ and capacities c′1 and c′2 (0 ⩽ n′ ⩽ n,
0 ⩽ c′1 ⩽ c1 and 0 ⩽ c′2 ⩽ c2). On the other hand, the entries in the rows (n′ − 1)& 1 of
M store the solutions to the subproblems that consider up to (n′ − 1) first objects.

However, this particular representation of the M matrix prevents the retrieval of
objects from the optimal solution (in the dynamic programming backtracking phase). To



work around this undesirable situation, a second matrix U of binary elements (bits) was
used, with dimension n×(c1 + 1)×(c2 + 1), which allows an optimised management of
the available memory. Initially, in step 2, all objects are marked as not belonging to the
solution subset (U [i][j1][j2]←{0}). At the end of the block of steps 3–12, the object i is
marked as used (U [i][j1][j2]←1) if it was added to the solution subset of the subinstance
that comprises the first i objects and capacities j1 and j2 in the first and second dimensions
of the knapsack, respectively.

Algorithm 1: sequentialKP2Solver (n, c1, c2, ppp,www)
Input: Amount n of objects; capacities c1 and c2 of the knapsack dimensions; vector ppp of profits;

matrix www of weights.
Output: Maximum value z. Array Opt of bits (to mark selected objects).

1 M [2][c1 + 1][c2 + 1]← {0}; // State matrix (2× (c1 + 1)× (c2 + 1)).
2 U [n][c1 + 1][c2 + 1]← {0}; // Bit matrix (n× (c1 + 1)× (c2 + 1)).
3 for i← 1 to n do
4 for j1 ← 0 to c1 do
5 for j2 ← 0 to c2 do
6 M [i&1][j1][j2]←M [(i− 1)&1][j1][j2];
7 if (j1 ⩾ wi,1 e j2 ⩾ wi,2) then
8 c′1 ← j1 − wi,1;
9 c′2 ← j2 − wi,2;

10 if (M [i&1][j1][j2] < M [(i− 1)&1][c′1][c
′
2] + pi) then

11 M [i&1][j1][j2]←M [(i− 1)&1][c′1][c
′
2] + pi;

12 U [i][j1][j2]← 1;

13 z ←M [n&1][c1][c2];
14 Opt[n]← {0}; // Bit array (n entries).
15 for i← n to 1 do
16 if (U [i][c1][c2] = 1) then
17 c1 ← c1 − wi,1;
18 c2 ← c2 − wi,2;
19 Opt[i]← 1;

20 return z,Opt.

When evaluating whether a given object i can be part of the subset Opt of solu-
tions, it is first assumed that i does not belong to such a subset (step 6). Then, it is checked
whether or not its addition to the solution subset would exceed any of the capacities of
the knapsack (step 7). Finally, if no capacity is exceeded, it is evaluated if the maximum
gain already obtained with the first i − 1 objects (step 10) can be improved. If so, its
profit is added to the maximum value obtained so far (step 11). After computing all M
matrix states, the maximum value of the solution obtained for the original instance of the
problem is available as M [n][c1][c2] (step 13). In the particular case where i = 1, there
are subproblems without any objects and the solution value is trivially 0 (defined by the
initializing M [2][c1 + 1][c2 + 1]← {0} in step 1).

Since it is enough to indicate exactly which objects belong to the Opt solution
subset, the subset can be efficiently implemented as a binary 1 × n array, as used in the
backtracking phase (steps 15 to 19). In this phase all objects are initially marked as not
belonging to the Opt subset (Opt[n]←{0}, in step 14). As in step 15 the loop control



variable i is decremented from n to 1, when U [i][c1][c2] = 1 (step 16) the object i belongs
to the Opt subset (step 19). Thus, the weight pi of the object i is decremented from the
remaining capacities c1 and c2 of the knapsack (steps 17–18) before starting the next loop
iteration. Finally, the z value and Opt array are returned (step 20) by Algorithm 1 as an
optimal solution for the input instance.

4.2. Parallel algorithm for the KP2 problem
A proposal for the parallel resolution of instances of the KP2 problem is presented

in Algorithms 2.1 and 2.2. The first algorithm runs on the CPU and calls the second
algorithm (the kernel), which runs in parallel on a GPU.

Algorithm 2.1: parallelKP2Solver (n, c1, c2, ppp,www, qtdeB, qtdeT )
Input: Amount n of objects; capacities c1 and c2 of the knapsack dimensions; vector ppp of profits;

matrix www of weights; amounts qtdeB of blocks used on GPU and qtdeT of threads launched in
each block.

Output: Maximum value z. Array Opt of bits (to mark selected objects).

