
Extending the Planning Poker Method to Estimate the
Development Effort of Parallel Applications

Gabriella Andrade1, Dalvan Griebler2, Rodrigo Santos3, Luiz Gustavo Fernandes2

1Federal Institute of Rio Grande do Sul (IFRS) – Campus Restinga
Porto Alegre – RS – Brazil

2School of Technology – Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre – RS – Brazil

3Department of Applied Informatics, Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro – RJ – Brazil

gabriella.andrade@restinga.ifrs.edu.br,

{dalvan.griebler,luiz.fernandes}@pucrs.br, rps@uniriotec.br

Abstract. Since different Parallel Programming Interfaces (PPIs) are available
to programmers, evaluating them to identify the most suitable PPI also became
necessary. Recently, in addition to the performance of PPIs, developers’ pro-
ductivity has also been evaluated by researchers in parallel processing. Some
researchers conduct empirical studies involving people for productivity evalu-
ation, which is time-consuming. Aiming to propose a less costly method for
evaluating the development effort of parallel applications, we proposed modify-
ing the Planning Poker method in this paper. We consider a representative set of
parallel stream processing applications to evaluate the proposed modification.
Our results showed that the proposed method required less effort for practical
use than the controlled experiments with students.

1. Introduction
Multi-core is a popular and widely used parallel architecture for increasing the perfor-
mance of sequential code by executing it in parallel on multiple cores [Kirk e Hwu 2016].
However, this task is challenging as the developer must deal with low-level architec-
tural details and address parallelism-specific aspects, such as load balancing, thread man-
agement, and synchronization. Over the years, several Parallel Programming Interfaces
(PPIs) have been created, providing abstractions to relieve programmers from dealing
with lower-level implementations and architecture-specific optimizations. PPIs can be
based on structured or non-structured approaches. Structured parallel programming is
a higher-level approach where the concept leverages parallel patterns that can be a re-
ceipt/guide to writing efficient parallel software. Furthermore, it can be provided as ready-
to-use templates that already implement lower-level parallelisms, such as thread commu-
nication and synchronization, regardless of the target architecture [McCool et al. 2012].

Over the years, parallel programming researchers began to be concerned with as-
sessing the different PPIs available to determine the most suitable one. Most researchers
in parallel programming focus on evaluating the execution time and performance of an ap-
plication without considering the effort involved in the application development process,
making it difficult to determine the productivity of PPIs precisely. However, productivity
(or efficiency) is an important factor that, together with effectiveness and user satisfac-
tion, are usability indicators [ISO 2018]. By considering productivity and usability, it is



possible to provide indicators for designing new PPIs and refining existing ones. This
approach allows the creation of easy-to-use PPIs that continue to increase the abstraction
of parallelism without compromising the application’s performance.

In this context, productivity is commonly measured by human effort concerning
the results achieved [ISO 2018], including the time to develop software. Experiments
should be conducted in controlled environments to evaluate productivity, in which hu-
man subjects (usually students) resolve small programming tasks using different PPIs
[Nanz et al. 2013, Miller e Arenaz 2019]. However, experimentation is time-consuming
because it must be carefully planned and executed [Wohlin et al. 2012], and finding a
representative sample of participants in the parallel programming domain is challenging.
Instead, several researchers on parallel programming use established off-line code metrics
to estimate the development time and facilitate productivity evaluation.

Our previous work [Andrade et al. 2022b] identified that Halstead and the Con-
structive Cost Model (COCOMO) are the most widely used metrics for estimating the
time required to develop parallel applications. However, these metrics aim at evaluating
general-purpose software without considering a specific domain. Therefore, in our previ-
ous work [Andrade et al. 2022b], we proposed an approach to evaluate parallel applica-
tions using Halstead (PHalstead) and a refined COCOMO II reuse model version. Aiming
to evaluate our proposed approaches, we compared them with a series of classical predic-
tion metrics when estimating the effort to develop parallel stream processing applications
on multicore systems using FastFlow [Aldinucci et al. 2017], SPar [Griebler et al. 2017]
and TBB [Voss et al. 2019]: COCOMO II variations (original, reuse and maintenance),
Function Points [Wazlawick 2013], Planning Poker, Putnam [Putnam e Myers 1991],
SEER for Software [Galorath e Evans 2006] and Use Case Points [Wazlawick 2013]. The
results showed the effectiveness of the Planning Poker method in estimating the develop-
ment effort of parallel stream processing applications [Andrade et al. 2022b]. Although
this method requires input from expert developers, it requires less effort to be applied
in practice than experiments that collect the actual development time. Therefore, in this
study, we proposed a new methodology to estimate the effort required to develop parallel
applications based on the Planning Poker estimation method.

