
How FaaS with DBaaS performs in different regions: an
evaluation by the Orama Framework

Leonardo Rebouças de Carvalho1, Bruno Kamienski1, Aleteia Araujo1

1Department of Computer Science – University of Brasilia (UnB)
Campus Darcy Ribeiro – 70.910-900 – Brasilia – DF – Brazil

{leouesb,brunosabreu}@gmail.com, aleteia@unb.br

Abstract. Studies indicate that cloud services based on the serverless paradigm,
such as Function-as-a-Service (FaaS) should become the main mechanisms of
the next generation of cloud computing. Given this perspective, public cloud
providers have made efforts to expand the coverage of their services in order
to meet this need. However, the effort needed to maintain equivalence between
different regions highlights the importance of studying the behavior of FaaS en-
vironments in different regions of providers. This work presents a study aided
by the Orama framework in order to evaluate the performance of the main FaaS
integrated with Database-as-a-Service (DBaaS) services in five regions spread
across the globe. The results indicate that the Alibaba provider was able to
guarantee good equivalence between its regions, in addition to a lower aver-
age execution time. AWS and GCP had similar results, although the error rate
on AWS was the highest on average. Azure, on the other hand, had the worst
performance, with the highest average execution time, in addition to significant
failure rates.

1. Introduction
Serverless computing [Nupponen and Taibi 2020] as the default cloud programming
paradigm have become an increasingly present idea in recent publications and this
shows the importance it has gained for cloud computing. Function-as-a-Service (FaaS)
[Schleier-Smith et al. 2021] allow users to publish functions written in some program-
ming language supported by the provider and configure a trigger. When triggered, it is
the role of the provider to ensure proper processing, whether in the face of low demand or
when subjected to high levels of competition. The respective adjustment in the infrastruc-
ture takes place without any user intervention. This autascaling feature, combined with
the billing model based on activating functions, explains the recent success of this service
model. In this context and considering the Everything-as-a-Service (XaaS) concept, the
main public cloud providers have been massively investing in serverless-oriented services,
especially in Function-as-a-Service (FaaS) [Schleier-Smith et al. 2021].

Since the need for providers to be as close as possible to the end user, it is a
common strategy used by cloud companies to deploy infrastructures geographically dis-
tributed around the world. For this strategy to be effective, it is important that the products
marketed through the cloud are available in as many geographic locations as possible,
and this introduces a major challenge in this context: maintaining equivalence for the
same service across regions. In addition, in real solutions it is very common that differ-
ent cloud services are combined to compose the solution, therefore, cloud providers offer



various solutions for data storage, among which stand out Database-as-a-Service (DBaaS)
[ZHENG 2018] in which providers deliver database environments fully managed by them.

Taking into consideration the growth perspective of FaaS adoption, as well as the
possibility of different implementations across regions impacting the performance of ap-
plications operating in environments of this nature, this paper evaluates the main FaaS in
different regions. Five important regions of the planet where AWS, GCP, Azure and Al-
ibaba have deployed infrastructures were chosen to receive one of the available use cases
of the Orama framework [Carvalho. and Araujo. 2022]. Using FaaS integrated with the
respective DBaaS, several test batteries were executed simulating concurrent accesses to
services from 1 simultaneous request to up to 4096 parallel accesses. The processes of
provisioning FaaS environments, running tests, analyzing results and deprovisioning envi-
ronments were carried out using the Orama framework. The results indicate that Alibaba
apparently implements a more efficient management strategy for its FaaS platform in all
evaluated regions, since its average execution time was the lowest among the providers,
as well as its failure rate. AWS and GCP obtained intermediate and very close results.
Azure, on the other hand, recorded the worst results, both in average execution time and
in failure rates.

This article is divided into six parts, the first being this introduction. Section 2
presents the theoretical foundation that supports this work. Section 3 presents the related
works. Section 4 describes the methodology used in the experiments carried out. Section
5 shows the results obtained, and finally Section 6 presents the conclusions and future
work.