// State matrix 2× ((c1 + 1) · (c2 + 1)) initialised with 0’s.
1 MGPU [2][(c1 + 1) · (c2 + 1)]← {0};
// Bit matrix n× (c1 + 1)× (c2 + 1) initialised with 0’s.

2 UGPU [n][c1 + 1][c2 + 1]← {0};
3 for i← 1 to n do
4 kernelParallelKP2Solver⟨ qtdeB, qtdeT ⟩(i, c1, c2, ppp,www,MGPU , UGPU );

5 z ←MGPU [n&1][c1 · (c2 + 1) + c2];
6 U ← UGPU ; // Copy U from GPU memory to CPU memory.
7 Opt[n]← {0}; // Array of n bits initialised with 0’s.
8 for i← n to 1 do
9 if (U [i][c1][c2] = 1) then

10 c1 ← c1 − wi,1;
11 c2 ← c2 − wi,2;
12 Opt[i]← 1;

13 return z,Opt.

Algorithm 2.1 is very similar to Algorithm 1, presented in Section 4.1. The matri-
ces MGPU and UGPU of the former are equivalent to the matrices M and U , respectively,
of the latter algorithm. The matrix Opt is identical in both algorithms. These matrices are
used in both algorithms for the same purposes. Variable z (step 5 of the Algorithm 2.1)
stores the maximum value of the solution to the problem instance and the steps 8 to 12
implement the backtracking phase of the dynamic programming method. Some simple
adjustments in Algorithms 2.1 and 2.2, similar to those described in Section 4.1, allow
parallel resolution of KP1 as well. Steps 3–4 of Algorithm 2.1 make calls to the kernel
(which runs in parallel on the GPU) in order to perform the computation of row i of the
matrix MGPU of states. This task is equivalent to steps 4–12 of Algorithm 1.

The two-dimensional matrix MGPU (2×((c1 + 1)·(c2 + 1))) of Algorithm 2.1,
has the same role as the three-dimensional matrix M (2×(c1 + 1)×(c2 + 1)) of Algo-
rithm 1. Thus, a state MGPU [i&1][c′1 · (c2 + 1) + c′2] of Algorithm 2.1 is equivalent to
state M [i&1][c′1][c

′
2] of Algorithm 1. The decision to keep the matrix MGPU with only

two dimensions was made to make easier to implement the kernel.



Algorithm 2.2: kernelParallelKP2Solver (i, c1, c2, ppp,www,MGPU , UGPU )
Input: Object i to be processed; capacities c1 and c2 of knapsack dimensions; vector ppp of profits;

matrix www of weights; state matrix MGPU ; matrix UGPU of bits.

1 tId← obtemThreadId() + obtemBlocoId() · obtemQtdeThreadsBloco();
2 passo← obtemQtdeBlocos() · obtemQtdeThreadsBloco();
3 for j ← tId to (c1 + 1) · (c2 + 1)− 1 by passo do
4 c′1 ← ⌊j/(c2 + 1)⌋;
5 c′2 ← j%(c2 + 1);
6 MGPU [i&1][j]←MGPU [(i− 1)&1][j];
7 if (c′1 ⩾ wi,1) e (c′2 ⩾ wi,2) then
8 c′′1 ← c′1 − wi,1;
9 c′′2 ← c′2 − wi,2;

10 if (MGPU [i&1][j] ⩽ MGPU [(i− 1)&1][c′′1 · (c2 + 1) + c′′2 ] + pi) then
11 MGPU [i&1][j]←MGPU [(i− 1)&1][c′′1 · (c2 + 1) + c′′2 ] + pi;
12 UGPU [i][c

′
1][c

′
2]← 1;

In the steps 1 and 2 of Algorithm 2.2, respectively, each thread receives an iden-
tifier tId, 0 ⩽ tId < qtdeB · qtdeT and the numerical variable step is initialised as the
number of threads launched on the GPU. After that, at the ℓ-th iteration of the loop con-
tained in steps 3–12, the thread with index tId computes entry MGPU [i][tId+ ℓ · step] of
the matrix MGPU . This iterative process runs as long as tId+ ℓ ·step < (c1+1) · (c2+1).
Thus, all states of row i of the MGPU matrix are computed, with each thread computing
approximately (c1+1)·(c2+1)

qtdeB·qtdeT states.

4.3. Parallel resolution of multiple KP2 instances

Let (KP2)k be the problem of solving simultaneously k > 1 KP2 instances that all
have the same number of objects, namely, n. The two capacities and the matrices of profits
and object weights of the k-th KP2 instance are denoted as ck1, ck2, pkpkpk andwk

1w
k
1w
k
1 , respectively.