In order to evaluate the proposed method, we conducted a quasi-experiment with
developers who are specializing in parallel stream processing applications. Stream pro-
cessing is a prominent real-time paradigm for collecting, processing, and analyzing high-
volume, heterogeneous, and continuous data streams. Therefore, parallelism exploitation
in stream processing applications can be implemented mainly using the Pipeline and Farm
patterns [Andrade et al. 2014]. Such patterns can be more easily implemented using PPIs
based on structured parallel programming. In this study, we requested participants to
use the Planning Poker modification to estimate the effort required to develop parallel
stream applications using structured (FastFlow and TBB) and unstructured (OpenMP and
Pthreads) PPIs, as well as a domain-specific language (DSL) for stream processing (SPar)
at a high abstraction level. Therefore, comparing the productivity provided by PPIs with
different abstraction levels was also possible.

The scientific contributions provided in this study are: (i) an analysis of develop-
ers’ perceptions of the effort required to develop stream processing applications in multi-
core environments; (ii) an analysis of PPIs with different programming models when
expressing stream parallelism in multi-core systems; and (iii) a less costly method for
estimating the development effort of parallel applications.



This paper is organized as follows. Section 2 presents the background; Section 3
introduces the proposed modification to the Planning Poker method; Section 4 provides
the experimentation plan; Section 5 provides the results; Section 5.1 presents the threats
to validity; finally, Section 6 concludes this study.

2. Background

2.1. Planning Poker method

Over the years, several quantitative metrics have been proposed to estimate software ef-
fort, quality, and reliability based on code size, parametric methods etc. Nowadays, Plan-
ning Poker [Cohn 2005] is a metric commonly used by software agile teams to estimate
the user story, which defines features and requirements that provide information to the
user or customer [Durán et al. 2019]. It relies on experts’ opinions about the software to
be developed to guess the development effort. Participants in the planning poker method
include all persons in the developing team, such as the developers, testers, engineers, and
others. In addition, there is a moderator to coordinate the execution of the method.

Before starting, the moderator should prepare a deck of cards with a valid se-
quence of numbers written on each card. Planning poker decks are usually based on
Fibonacci sequence [Gandomani et al. 2019]: 0, 1/2, 1, 2, 3, 5, 8, 13, 20, 40, 100. The
original Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...) also can be
used. However, modifying the Fibonacci sequence allows development team members
to estimate projects with development effort close to 1/2. In addition, each number must
have a meaning, such as story points, number of product backlogs, or development time.

After the decks have been distributed, the moderator or team leader should explain
to the team members the application or project requirements to be developed. Then,
each participant receives a deck of cards and selects a card representing their estimation
opinion. All participants must discuss justifying their choice. If the experts disagree with
the estimates, they can repeat the process until the results converge. On the other hand,
averaging the estimates can be done to avoid too many rounds [Cohn 2005]. Figure 1
illustrates the steps required to use the Planning Poker method to estimate story points.

Figure 1. Planning Poker steps for estimating the number of story points.



According to [Cohn 2005], Planning Poker is a metric that works by several fac-
tors. First, it gathers several opinions from experts in estimation, who form a cross-
functional team from all stages of a software project. Secondly, estimators are called
upon to justify their estimates, a factor that improves the estimation’s accuracy. Finally,
studies have shown that averaging the individual participants’ estimates lead to better
results and holding group discussions.