2. Background
In traditional cloud computing models, such as Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) [MELL and Grance 2011], in general the charge for the
service is based on the operating time of the servers, even if they are idle, in addition, any
increases in demand on the systems supported by these platforms should receive special
attention from the client, either to configure elasticity strategies or even to implement
them themselves. The FaaS model [Malawski et al. 2020], on the other hand, relieves the
customer of responsibility for the elasticity of the environment, since this characteristic is
generally intrinsic to the service. Furthermore, billing in the context of FaaS is based on
the actual activation of the service rather than on the operation of the servers.

In addition to the billing model and automatic elasticity, FaaS also offers a
simplification of the deployment process, since it is up to the provider to deploy the
respective runtime to execute the functions, leaving the customer only to submit a
snippet of source code and configure a trigger for the service to be ready for use
[Nupponen and Taibi 2020].

Currently, the main public cloud providers have FaaS solutions. AWS, for ex-
ample, offers Lambda [AWS 2021] in its 30 regions around the world. Azure, which
currently has 60 regions, offers Azure Functions (AZF) [Microsoft 2021], while Google
Cloud Function (GCF) [Google 2021] is available in all 35 GCP regions. Alibaba Cloud,
on the other hand, has the Function Compute (AFC) [Cloud 2021] service in its 24 re-
gions. Maintaining operational equivalence between all these regions is a huge chal-
lenge faced daily by providers and each adopted strategy can impact performance. These



strategies include, but are not limited to hardware, software, and resource allocation ap-
proaches.

FaaS was originally designed to operate in an isolated and stateless manner
[Garcı́a López et al. 2018]. However, it is common for real-world solutions to involve
other products within the cloud ecosystem, such as object storage, databases, among
others. A common product to associate with FaaS is DBaaS. In this context FaaS and
DBaaS act as a storage solution whose API is under the responsibility of FaaS, while
data management is the responsibility of DBaaS. Considering that this type of associa-
tion can involve different strategies adopted by providers, including different forms be-
tween their own regions, this work investigates how environments like these operate in
the main clouds in different regions, and to assist in this evaluation the Orama framework
[Carvalho. and Araujo. 2022] was used.

The Orama framework [Carvalho. and Araujo. 2022] is a tool whose objective is
to aid in benchmark execution over FaaS environments. The framework enables some
built-in use cases that can be provisioned and deprovisioned automatically. Besides this,
the Orama framework coordinates the benchmark execution from these configurations.
With Orama it is possible to provision a FaaS use case in seconds, perform different con-
currence scenario tests, adjust configuration on the environment, execute the tests again
and analyze the results with the comparative and statistical tools offered by the platform.
The Orama framework can be configured to work standalone, however its ability to acti-
vate FaaS will be limited to the amount of resources available on the machine where it is
installed. It is also possible to configure the Orama framework to act in a distributed way
following the “master/workers” architecture in which the workers will be responsible for
activating the FaaS and thus the concurrence load can be divided among the worker nodes
configured in the framework environment, in this way by increasing the capacity of the
platform’s concurrence levels.

Considering that the results analysis phase is a crucial step for understanding the
performance of FaaS environments, the Orama framework provides two statistical anal-
ysis tools. The factorial design [Jain 1991] helps in identifying factors that influence the
results. In the Orama framework it is possible to build a 2k factorial design, with 2 being
the lower and upper levels of the factors and the k the number of factors. In Orama, two
factors are considered: level of concurrence and provider, so the factorial design imple-
mented is in 22 format. If the results are composed of more than one round (repetition),
then it will be possible to analyze the statistical error of the factorial design. If the statisti-
cal error is high, this indicates the existence of another factor in addition to those initially
mapped. Another statistical tool available in the Orama framework is the paired t-test.
In this test, the statistical significance of the difference found in two juxtaposed results is
analyzed. The higher the confidence level is, the more statistically significant a difference
will be. On the other hand if this confidence level is very low or not observed, then the
difference is negligible and the results can be considered statistically equal.

The Orama framework has some built-in use cases that can be used to quickly pro-
vision FaaS environments, which the framework can benchmark against. These use cases
consist of automation artifacts configured to deploy environments of a simple calculator,
a function for genetic sequence alignment, functions acting as API for object storage and
DBaaS. The latter shown in Fig. 1, in which it is possible to observe the deployment of



Figure 1. FaaS for DBaaS Orama framework built-in use case.

three FaaS to handle GET, POST and DELETE requests. These functions were written in
Node.js considering the wide adoption of this language and are intended to act as an API
for managing data saved in the data storage solution of the respective cloud. Therefore,
these functions will be reflected in the respective DBaaS at the target provider, that is
DynamoDB in AWS, Firebase in GCP, CosmosDB in Azure, and Tablestore in Alibaba
Cloud.