Since solving an instance of the (KP2)k is equivalent to solving k instances of the KP2,
an intuitive parallel approach for solving the (KP2)k is to run the Algorithm 2.1 with
each of the k instances of the KP2, one at a time. However, it is possible to make some
adjustments to Algorithm 2.1 in order to generate a higher level of parallelism. This new
strategy consists of executing the kernel only once for all the k knapsacks at the same
time. That is, the entries of the state matrices for all k knapsacks are computed with just a
call to the kernel for each of the objects. This strategy increases the workload of the GPU,
but reduces the number of sequential operations in the CPU, consequently requiring less
processing time to solve the (KP2)k instance.

Algorithms 3.1 to 3.3 detail this approach and use a new vector S, where each
entry S[i] contains the sum of the knapsack capacities up to the i-th knapsack. Algo-
rithm 3.1 is discussed next. From the defintion of S, S[i] =

∑i
ℓ=1(c

ℓ
1 + 1) · (cℓ2 + 1), for

0 ⩽ i ⩽ k (see steps 1–3). Thus, S[k− 1] and S[k]− 1 are the initial and the final entries,
respectively, for the k-th knapsack in the new state matrix. The matrices MGPU and UGPU

have their second dimension changed to S[k], which is the size of the concatenation of
the rows of the state matrix of all k knapsacks (steps 4 and 5). Step 6 just specifies that
the S vector is copied to the GPU memory. Steps 7 and 8 call the kernel, which computes
an entire row of the state matrix. The vector ZGPU , which contains the values of the opti-



mal solutions to the k instances KP2, is initially defined in step 9 and updated in step 13.
The binary matrix Opt, that represents the subset of objects of each solution, is initially
defined in step 10 and updated in step 14.

Algorithm 3.1: multiParallelKP2Solver (n, k, c1c1c1, c2c2c2, ppp,www, qtdeB, qtdeT )
Input: Amount n of objects; amount k of knapsacks; vectors c1c1c1 and c2c2c2 of capacities; matrix ppp of

profits; matrix www of wights; amount qtdeB and qtdeT of blocks and threads launched in each
block on the GPU.

Output: Vector Z of maximum values. Matrix Opt of bits (to mark selected objects).

1 S[k + 1]← {0}; // Integer array with (k + 1) positions initialised
with 0’s

2 for i← 1 to k do
3 S[i]← S[i− 1] + (ci1 + 1) · (ci2 + 1);

4 MGPU [2][S[k]]← {0}; // Matrix of 2×S[k] states initialised with 0’s.

5 UGPU [n][S[k]]← {0}; // Matrix of n×S[k] bits initialised with 0’s.

6 SGPU ← S; // Copy S to GPU memory.

7 for i← 1 to n do
8 kernelMultiParallelKP2Solver⟨qtdeB, qtdeT⟩(k, i, c2c2c2, ppp,www,MGPU , UGPU , SGPU );

9 ZGPU [k]← {0}; // Array with k positions initialised with 0’s.
10 OptGPU [k][n]← {0}; // Matrix with k × n bits initialised with 0’s.
11 maxTporB ← getMaximumNumberOfThreadsPerBlock();

12 kernelBacktrackingKP2⟨
⌈

k
maxTporB

⌉
, min(k,maxTporB) ⟩

(n, k, c1c1c1, c2c2c2,www,MGPU , UGPU , SGPU , ZGPU , OptGPU );
13 Z ← ZGPU ;
14 Opt← OptGPU ;
15 return Z,Opt.

Algorithm 3.2: kernelMultiParallelKP2Solver (k, i, c2c2c2, ppp,www,MGPU , UGPU , SGPU )
Input: Amount k of knapsacks; object i to be processed; vector c2c2c2 of capacities; matriz ppp of profits;

matrix www of weights; states matrix M ; matrix U of bits; vector S of start positions.

1 tId← obtemThreadId() + obtemBlocoId() · obtemQtdeThreadsBloco();
2 passo← obtemQtdeBlocos() · obtemQtdeThreadsBloco();
3 id← 1;
4 for j ← tId to SGPU [k]− 1 by passo do
5 while (j ⩾ SGPU [id]) do
6 id← id+ 1;

7 c′1 ←
⌊
(j − SGPU [id− 1])/(cid2 + 1)

⌋
;

8 c′2 ← (j − SGPU [id− 1])%(cid2 + 1);
9 MGPU [i&1][j]←MGPU [(i− 1)&1][j];

10 if ((c′1 ⩾ wid
i,1) and (c′2 ⩾ wid

i,2)) then
11 pos← SGPU [id− 1] + (c′1 − wid

i,1) · (cid2 + 1) + (c′2 − wid
i,2);