2.2. Related Work
Based on the following literature reviews [Fernández-Diego et al. 2020,
Durán et al. 2019], the Planning Poker is the most widely used metric for esti-
mating software projects’ complexity and development effort based on the Scrum
methodology. Regarding development effort, [Moløkken-Østvold et al. 2008] conducted
empirical studies to compare the Planning Poker estimation with the estimation per-
formed by individual experts, which showed similar accuracy. [Finco 2021] proposed
the combination of Planning Poker with machine learning to assess the development
effort required for software development teams. [Haugen 2006] investigated whether
using the Planning Poker estimation process could improve the ability of XP teams to
estimate story points. [Tamrakar e Jørgensen 2012] conducted an empirical study to
assess software development effort using Planning Poker with a linear scale instead of
the usual Fibonacci sequence. [Gandomani et al. 2019] evaluate the use of average or
consensus opinion in Planning Poker to estimate user stories.

To produce more accurate estimates using Planning Poker,
[Zahraoui e Idrissi 2015] proposed an adjustment to the story point calculations us-
ing priority, size, and complexity factors. [Sudarmaningtyas e Mohamed 2020] proposed
a new model to improve the actual performance of planning poker by modifying the
estimation process and the consensus process of this method. [Mahnič e Hovelja 2012]
ran experiments with students and experts to estimate the number of user stories through
the Planning Poker method, whose results showed that the experienced participants’
estimates were more accurate than the students’ estimates. [Raith et al. 2013] assessed
the accuracy of the effort estimates using the Planning Poker, which led them to develop
a prototype to apply this method to a student project.

Unlike previous works, our study aims to apply a modification of the Planning
Poker method to the parallel programming domain. In this study, we proposed a modifi-
cation of Planning Poker since our previous study [Andrade et al. 2022b] identified it as
a good metric for evaluating parallel applications.

3. Extending the Planning Poker Metrics for Parallel Programming
In the original Planning Poker, the estimation is performed for all the people who compose
the development team, such as the developers, testers, engineers, analysts, and others. In
parallel programming, mainly in academic environments, the application will be devel-
oped by only one developer. The researchers usually develop their applications without
being in a development team, although there are research groups. In other words, the same
person will be responsible for coding, debugging, testing, and evaluating an application.
Therefore, the Planning Poker adaptation estimation will be performed only by a devel-
oper instead of a development team, as seen in Figure 2. Furthermore, the research results
presented in [Andrade et al. 2022a] highlight developer experience as an essential factor
impacting the parallel application development effort. These results led us to consider
only the opinion of experienced developers for the Planning Poker method.



Unlike the original Planning Poker method, which aims to estimate the number of
story points or Product Backlog, our goal is to estimate the number of hours required for
parallel application development. Furthermore, we will not perform our estimations based
on a non-linear sequence, such as the Fibonacci sequence. [Tamrakar e Jørgensen 2012]
showed a decrease in estimated development effort by up to 60% when using a Fibonacci
scale instead of the traditional linear scale. Using a Fibonacci scale and other non-linear
scales probably affect development effort estimates because they induce people to make
biased estimates, especially when the uncertainty is substantial. When considering the
modified Fibonacci sequence (0, 1, 1/2, 2, 3, 5, 8, 13, 20, 40, 100), a developer may be
in doubt when estimating the number of development hours for a particular application.
For example, in the developer’s opinion, a specific application requires about 60 hours
to develop. Therefore, they might choose the value 100 from the Fibonacci sequence,
resulting in an inaccurate estimate. On the other hand, a developer could choose the
specific value of the evaluation (60 hours in this case), if a linear scale was used.

The estimators will be also free to choose their estimates and can compare the
estimated values between the evaluated interfaces considering their possible difficulties.
There are more straightforward applications where parallelization can be done within
one to two hours of development time, such as the RGB channel extraction application
presented in [Andrade et al. 2023]. Therefore, a linear scale can accurately estimate de-
velopment time for more straightforward applications, as in the case.