The Orama Framework contains built-in functions for various purposes, from a
simple calculator, whose purpose is only to validate the FaaS flow, to real functions for
aligning genetic sequences. Other examples of built-in functions offered by Orama frame-
work are APIs for storing data in Object Storage or in DBaaS. Considering that solutions
involving databases are frequently adopted, in this work the Orama framework use case
chosen was that which deploys FaaS integrated with the respective DBaaS to evaluate the
performance of this type of environment in different regions. A detailed description of
the methodology adopted will be provided in the Section 4.

3. Related Works

This paper addresses the experiment-driven evaluation of FaaS platforms in different re-
gions under different concurrence levels using the Orama framework, including very high
concurrence scenarios, such as 2048 and 4096 concurrent requests. The related works are
discussed from the perspective of benchmarking FaaS platforms and are shown in Table
1.

In the paper [Back and Andrikopoulos 2018] the authors used a microbenchmark
in order to investigate two aspects of the FaaS: the differences in observable behavior with
respect to the computer/memory relation of each FaaS implementation by the providers,
and the complex pricing models currently in use. They used AWS, IBM, GCP, Azure, and
OpenWhisk in their evaluation. However, the authors did not present an evaluation of the
performance of their microbenchmark in different regions of the providers, especially in
the face of different levels of concurrence, as presented in this work.

The quality impacts of operational tasks in FaaS platforms as a foundation for a
new generation of emerging serverless big data processing frameworks and platforms are
evaluated in [Kuhlenkamp et al. 2019]. The authors presented SIEM, a new evaluation
method to understand and mitigate the quality impacts of operational tasks. They instan-
tiated SIEM to evaluate deployment package and function configuration changes for four



Table 1. Related Works.

[B
ac

k
an

d
A

nd
ri

ko
po

ul
os

20
18

]

[K
uh

le
nk

am
p

et
al

.2
01

9]

[B
ar

ce
lo

na
-P

on
s

an
d

G
ar

cı́
a-

L
óp

ez
20

21
]

[W
en

et
al

.2
02

1]

[S
om

u
et

al
.2

02
0]

[G
ra

m
bo

w
et

al
.2

02
1]

[M
ot

ta
et

al
.2

02
2]

T
hi

sp
ap

er

Providers AWS,
IBM, GCP,
Azure,
and Open-
Whisk

AWS,
IBM, GCP,
and Azure

AWS,
IBM, GCP,
and Azure

AWS,
Azure,
GCP, and
Alibaba

AWS and
GCP

AWS
, GCP,
Azure,
TinyFaaS,
OpenFaaS,
and Open-
Whisk

Fission,
OpenFaaS
and Open-
Whisk

AWS,
Azure,
GCP, and
Alibaba

Factorial Design - - - - - - ✓ ✓
T-test - - - - - - ✓ ✓
Distributed - - - - - - - ✓

major FaaS providers (AWS, IBM, GCP, and Azure), but only in European regions for the
same level of concurrence. In this work, on the other hand, several levels of concurrence
are evaluated in five regions for each of the providers involved in the analysis, totaling 20
regions.

In paper [Barcelona-Pons and Garcı́a-López 2021] the authors analyzed the ar-
chitectures of four major FaaS platforms: AWS Lambda, AZF, GCP, and IBM Cloud
Functions. The research focused on the capabilities and limitations the services offer for
highly parallel computations. The design of the platforms revealed two important traits
influencing their performance: virtualization technology and scheduling approach. This
work, on the other hand, focuses on investigating the differences in performance of the
main providers in their different regions, including in the face of different levels of con-
currence.

In [Wen et al. 2021], the authors ran a test flow employing micro benchmarks
(CPU, memory, I/O, and network) and macro benchmarks to evaluate FaaS from AWS,
Azure, GCP, and Alibaba in detail (multimedia, map-reduce and machine learning). The
tests made use of specific Java, Node.js, and Python methods that investigated the bench-
marking attributes to gauge resource usage efficiency and initialization delay. However,
they did not present evaluations in different regions, with different levels of concurrence.