12 if (MGPU [i&1][j] < MGPU [(i− 1)&1][pos] + pidi ) then
13 MGPU [i&1][j]←MGPU [(i− 1)&1][pos] + pidi ;
14 UGPU [i][j]← 1;

A particular feature of the new approach, as exemplified in Algorithm 3.1, is the
dynamic programming backtracking phase, which is performed in parallel (step 12). As



the resolution of each KP2 instance implies modifications of different entries in the Z and
Opt matrices, independent threads can be launched for each of the k instances. In each
of the instances, the value of the solution is retrieved and stored in the Z matrix and the
selected objects are indicated by the bits set to 1 in the Opt matrix.

Algorithm 3.3: kernelBacktrackingKP2 (n, k, c1c1c1, c2c2c2,www,MGPU , UGPU , SGPU , ZGPU , OptGPU )
Input: Amount n of objects; amount k of knapsacks; vector c1c1c1 and c2c2c2 of capacities; matrix www of

weights of objects; states matrix MGPU ; matrix UGPU of bits; vector SGPU of start positions;
vector ZGPU of maximum values; matrix OptGPU of bits.

1 id← 1 + obtemThreadId() + obtemBlocoId() · obtemNumThreadsPorBloco();
2 if (id > k) then
3 return;

4 ZGPU [id]←MGPU [n&1][SGPU [id− 1] + cid1 · (cid2 + 1) + cid2 ];
5 caux ← cid2 + 1;
6 for i← n to 1 do
7 if (UGPU [i][S[id− 1] + cid1 · caux + cid2 ] = 1) then
8 cid1 ← cid1 − wid

i,1;
9 cid2 ← cid2 − wid

i,2;
10 OptGPU [id][i]← 1;

Given an object i, the kernel for processing a row of the state matrix, is depicted
as Algorithm 3.2. Its operation is similar to the other kernel versions described earlier.
One difference is that now the variable id specifies the knapsack to which the state being
processed belongs. Initially, id is initialised as 1 and, as the control variable j (step 4) is
incremented, the new state j may no longer refer to the knapsack id, but to a knapsack
of index greater than id. Thus, step 6 does the job of always keeping the id correct
with respect to the state j being computed. The remaining steps perform basically the
same procedure as in Algorithm 2.2. The main difference is in the use of the expression
(j − S[id − 1]) to calculate the values of the capacities c′1 and c′2 (steps 7 and 8). This
expression is equivalent to the product (cid1 + 1) · (cid2 + 1), since S[id − 1] specifies the
starting entry in the state matrix referring to the id-th instance of the KP2.

The kernel that performs the dynamic programming backtracking process is de-
tailed in Algorithm 3.3. In step 1, the variable id is assigned the index of the instance
KP2 relative to thread being run. Steps 2 and 3 end the processing if more threads than
the number of instances were launched. In step 4 the capacity of the knapsack id is re-
trieved through the S vector. The objects are retrieved from steps 6 to 10, in the same way
as was in steps 8 to 12 of Algorithm 2.1.

It is worth emphasising that any set of k instances of KP2, even with varying
quantities of objects, can be transformed into an equivalent instance of (KP2)k. To achieve
this, it is sufficient to identify the knapsack with the highest number of objects, denoted
as n, and for all other knapsack instances with n′ objects, where n′ < n, to introduce
n − n′ artificial objects. Each of these artificial objects can be defined with zero profits
and weights greater than those of the original knapsacks.

5. Comparative tests
This section outlines several computational tests conducted to measure and assess

the efficiency of the algorithms presented in this article, particularly concerning process-



ing time. The tests were executed on a computer equipped with an “Intel(R) Xeon(R)
CPU @ 2.20GHz” processor and 12 GB of RAM. The utilised GPU was a “Tesla T4”
with approximately 15843 MB of memory. The programming languages employed for
the implementations were C++ and CUDA, with the GCC 7.5.0 and NVCC 9.2 compil-
ers. The “O3” flag was consistently used as a parameter during compilation.

The tests employed the MSB (Mesyagutov, Scheithauer and Belov) instance class
proposed by [Mesyagutov et al. 2012] from the 2DPackLib database. This class encom-
passes instances of the Two-dimensional Orthogonal Packing Feasibility Problem (2D-
OPP). The instances were modified for the KP2 as follows: the capacities c1 and c2 were
set equal to the values H and W (height and width of the original plate); the weights wi,1

and wi,2 and the value pi of object i were set equal to the height, width, and area of the
original instance item, respectively. The optimal solutions obtained for the KP2 instances
in this manner do not necessarily correspond to optimal solutions for the respective 2D-
OPP instances. However, the values of the solutions for the KP2 instances serve as lower
bounds for the optimal values of the corresponding 2D-OPP instances. Henceforth, refer-
ences to the MSB class pertain to the versions adapted for the KP2.