In the proposed Planning Poker adaptation, there is still a moderator to coordinate
the execution of the method. Figure 2 presents the step-by-step to be followed through the
proposed methodology. Initially, the moderator should show the code to be parallelized
with a given PPI. Next, a developer should analyze the code and give an estimate. If there
are any inconsistencies with the developer’s estimate, a discussion should occur between
the developer and the moderator. For example, the development time estimated by the de-
veloper was only two hours to parallelize a stream processing application with OpenMP.
During the discussion, the moderator should give the developer reasons to disagree with
the estimate. For example, the moderator should explain that the OpenMP programming

Figure 2. Planning Poker method for estimating parallel development time.



model is not based on structured programming (such as TBB). Therefore, the developer
should consider the time needed to implement extra synchronization mechanisms when
using OpenMP to exploit stream parallelism. From the moderator’s exposition, the de-
veloper should make a new estimate. Moreover, the estimation will be based only on
the developer’s opinion, and the moderator should only explain the characteristics of the
application to be parallelized and the PPI to be considered in parallelization.

4. Method
To evaluate the Planning Poker adaptation applied to parallel programming, we performed
an experiment to verify the productivity of FastFlow, OpenMP, Pthreads, SPar, and TBB
PPIs for multi-core systems in the development of the following C++ stream processing
applications. This section presents the experimentation plan, in which are included the
variables, the goals, the hypotheses, the context, the activity given to the participants, the
procedure followed, and the instruments used in this study [Wohlin et al. 2012].

4.1. Independent and dependent variables

This section presents the variables of this study. The development time estimated using
the Planning Poker method is a dependent variable. The independent variables include
the PPIs evaluated, the parallel applications evaluated, the participant’s experience, and
the study environment because they impact the dependent variable.

4.2. Goals

The main goal of this study is to use the Planning Poker method to estimate the develop-
ment effort required for implementing parallelism in C++ stream processing applications
for multi-core environments using FastFlow, SPar, TBB, OpenMP, and Pthreads. To do so,
we measured the effort required to exploit parallelism using the Planning Poker for Bzip2
compress and decompress, Person Recognition, Lane Detection, and Ferret applications.

4.3. Hypotheses

Based on the goals, we consider the following hypothesis in our experiment: (i) Null
Hypothesis (H0): The effort required to implement parallelism is the same for FastFlow,
SPar, TBB, OpenMP, and Pthreads; (ii) Alternative Hypothesis (H1): The effort required
to implement parallelism is not the same for FastFlow, SPar, TBB, OpenMP, and Pthreads.

4.4. Context of the study

This study is offline because it was conducted in an academic environment under con-
trolled conditions. The participants were five graduate students from the Graduate Pro-
gram in Computer Science at the PUCRS in Porto Alegre city, South of Brazil. They have
more than two years of experience developing parallel stream processing applications.
Finally, this is a specific study because it focuses on evaluating the productivity of PPIs
for parallel programming of stream processing applications in an academic environment.

4.5. Activity of study

The activity given to the participants was to estimate the time required to develop a series
of stream processing applications developed using C++ and parallelized using FastFlow,
OpenMP, Pthreads, SPar, and TBB: (i) Bzip2: An application designed for data compres-
sion and decompression in Bzip2 format ; (ii) Person Recognition: A video application



designed to recognize people; (iii) Lane Detection: A video application designed for
detecting road lanes on video feeds; (iv) Ferret: A PARSEC application whose goal is to
content similarity search in data such as video, audio, and images.

Stream processing is a paradigm for collecting, processing, and analyzing
high-volume, heterogeneous, and continuous data streams in real time. Therefore,
we chose the abovementioned applications because they are standard in real-world
stream processing, including video and audio processing and data compression appli-
cations [Andrade et al. 2014].

4.6. Procedure and execution
Participants should estimate the time required to develop the parallel applications, con-
sidering an existing sequential application. Participants should also consider that it is
their first time parallelizing the application, regardless of the PPI used. They also should
not consider reusing code from another parallel version to avoid contaminating the ex-
periment with the learning effect. After analyzing the target application, the developers
reported their estimates in hours required to develop the applications.

5. Results
Figure 3 shows the box plots of the estimated development time by each of the five de-
velopers using the Planning Poker modification, who are experts in developing parallel
stream processing applications. Figure 3 shows that all developers in this study agreed
that SPar is the interface that requires the least effort to develop parallel stream process-
ing applications. According to the developers, FastFlow and TBB require a development
effort close to that of SPar. In addition, OpenMP and Pthreads also showed close results,
which are the PPIs that require more effort to develop the evaluated applications accord-
ing to the participants’ opinions. Therefore, it was necessary a hypothesis test to see if
there was a significant difference between the results obtained.