PanOpticon [Somu et al. 2020] provides a comprehensive set of features to deploy
end-user business logic across platforms at different resource configurations for fast eval-
uation of their performance. The authors conducted a set of experiments testing separate
features in isolation. An experiment comprising a chat server application was conducted
to test the effectiveness of the tool in complex logic scenarios in AWS and GCP. Fur-
thermore, in this work, the range of tests that the Orama framework can evaluate was
extended beyond the execution of benchmarks on AWS and GCP, to include the execu-
tion of benchmarks on Azure and Alibaba, which are two other important players in this
market.

BeFaaS [Grambow et al. 2021] offers a benchmark methodology for FaaS settings



that is application centric and focuses on evaluating FaaS apps using real-world and preva-
lent use cases. It offers enhanced result analysis and federated benchmark testing, where
the benchmark application is split across several providers. It does not, however, provide
a superior approach to statistical analysis, such as the factorial design or t-test that are
covered by this study.

The main FaaS platforms for private cloud deployment are subjects of evalua-
tion at [Motta et al. 2022]. Some FaaS-dom functions are subjected to different levels of
concurrence in Fission, OpenFaaS and OpenWhisk. Based on the results, an analysis is
performed using a factorial design. However, the configurability is limited and a t-test is
not presented in order to validate the statistical significance of the differences, as is done
in this work.

4. Methodology
Since this work addresses the comparative study of the performance of FaaS environments
in different regions, the various infrastructure deployment positions of AWS, GCP, Azure
and Alibaba providers were confronted in order to find macro-regions in which there was
a presence of both providers so they can be compared against each other with minimal
impact on network latency. Thus, five macro-regions were found where it is possible to
verify concentrations of cloud supply in the East and West regions of the United States, in
Europe, in the Asian Pacific region and in Oceania. It is noteworthy that in the regions of
Europe and Oceania it was necessary to select regions that were not exactly in the same
micro-region due to the lack of availability of both services involved in the experiment
(FaaS and DBaaS), however the selected region was the closest operating the respective
services together.

Figure 2. Overall architecture of the experiment.

Solutions involving the use of FaaS in collaboration with database services are
common choices when solving real-world problems. Thus, in this work, the choice of the
use case of the Orama framework that deploys FaaS in different providers integrated with
DBaaS solutions in providers such as DynamoDB on AWS, Firestore on GCP, CosmosDB
on Azure, and TableStore on Alibaba Cloud is justified.

With the purpose of submitting the FaaS environments to different levels of con-
currence, 13 test scenarios were defined with degrees of concurrence starting at 1 and



ending at 4096 with exponential growth, that is, scenarios with 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, and 4096 concurrent requests to FaaS. Each test battery was
configured in the Orama framework to be repeated 10 times in order to build an average
of execution times.

Considering the highest levels of concurrence (2048 and 4096) it was decided
to implement the Orama framework in master worker mode, since at the highest level
each worker would be responsible for activating the FaaS with 1024 concurrent requests.
Therefore, the Orama framework was deployed on a GCP Compute Engine instance in
the São Paulo/Brazil region. The master node had 4 vCPUs and 16GB of RAM (e2-
standard-4), while each of the 4 workers had 2 vCPUs and 4GB of RAM (e2-medium).
All instances used the Debian 11 operating system.

As can be seen in Fig. 2, once the Orama framework had been deployed in a region
in South America, the requests for activating the FaaS departed from there and traveled
through the network until reaching the respective regions, where the target services were
allocated. A difference in latency between the regions was expected, since their positions
are not identical. However, as the focus of this work is to analyze the differences in im-
plementations between regions, it was considered sufficient to just allocate close regions
between the providers in order to mitigate the impacts of the latency difference.

Once the framework had been implemented, the deployments of the respective
environments of the use case of FaaS with DBaaS were requested for each region of
each provider, totaling 20 provisionings. Each provisioning was submitted to battery
repetitions, so that the results could be analyzed. The analysis of the results obtained
from the methodology described in this section will be dealt with in the next section.

