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Abstract. Seismic imaging applications are computationally costly, and the in-
dustry’s demand is continuously increasing due to the availability of better data,
larger data, and the need for better resolution images. It means that the compu-
tational capacity needed tends to increase both in terms of FLOPS calculation
and memory. Nowadays, many HPC clusters have nodes with multiple GPUs
(e.g., 2, 4, and 8). In this paper, we investigate mechanisms and strategies for
the data exchange (of the halo zones) of a finite differences grid of a wave simu-
lator implemented in OpenMP. We compare the performance and programming
effort of four data mapping mechanisms supported by OpenMP and CUDA. Our
best strategy has achieved speedups of 3.87 on four V100 GPUs with NVLink.

1. Introduction
Seismic imaging applications like the full-waveform inversion (FWI) and the reverse time
migration (RTM) are extensively used in geophysical exploration for the identification and
characterization of hydrocarbon reservoirs. Such applications are extremely important
for the efficiency of oil and gas exploration, such as in the Brazilian coastal region where
hydrocarbon reservoirs are found a few kilometers deep under salt bodies. One single well
drilled in the wrong location can waste millions of US dollars and delay production for
weeks or months. Even after the production starts, it is important to track how reservoirs
evolve (i.e., the quantities of remaining hydrocarbon, the flow, and pressure of fluids in
porous rocks, where to inject fluids to increase pressure, etc) to maximize production.

High-performance computing (HPC) is widely recognized as a major en-
abling technology of large industrial FWI workflows for oil and gas exploration
[Virieux and Operto 2009]. Around the late 1990s and early 2000s, large 3D acoustic
FWI to explore oil and gas became feasible due to large HPC clusters [Bohlen 2002].
Over the last decade, clusters powered with GPU accelerated FWI in 3.5-4 times over
homogeneous implementations [Gokhberg and Fichtner 2016, Kim et al. 2012].

Despite noticeable advances, FWI and RTM workflows still remain computation-
ally expensive, and the challenges tend to increase in the coming years. Typically, the ex-
ecution of an acoustic FWI takes weeks to months on a multi-Petaflop/s cluster with data
that are collected with frequencies between 2 and 10 Hz [Hölzle 2017]. As the acquisition
technologies improve, better data with additional information becomes available, increas-
ing computational costs. The industry pushes the demand for higher resolution images



(i.e., processing higher frequency data) to shorten the “time to first oil” and improve ex-
ploration efficiency. Techniques for improving the quality of imaging include using better
(i.e., higher frequency) data, longer offsets (i.e., longer recordings), including anisotropy,
or using better physics (like elastic, visco-elastic or TTI modeling) with more unknowns,
among others. All of these improvements imply either more floating-point operations or
memory footprint [Virieux and Operto 2009]. As of today, many HPC clusters have het-
erogeneous nodes with one or more CPUs, and multiple (typically 2, 4, 6 or 8) GPUs. In
this scenario, it is mandatory to optimize the applications to benefit from this architecture.

The computational cost of FWI is dominated by the numerical solution of the for-
ward and adjoint wave propagation, which involve the numerical solution of partial differ-
ential equations (PDEs) that model the propagation of acoustic waves in multi-layer mate-
rials. In this paper we focus on the parallel implementation of a finite differences acoustic
wave solver on multi-GPU heterogeneous nodes. In multi-GPU scenarios, the exchange
of halo zones between GPUs can raise the communication overhead and hinder perfor-
mance [Micikevicius 2009, Gokhberg and Fichtner 2016, Meng and Skadron 2009].