Initially, we performed a normality test to verify that the data collected had a
normal distribution. A parametric test should be performed if the samples have a normal
distribution (p-value ≥ 0.05). Otherwise, a non-parametric test should be performed (p-
value < 0.05). Therefore, we used the Shapiro-Wilk test at the conventional significance
level (α = 0.05) to verify whether the collected data had a normal distribution. Moreover,
we chose the Shapiro-Wilk test because it is an efficient test for all distribution types and
can be used regardless of sample size [Razali et al. 2011].

Table 1 shows the results achieved for the Shapiro-Wilk tests. Only the SPar
results for the Bzip2 compress and decompress applications do not show a normal distri-
bution since, for these cases, the p-values are close to zero (in bold). Therefore, we used
the non-parametric Wilcoxon test to compare the results of the SPar with the results of the
other interfaces for the Bzip2 compress and decompress applications. We ran a Student’s
t-test for two samples in all other cases. In addition, we performed paired tests as the
samples were not independent since we collected the data from the same participants.

Table 2 shows the results for the Student’s t and Wilcoxon tests. The average time
to develop the applications with SPar is shorter due to the annotation-based programming
model of this DSL. However, through hypothesis testing, it was possible to observe that
there is no significant difference between SPar and FastFlow development times for the
applications Bzip2 Compress, Bzip2 Decompress, Person Recognition, and Ferret. This
result occurred because the FastFlow development model is based on the use of templates



SPar FF TBB OMP Pthreads

0
5

10
15

20

D
ev

el
op

m
en

t t
im

e 
(h

r)

(a) Bzip2 compress and decompress applica-
tions.

SPar FF TBB OMP Pthreads

0
5

10
15

20

D
ev

el
op

m
en

t t
im

e 
(h

r)

(b) Lane detection application.

SPar FF TBB OMP Pthreads

0
5

10
15

20

D
ev

el
op

m
en

t t
im

e 
(h

r)

(c) Person recognition application.

SPar FF TBB OMP Pthreads

5
10

15
20

25

D
ev

el
op

m
en

t t
im

e 
(h

r)

(d) Ferret application.

Figure 3. Estimated development time with modified Planning Poker.

Table 1. P -value of the Shapiro-Wilk test for Planning Poker evaluation.
Bzip2 comp. Bzip2 decomp. Lane det. Person recog. Ferret
p-value p-value p-value p-value p-value

SPar 0.0001 0.0001 0.05 0.05 0.22
FastFlow 0.42 0.42 0.20 0.61 0.68
TBB 0.38 0.38 0.28 0.55 0.10
OpenMP 0.21 0.21 0.07 0.08 0.70
Pthreads 0.99 0.99 0.12 0.18 0.64

for designing parallel patterns. The results of our previous study [Andrade et al. 2023]
showed that FastFlow provides similar productivity for developers as SPar.

Regarding Bzip2 compress and decompress applications, when we analyzed only
the participants’ average, SPar required less development effort. However, the hypoth-
esis test showed no significant difference between the average development times for
SPar and the others PPIs evaluated. This may have happened because the SPar samples
for the Bzip compress and decompress applications do not have a normal distribution.
In these cases, it was necessary to use the Wilcoxon test to compare them with the re-
sults of the other interfaces. We normalized these data using the Min-Max normaliza-
tion [Larose e Larose 2014] to overcome this limitation. With the normalized samples,
we used the Student’s t-test to compare them. Table 2 shows that when comparing the
normalized samples, the SPar development time differs statistically from FastFlow TBB,
OpenMP, and Pthreads (p-value ≤ 0.0217).

FastFlow and TBB showed close results, as shown in Figure 3. For all the applica-
tions evaluated, the hypothesis test showed that there is no significant difference between
the development time estimated for FastFlow and TBB, as shown in Table 2 (p-value >
0.05). These results occurred due to the similarities in FastFlow and TBB programming



Table 2. P -value of the Student’s t-test and Wilcoxon test for Planning Poker
evaluation.