Table 1. 630 MSB Instances – 20 objects and capacities equal to 1000.

Sequential1 Resources2 Parallel3 Multi Parallel4

Total Average Blocks Threads Total Average Speedup Total Average Speedup

168889,91 268,08 32 32 139682,39 221,71 1,21 10978,94 17,43 15,38
32 64 133420,01 211,78 1,26 5870,54 9,32 28,76
64 64 127905,18 203,02 1,32 3358,43 5,33 50,30
64 128 124914,43 198,28 1,35 2027,44 3,22 83,25

128 128 125278,91 198,85 1,35 1393,80 2,21 121,30
128 256 123185,03 195,53 1,37 1100,34 1,75 153,18
256 256 123837,77 196,57 1,36 1098,56 1,74 154,07

1 Algorithm 1. 2 Algorithms 2.1–3.3. 3 Algorithms 2.1–2.2. 4 Algorithms 3.1–3.3.

The MSB class contains 630 instances, each with n = 20 objects and capaci-
ties c1 = c2 = 1000. Table 1 presents the overall time taken to solve these instances.
The first two columns (“Sequential”) pertain to the execution of Algorithm 1. The “To-
tal” and “Average” columns display the total and average time taken to solve the 630
instances, respectively. The third and fourth columns (“Resources”) indicate the quan-
tities of blocks and threads per block used in the runs of Algorithms 2.1–3.3. The fifth
to seventh columns (“Parallel”) correspond to solutions produced by the application of
Algorithm 2.1. The first two columns in this segment once again, display the total and
average time taken to solve the 630 instances, respectively, and the subsequent column
presents the average speedup of Algorithm 2.1 over Algorithm 1. Due to the relatively
small scale of these instances, the gain from the parallel algorithm is not substantial for
this class. The last three columns refer to the simultaneous resolution of all 630 instances
by the Algorithm 3.1. The last column describes the average speedup of this algorithm
compared to Algorithm 1.

The resolution times of the instances, as presented in Table 1, encompass both pro-
cessing time, memory allocation and transfer time. Furthermore, for each of the instances,
the considered resolution time is the arithmetical mean over 10 runs. The performance
gains were superior with 95% statistical significance. It is evident that the decision to



solve all instances at once enabled a higher level of parallelism, augmenting the workload
of each thread and reducing the number of kernel calls made by the CPU in comparison
to the strategy of addressing one instance at a time. This latter aspect led to the significant
efficiency gains through the application of Algorithm 3.1.

6. Conclusion
In Section 4, we introduced algorithms for both sequential and parallel resolu-

tion of the KP2 problem (Algorithms 1 and 2.1). Additionally, we have proposed Algo-
rithm 3.1, specifically designed for tackling the extension (KP2)k outlined in Section 4.3.
This algorithm operates on the principle of maximising the workload performed on the
GPU.

Section 5 describes the results of computational tests that measured the process-
ing times employed by each algorithm and compared them across the same instances. It
was observed that Algorithm 2.1 yielded a substantial efficiency improvement in solving
larger instances, when contrasted with Algorithm 1. The results demonstrate that, given
the construction of Algorithm 2.1, the greater the capacities of the knapsack dimensions
and the fewer the number of objects, the more pronounced this gain becomes. Further-
more, Algorithm 3.1 was devised to concurrently address multiple instances of the KP2
problem, intensifying the workload of each thread dispatched to the GPU. This approach
significantly reduced the overall processing time for all instances. It is possible to adapt
the structures and processes of the algorithms presented in this study to solve instances of
the MKP, regardless of whether they involve one or more dimensions.

During this study, a potential prospect for future research has been discerned.
This avenue entails the development of algorithms for solving knapsack problems using
the technique of dynamic programming, harnessing the parallel processing capabilities of
GPUs, while adopting a top–down approach, which differs from the bottom–up approach
presented in the present article. The top–down approach enables the computation of only
those subproblems that are directly or indirectly essential for solving the final problem.
Although this could potentially result in efficiency gains in terms of execution time and
memory when compared to the bottom–up approach, implementing it can be intricate due
to its recursive nature. This complexity stems from the recursive nature of the top–down
approach. Moreover, the backtracking phase could also become intricate if a flag (bit)
was not stored for each subproblem, as is done in the algorithms outlined in this article.
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