OpenMP has been a staple in parallel programming for years, thanks to its ability
to support high performance and productivity for accelerating applications employing a
directive-based programming model. Code offloading for accelerators was introduced in
its version 4.0, and compiler technology is mature for GPU code offloading. In this pa-
per, we elaborate on previous work which optimizes the application code for single-GPU
systems [de Souza et al. 2022c, de Souza et al. 2022b]. The main objective of the present
work is to investigate mechanisms for efficient data mapping and exchanging across the
memories of an HPC node with multiple GPUs, as this is the first step when moving from
single- to multi-GPUs optimization. Device code offloading was introduced in OpenMP
4.0 with the inception of the target directive. The native OpenMP data mapping model
aims to deliver seamless performance and simplicity as seen in CPU-based parallelization
for manycore devices (such as GPUs) by supporting the target data map pragma for easy
data migration between host and Device. Although these directives allow straightforward
programming of single-GPU implementations, its use in multi-GPU systems remains un-
derpowered for applications that require sections of an array to be accessed by different
devices. For this reason, synchronization and data consistency of halo regions must be
treated, which can be implicitly handled by technologies such as NVidia’s Unified Virtual
Addressing, or explicitly by using CUDA’s or OpenMP’s device data functions.

As the main contribution, we compare the performance and programming effort of
four strategies that use four data mapping mechanisms, which include (i) the OpenMP’s
target construct data mapping, (ii) the CUDA’s Unified Virtual Addressing (UVA),
(iii) the CUDA explicit memory copy, and (iv) the OpenMP explicit memory copy. As
a general remark, we found that, although implicit data mapping methods can facilitate
the programming task on multi-GPUs, explicit memory copy methods can support better
scalability for our seismic application running on multi-GPUs. With the aid of explicit
methods, we could obtain speedups of up to 3.87 on four GPUs.

The rest of this paper is organized as follows: related works are discussed in
Section 2. Section 3 briefly presents our seismic application; Section 4 presents our data
mapping strategies for multi-GPU nodes. Section 5 presents experimental evaluation of
our strategies. Finally, Section 6 present our conclusion and directions for future work.



2. Related Works

Around the late 1990s and early 2000s, the execution of large 3D acoustic FWI for oil
and gas exploration became feasible on large HPC clusters [Bohlen 2002]. Over the last
decade, heterogeneous clusters have proven to accelerate FWI in 3.5-4 times over homo-
geneous implementations [Gokhberg and Fichtner 2016, Kim et al. 2012].

A previous work investigated the performance of an acoustic wave solver on mod-
ern GPUs using OpenMP [de Souza et al. 2022b]. This work aims to investigate several
loop transformations introduced in OpenMP for GPUs and implemented in recent compil-
ers to reach maximum performance on single GPUs. The parallelization of the application
using the OCCA library has been addressed in [de Souza et al. 2022a]. OCCA is a library
that can produce optimized code for different architectures such as CPUs and GPUs. The
objective of this work is not limited to evaluating the maximum performance that could
be obtained but to assess the ability of OCCA to support performance portability for high-
order stencil codes like those implemented in Simwave on different GPU architectures.

[Gokhberg and Fichtner 2016] implemented a spectral-element-based FWI for
large heterogeneous HPC systems, applied for the 3D imaging of large regions. The work
focused on finding the optimal parallelization configurations of individual simulations,
the large I/O requirements of adjoint simulations, and the scheduling of large numbers of
forward and adjoint solves. In another work, [Cai et al. 2018] proposed strategies to im-
plement a finite differences-based RTM on GPUs. They also optimize the checkpointing
to balance the trade-off between memory requirements and recomputations.

Seismic applications are compute-bound and manage vast amounts of data
[Datta et al. 2018]. This work proposed an RTM algorithm that takes advantage of the
fast NVLink interconnect and Non-Volatile Memory Express (NVMe) memory in a clus-
ter with four GPUs per node. They proposed a two level checkpointing for optimizing
memory usage, computations and data movement.

The works discussed so far have a standard limitation. They provide implemen-
tations of seismic applications on single-GPU systems. We believe efficient implemen-
tations on multi-GPUs are considerably more challenging, but this is a necessary step
ahead for many reasons. First, as mentioned the industry continuously demands better-
resolution images, which increases the amount of floating-point operations and memory
usage. Nowadays, many HPC clusters have multi-GPU nodes, with 2, 4, 6 or 8 GPUs. In
this scenario, it is mandatory to optimize the applications to benefit from this architecture,
thus reducing the computation times of seismic applications and allowing the processing
of higher-resolution grids, potentially larger than the memory of a single GPU.