Wilcoxon Bzip2 compress Bzip2 decompress Lane detection Person recog. Ferret
p-value p-value p-value p-value p-value

SPar x FastFlow 0.0975 0.0975 - - -
SPar x TBB 0.0579 0.0579 - - -
SPar x OpenMP 0.0579 0.0579 - - -
SPar x Pthreads 0.0625 0.0625 - - -

Student’s t-test Bzip2 compress Bzip2 decompress Lane detection Person recog. Ferret
p-value p-value p-value p-value p-value

SPar x FastFlow 0.0217 0.0217 0.0434 0.05272 0.3131
SPar x TBB 0.0036 0.0036 0.0265 0.0224 0.0009
SPar x OpenMP 0.0012 0.0012 0.0021 0.0024 0.0008
SPar x Pthreads 0.0002 0.0002 0.0002 0.0003 0.0002
FastFlow x TBB 0.2080 0.2080 0.1803 0.1836 0.1855
FastFlow x OpenMP 0.0012 0.0012 0.0024 0.0023 0.0022
FastFlow x Pthreads 0.0003 0.0003 0.0004 0.0007 0.0013
TBB x OpenMP 0.0018 0.0018 0.0036 0.0034 0.0012
TBB x Pthreads 0.0004 0.0004 0.0006 0.0009 0.0003
OpenMP x Pthreads 0.6657 0.6657 0.8486 0.8486 0.7572

models. TBB [Voss et al. 2019] is an open-source and general-purpose C++ template-
based PPI from the industry, which provides a Pipeline pattern constructor that can also
perform as the Farm pattern, while FastFlow [Aldinucci et al. 2017] is a representative
interface from the scientific community with a model-based C++ interface similar to the
TBB. However, each model has particularities, although parallelism is implemented sim-
ilarly. Nevertheless, the results showed that they require the same programming effort.
The same occurred in the experiment presented in a previous work [Andrade et al. 2023],
where the hypothesis test also showed no significant difference between the time needed
to parallelize the RGB channel extraction application by beginners developers.

OpenMP and Pthreads also presented similar results, as seen in Table 2. The hy-
pothesis test also showed no significant difference between the estimated development
times for OpenMP and Pthreads (p-value > 0.1018), which require at least 85% more
effort to parallelize the applications evaluated from the opinion of the participants of this
study. OpenMP and Pthreads do not have similar programming models as FastFlow and
TBB. Parallelization in OpenMP is exploited through compilation directives or pragmas
defined in the C and C++ standards. The Pthreads library is based on the POSIX spec-
ification that defines a set of types, functions, and macros for creating and controlling
multiple threads. Despite the differences between OpenMP and Pthreads, both have sim-
ilar programming efforts to parallelize stream applications by not providing a structured
programming model. To parallelize stream applications such as the ones evaluated in
this study, it is necessary to implement parallelism patterns as Pipeline and Farm, which
are composed of different processing stages. Therefore, to implement stream parallelism
with Pthreads and OpenMP, it is necessary to develop mechanisms such as ordered in-
sertion into chained queues manually, unlike the FastFlow, TBB, and SPar PPIs. Only
experienced developers would realize such features. Therefore, considering the opinion
of beginner developers in the Planning Poker method could result in incorrect estimates.

5.1. Threats to validity
This study showed promising results. However, some threats to validity remain. One
threat to internal validity identified was the possibility of information sharing among the
participants of this study. To address this threat, we contacted the participants individu-
ally. As a threat to external validity, it is not possible to generalize the results because we
only evaluated stream processing in multi-core environments. In addition, the experiment



was conducted in a classroom rather than an industrial context, making it difficult to gen-
eralize the results. As such, results serve as indications, and the experimental plan can be
replicated to generate new results to be analyzed and provide evidence.

We identified a threat to construct validity related to the possibility of participants
giving incorrect answers because they thought they were being evaluated. To minimize
this threat, we informed the participants that the experiment did not represent any personal
evaluation and that the data collected would be anonymized. Finally, a threat to conclusion
validity is the sample size, which may need to be more representative. Therefore, an
experiment with a larger sample of participants may be necessary to confirm the results.