5. Results

The analysis detailed in this section approaches the results from two points of view. First,
a comparison between the performances found in all regions of the same provider, in order
to assess whether the adopted strategies are equivalent between the regions of the same
provider. Next, an analysis is carried out from the point of view of the region, comparing
the performance of different providers in the same region, allowing the assessment of the
difference between providers in the respective region.

Figs. 3a, 3b, 3d, and 3d show the average execution times achived in each level
of concurrence by each provider in its five evaluated regions. As may be observed in
Fig. 3a and 3b, the average times of Lambda and GCF services show levels close to
around 2k ms, with Lambda peaking at close to 8k ms, while GCF peaked at around 6k
ms. It is important to observe the performance of these providers under 1024 concurrent
requests, in both cases there are sharp drops in the average execution time for higher levels
of concurrence. This phenomenon can be explained by the characteristic of automatic
elasticity intrinsic to the FaaS model. It is also possible to observe in Fig. 3a and 3b
behavior equivalent to AWS and GCP regions.

Fig. 3c shows the average execution times calculated for the AZF service. First,
it is important to note that the average time threshold in AZF is significantly higher com-
pared to the threshold recorded by AWS and GCP. While AWS and GCP recorded average
times of around 2k ms, AZF recorded average times of around 20k ms, and peaks of 50k



(a) AWS regions. (b) GCF regions.

(c) AZF regions. (d) AFC regions.

Figure 3. Average execution time by provider.

and 140k ms. This shows that Azure services, in addition to having higher average ex-
ecution times than AWS and GCP, also deliver a wide range of execution time, since as
the level of concurrence increased the average execution time also increased. There was
no evidence of an intervention by the provider to reinforce the infrastructure to meet the
increase in demand. In addition, given the repetitive and sequential nature of the tests
performed, the overload of the highest levels of concurrence negatively impacted the ini-
tial levels, since unexpected increases in the average execution time can be observed at 1
and 2 concurrent requests. This same performance can be observed in all evaluated AZF
regions.

In Fig. 3d the average execution times of the AFC regions are presented. It may be
observed that the level presented is the lowest compared to the others, since the average
times ranged from around 400 ms to around 1k ms. Unlike the increasing behavior of the
execution time observed in Lambda, GCF and AZF results, in AFC the average execution
time maintains a stable level, even at high levels of concurrence. This shows efficient
management by the provider when dealing with oscillating and increasing demand. Al-
though a comparison of the regions shows differences in thresholds, this difference can
be attributed to the latency, which at lower thresholds is more evident.

While the test batteries were carried out, failures in the processing of requests were
recorded. Fig. 4 presents the number of failures that occurred at each level of concurrence
in the five regions of each provider. Lambda, as seen in Fig. 4a, registered failures starting
from 16 simultaneous requests and this number increased to 512 when there was a small
reduction, certainly due to the intervention of the provider in the infrastructure. Lambda
web console has a “simultaneity” setting for the function that is fixed at 50, that is, only
50 instances of the function can be running simultaneously. This parameter can only be
changed through a support request to AWS. Another significant fact presented in Fig 4a
is the discrepancy in the incidence of failures between the US-East region and the others.
As there was a lower failure rate in the US-East region and considering that this region
is the pioneer of the provider, it is possible to assume that in this region this service has



reached a higher degree of maturity in relation to the other AWS regions.

(a) AWS regions. (b) GCF regions.

(c) AZF regions. (d) AFC regions.

Figure 4. Failure rates (%) by provider.

GCF failure rates are shown in Fig. 4b where it may be seen that in this provider
the errors started to occur from 1024 concurrent requests and grew to about 35% at 2048
simultaneous requests when there was a decrease in the error rate, due to the intervention
of the provider in the infrastructure to readjust itself to the demand. It is noteworthy that
while the error rate peaks in GCF at around 35% of requests, in Lambda this level is much
higher, peaking at around 80%.