6. Conclusion and Future Work
This study presented a proposed extension of the Planning Poker method to evaluate the
development of parallel applications. It is already a well-established method in agile
development, widely used and spread among agile teams. The Planning Poker method
has proven to be a promising and effective method for estimating the development time
of parallel applications when considering the opinion of experienced parallel application
developers in our previous study [Andrade et al. 2022b]. Additionally, the results of a
survey we conducted previously [Andrade et al. 2022a] highlighted the developer’s expe-
rience as one of the main factors affecting productivity. The potential of Planning Poker
motivated us to create a methodology for its use in the parallel programming area.

The proposed methodology was evaluated through a quasi-experiment with five
developers with experience in developing stream processing applications. The partici-
pants used the Planning Poker method to estimate the time required to develop five par-
allel stream processing applications using FastFlow, TBB, SPar, OpenMP, and Pthreads.
Our results showed that the Planning Poker method has promising results comparable to
the actual development time collected through controlled experiments as those presented
in [Andrade et al. 2023]. Moreover, Planning Poker requires less effort to use in practice
than such experiments. Therefore, we concluded that this method is an alternative for
measuring development time.

The results showed that SPar is the PPI requiring the least programming effort,
followed by FastFlow and TBB. However, for the applications Bzip2 compress, Bzip2
decompress, Person Recognition, and Ferret, the hypothesis test did not show a signifi-
cant difference between FastFlow and SPar development times. The hypothesis test also
indicated no significant difference between the estimated development times for FastFlow
and TBB due to the similarities in their programming models. OpenMP and Pthreds re-
quired more development effort to parallelize the applications evaluated from the opinion
of the participants, and Pthreads showed the worst results. Nevertheless, the same behav-
ior also occurred for OpenMP and Pthreads. Despite the differences between OpenMP
and Pthreads, both have similar programming efforts to parallelize stream applications by
not providing a structured programming model.

Planning Poker has showed to be a promising method for estimating the time
required to develop parallel applications. However, its use still has some limitations. By
performing an experiment with people to get the real-time needed to develop a given
application, it is possible to collect data about the difficulties and challenges faced by
them during the execution of the task. This type of experiment allows us to collect the
participants’ opinions about their satisfaction with the interfaces. A qualitative analysis
of the participants’ answers can also provide valuable insights, such as those presented



in [Andrade et al. 2023, Andrade et al. 2022a]. To address this limitation, we propose the
use of a questionnaire for reporting the reasons for the programming effort related to a
given PPI, its limitations, and problems. Moreover, it is important that participants also
report their satisfaction with the evaluated PPIs.

We evaluated several metrics for estimating the development effort of parallel ap-
plications, among which Planning Poker was the most prominent. Agile development
teams widely use this method. Several other estimation models for agile projects are
available, such as t-shirt sizing, dot voting, bucket system, large/uncertain/small, and
affinity mapping [Mallidi e Sharma 2021]. Therefore, the evaluation of such models in
the parallel programming domain still needs to be explored.

Acknowledgment
This research is partially funded by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001.

References
Aldinucci, M., Danelutto, M., Kilpatrick, P., e Torquati, M. (2017). Fastflow: High-level

and efficient streaming on multi-core. In Programming Multi-core and Many-core
Computing Systems, pages 261–280.

Andrade, G., Griebler, D., Santos, R., e Fernandes, L. G. (2022a). Opinião de brasileiros
sobre a produtividade no desenvolvimento de aplicações paralelas. In WSCAD 2022,
pages 276–287.

Andrade, G., Griebler, D., Santos, R., e Fernandes, L. G. (2023). A parallel program-
ming assessment for stream processing applications on multi-core systems. Computer
Standards & Interfaces, 84:1–25.

Andrade, G., Griebler, D., Santos, R., Kessler, C., Ernstsson, A., e Fernandes, L. G.
(2022b). Analyzing programming effort model accuracy of high-level parallel pro-
grams for stream processing. In SEAA 2022, pages 229–232.

Andrade, H. C., Gedik, B., e Turaga, D. S. (2014). Fundamentals of stream processing:
application design, systems, and analytics. Cambridge University Press.

Cohn, M. (2005). Agile estimating and planning. Pearson Education.

Durán, M., Juárez-Ramı́rez, R., Jiménez, S., e Tona, C. (2019). Taxonomy for complexity
estimation in agile methodologies: A systematic literature review. In CONISOFT 2019,
pages 87–96.

Fernández-Diego, M., Méndez, E. R., González-Ladrón-De-Guevara, F., Abrahão, S., e
Insfran, E. (2020). An update on effort estimation in agile software development: A
systematic literature review. IEEE Access, 8:166768–166800.

Finco, D. A. (2021). Combinando planning poker e aprendizado de máquina para estimar
esforço de software. In ERES 2011, pages 129–138.

Galorath, D. D. e Evans, M. W. (2006). Software Sizing, Estimation, and Risk Manage-
ment: When Performance is Measured Performance Improves. Auerbach Publications.

Gandomani, T. J., Faraji, H., e Radnejad, M. (2019). Planning poker in cost estimation in
agile methods: Averaging vs. consensus. In KBEI 2019, pages 66–71.



Griebler, D., Danelutto, M., Torquati, M., e Fernandes, L. G. (2017). Spar: A dsl for
high-level and productive stream parallelism. Parallel Processing Letters, 27(1):1–14.

Haugen, N. C. (2006). An empirical study of using planning poker for user story estima-
tion. In AGILE 2006, pages 1–9.

ISO (2018). ISO 9241-11:2018 – Ergonomics of human-system interaction – Part 11:
Usability: Definitions and concepts.

Kirk, D. B. e Hwu, W.-m. W. (2016). Programming massively parallel processors: A
hands-on approach. Morgan Kaufmann.

Larose, D. T. e Larose, C. D. (2014). Discovering knowledge in data: An introduction to
data mining. John Wiley & Sons, 2nd edition.

Mahnič, V. e Hovelja, T. (2012). On using planning poker for estimating user stories.
Journal of Systems and Software, 85(9):2086–2095.

Mallidi, R. K. e Sharma, M. (2021). Study on agile story point estimation techniques and
challenges. International Journal of Computer Applications, 174(13):9––14.

McCool, M., Reinders, J., e Robison, A. (2012). Structured parallel programming: Pat-
terns for efficient computation. Morgan Kaufmann Publishers.

Miller, J. e Arenaz, M. (2019). Measuring the impact of hpc training. In EduHPC 2019,
pages 58–67.

Moløkken-Østvold, K., Haugen, N. C., e Benestad, H. C. (2008). Using planning poker
for combining expert estimates in software projects. Journal of Systems and Software,
81(12):2106–2117.

Nanz, S., West, S., Da Silveira, K. S., e Meyer, B. (2013). Benchmarking usability and
performance of multicore languages. In ESEM 2013, pages 183–192.

Putnam, L. H. e Myers, W. (1991). Measures for Excellence: Reliable Software on Time,
within Budget. Prentice Hall PTR.

Raith, F., Richter, I., Lindermeier, R., e Klinker, G. (2013). Identification of inaccurate
effort estimates in agile software development. In APSEC 2013, pages 67–72.

Razali, N. M., Wah, Y. B., et al. (2011). Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and An-
alytics, 2(1):21–33.

Sudarmaningtyas, P. e Mohamed, R. B. (2020). Extended planning poker: A proposed
model. In ICITACEE 2020, pages 179–184.

Tamrakar, R. e Jørgensen, M. (2012). Does the use of fibonacci numbers in planning
poker affect effort estimates? In EASE 2012, pages 228–232.

Voss, M., Asenjo, R., e Reinders, J. (2019). Pro TBB: C++ parallel programming with
threading building blocks. Apress.

Wazlawick, R. (2013). Engenharia de Software: Conceitos e Práticas. Elsevier.

Wohlin, C., Runeson, P., Høst, M., Ohlsson, M. C., Regnell, B., e Wesslén, A. (2012).
Experimentation in software engineering. Springer.

Zahraoui, H. e Idrissi, M. A. J. (2015). Adjusting story points calculation in scrum effort
& time estimation. In SITA 2015, pages 1–8.