Fig. 4c shows the failure rates calculated at AZF where failure rates are perceived
at all levels of concurrence, reaching peaks of 60% failures at 4096 simultaneous requests.
Between 1024 and 4096 it is possible to observe an upward trend in the failure rate that
accompanies increased concurrence. In addition, the error rates calculated in the first
concurrence level are noteworthy, as it is likely that this rate was impacted by the failures
that occurred at level 4096 of the previous repetition. The failure rates calculated in AFC
are lower than the others, as seen in Fig. 4d. At the peak point, at 2048 concurrent
requests, AFC recorded only around 16% failures. It is worth mentioning that the region
where the service obtained the lowest failure rates was in the Eastern region of the United
States.

Another way of viewing the occurrence of errors is shown in Fig. 5 where it is
possible to see the distribution of errors between the regions. It may be noted that the
distribution of failures in the Lambda and GCF regions is balanced, except in the US-
East region where the rates are lower in both providers. This indicates that the degree of
maturity in this region is higher and because of this, the strategies and resources available
in these places contribute to the reduction of failures. In AZF more than half of the failures
occurred in the regions of Europe or Asia while Oceania recorded the lowest failure rates.
AFC failure rate was concentrated in the Asia region with almost 34% of the failures
being located there. Given the good performance in terms of AFC execution time, it is
likely that this concentration of failures precisely in the region where the provider has the
greatest market focus is due to the concurrence with the other AFC customers.



(a) AWS regions. (b) GCF regions. (c) AZF regions. (d) AFC regions.

Figure 5. Regional failure distribution.

(a) US-East. (b) US-West. (c) Europe. (d) Asia. (e) Oceania.

Figure 6. Factorial design results for Lambda vs. GCF.

As mentioned in Section 2, the Orama framework provides factorial design and
the t-test as statistical analysis tools. The comparative analysis of the results reveals a
great proximity between the Lambda and GCF results. In order to understand the effects
of these results, a factorial design was created between the Lambda and GCF results using
the lowest and highest level of concurrence (1 and 4096).

Fig. 6 shows the results of the factorial design effects, and highlights the preva-
lence of statistical error, which indicates the existence of another factor (in addition to
the provider and the level of concurrence) influencing the result. Given the proximity
of the approaches adopted by the providers, it is likely that this factor is the latency be-
tween the region in which the Orama framework was installed and the infrastructure of
the providers. Another factor that predominates in the results is concurrence, indicating
that the results were more affected by the difference in concurrence than by the difference
between providers, that is, it may therefore be inferred that the strategies of AWS and
Google in their FaaS were equivalent in the tests carried out in this paper.

The t-test results between Lambda and GCF are shown in Table 2. It is possible
to observe that all differences found between providers have some level of confidence
for statistical significance. In the European region, for example, the confidence level
calculated by the Orama framework was only 70%, which is a relatively low confidence
level. On the other hand, in the US-East region, the difference was considered more
significant, with a 97.5% confidence level.

The results of the respective analyses provided in this section were obtained
through the Orama framework, whose configurability allowed the adaptation of its orig-



Table 2. T-test results between Lambda and GCF.

Region Difference Standard
deviation

Confidence
level

US-East 1628.82 503.18 97.5%
US-West 889.78 432.67 95%
Europe 150.91 233.75 70%
Asia 966.60 425.49 95%
Oceania 792.39 465.21 90%

inal use case so that a proper evaluation of the FaaS environments of the main public
cloud providers in this market could be obtained. Considering the consistent growth of
the FaaS cloud computing model, it is essential to evaluate and understand the strategies
adopted by providers in their service offerings of this nature. Since FaaS is foreseen as
the main engine of the next generation of cloud computing, the more improved and better
the delivery of providers on this paradigm, the more qualified will be the impact for the
next generation of the most revolutionary archetype of computational infrastructure, that
is, the cloud.

6. Conclusion
In this work, the performances of FaaS environments deployed in five different regions in
each of the main public cloud providers were analyzed. AWS, Azure, Google and Alibaba
cloud had their respective FaaS subjected to successive batteries of tests with the help of
the Orama framework, which also assisted in the provisioning of the use case relating
FaaS to DBaaS, as well as in the comparative and statistical analysis tools.

The results showed that, in general, the different regions of the evaluated providers
deliver equivalent performances, except for the US-East region of Lambda, whose results
outperformed the other regions of the provider, possibly due to its higher level of maturity.

The analysis of the average execution times showed that AFC led the results,
presenting the lowest average times at all evaluated levels of concurrence, followed by
Lambda and GCF, practically equal in their performances. Finally, AZF registered the
highest average times in all tested regions.

Failure rate analysis confirmed AFC’s lead in this assessment, registering the low-
est rates followed by GCF. AWS and AZF delivered remarkably high failure rates, espe-
cially at higher levels of concurrence.

In future work, other test cases will be evaluated, such as FaaS integrated with
object storage, for example. In addition, as other FaaS providers such as IBM and Oracle
are integrated, these providers must be subject to the same evaluation conditions as those
in this work in order to broaden the understanding of the aspects explored in this work.

References
AWS (2021). AWS lambda. https://aws.amazon.com/en/lambda. [online;

11-Aug-2021].

Back, T. and Andrikopoulos, V. (2018). Using a microbenchmark to compare function as
a service solutions. In ECSOCC, pages 146–160. Springer.

https://aws.amazon.com/en/lambda


Barcelona-Pons, D. and Garcı́a-López, P. (2021). Benchmarking parallelism in faas plat-
forms. Future Generation Computer Systems, 124:268–284.

Carvalho., L. and Araujo., A. (2022). Orama: A benchmark framework for function-as-a-
service. In Proceedings of the 12th CLOSER, pages 313–322. INSTICC, SciTePress.

Cloud, A. (2021). Alibaba cloud function. https://www.alibabacloud.com/
product/function-compute. [online; 11-Aug-2021].

Garcı́a López, P., Sánchez-Artigas, M., Parı́s, G., Barcelona Pons, D., Ruiz Ollobarren,
A., and Arroyo Pinto, D. (2018). Comparison of faas orchestration systems. In 2018
IEEE/ACM UCC Companion, pages 148–153.

Google (2021). Cloud functions. https://cloud.google.com/functions/.
[Online; 10-Aug-2021].

Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C., Zhao, M., and Bermbach, D.
(2021). Befaas: An application-centric benchmarking framework for faas platforms.

Jain, R. (1991). The art of computer systems: Techniques for experimental design, mea-
surement, simulation, and modeling.

Kuhlenkamp, J., Werner, S., Borges, M. C., El Tal, K., and Tai, S. (2019). An evaluation
of faas platforms as a foundation for serverless big data processing. In Proceedings of
the 12th IEEE/ACM, UCC’19, page 1–9, NY, USA. ACM.

Malawski, M., Gajek, A., Zima, A., Balis, B., and Figiela, K. (2020). Serverless execution
of scientific workflows: Experiments with hyperflow, AWS lambda and Google Cloud
Functions. Future Generation Computer Systems, 110:502–514.

MELL, P. and Grance, T. (2011). The NIST definition of cloud computing. National
Institute of Standards and Tecnology.

Microsoft (2021). Azure functions. https://azure.microsoft.com/pt-br/
services/functions/. [online; 11-Aug-2021].

Motta, M. A. C., Carvalho, L. R., Rosa, M. J. F., and Araujo, A. P. F. (2022). Comparison
of faas platform performance in private clouds. In Proceedings of the 12th CLOSER,,
pages 109–120. INSTICC, SciTePress.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is, what to do and what not to do.
In 2020 IEEE ICSA-C, pages 49–50.

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa,
R. A., Gonzalez, J. E., Stoica, I., and Patterson, D. A. (2021). What serverless com-
puting is and should become: The next phase of cloud computing. ACM, 64(5):76–84.

Somu, N., Daw, N., Bellur, U., and Kulkarni, P. (2020). Panopticon: A comprehensive
benchmarking tool for serverless applications. In 2020 COMSNETS, pages 144–151.

Wen, J., Liu, Y., Chen, Z., Ma, Y., Wang, H., and Liu, X. (2021). Understanding charac-
teristics of commodity serverless computing platforms.

ZHENG, X. (2018). Database as a service - current issues and its future. CoRR,
abs/1804.00465.

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://cloud.google.com/functions/
https://azure.microsoft.com/pt-br/services/functions/
https://azure.microsoft.com/pt-br/services/functions/

	Introduction
	Background
	Related Works
	Methodology
	Results
	Conclusion