[Deng et al. 2021] proposed a 3D electromagnetic full waveform inversion work-
flow in multi-GPU systems. The domain is divided into 2, 4 or 8 subdomains processed
by the GPUs. GPUs in the same node exchange halo data through P2P mechanisms and
MPI for GPUs in different nodes. Although this work explores multi-GPU parallelism,
we have different approaches. First, we want to avoid halo data exchanges between GPUs
in different nodes, which raises inter-node communication. Second, by keeping all the
subdomains on GPUs in the same node we avoid inter-node communication due to the
saving and retrieval (in reverse order) of snapshots during the adjoint phase to calculate
the gradients. Therefore, our paper focuses on studying mechanisms and strategies to



exchange halo data among GPUs within the same node.

3. The seismic imaging application

Our seismic application kernel is part of the full-waveform inversion (FWI). FWI is a
data-fitting procedure based on full-wavefield modeling to extract quantitative informa-
tion from collected data. FWI is widely used in seismology and geophysical exploration
to build high-resolution images from subsurface materials based on their physical proper-
ties. In conventional FWI workflows, most of the time is spent in the computation of the
forward and adjoint wave propagation. The kernel of this process involves the numerical
solution of partial differential equations (PDEs) that model the propagation of acoustic
waves in multi-layer subsurface materials. The FWI workflow minimizes both amplitude
and phase differences between the signals that are recorded with a set of microphones (or
hydrophones) located near the surface. The model is incrementally modified so that the
functional that represents the error is sufficiently reduced [Virieux and Operto 2009]. The
final objective is to reconstruct various parameters of the materials, such as the velocities
of P-waves and S-waves, density, anisotropy, and attenuation. The wave propagation ker-
nel is also part of the reverse-time migration (RTM) application, which is a quite similar
process that uses least-squares minimization of the misfit between recorded and modeled
data. One difference between RTM and FWI is that the seismic wavefield recorded at
the receiver is back propagated in reverse time migration, whereas the data misfit is back
propagated in the waveform inversion.

3.1. The wave propagation kernel

There are various wave equations, based on different physic models. For this work, we use
the simplified acoustic wave equation, assuming an isotropic medium, constant density,
and neglecting shear strains as defined in [de Souza et al. 2022c]. This is a second-order
differential equation that describes particle displacement, as follows:

∂2p

∂t2
(x, t)− c2(x)∇2p(x, t) = −ρc2(x)∇.b(x, t) (1)
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Finally, the discretized form of the wave equation can be computationally solved
as in Algorithm 1. The values accessed when computing each cell when using stencil
radius of 1 is exemplified in Figure 1.

Algorithm 1 Sequential wave propagation algorithm
1: for iteration ∈ [0, n] do
2: for k ∈ [stencil radius, size z − stencil radius] do
3: for j ∈ [stencil radius, size y − stencil radius] do
4: for i ∈ [stencil radius, size x− stencil radius] do
5: Compute pn+1

i,j,k as described in Eq. 2
6: end for
7: end for
8: end for
9: end for

3.2. The Simwave solver

We used the wave equation simulator implemented by Simwave [de Souza et al. 2022c],
a Python/C package that enables researchers to model acoustic waves propagation.
Simwave is distributed as open software 1. The package is comprised of modular back-end
kernels written in C, which provides both a numerically accurate solver of the acoustic
wave equation for Geophysicists and a realistic application kernel for HPC researchers.
Simwave has been used in previous research for single GPUs implementations and opti-
mization, as in [de Souza et al. 2022b, de Souza et al. 2022a].

3.3. Moving data between multi-GPUs

In this work, our baseline is an OpenMP implementation of the wave simulation on single
GPUs presented in [de Souza et al. 2022b]. Our objective is to study strategies for effi-
cient implementation of the acoustic wave solver for heterogeneous single-node systems
composed of multiple GPUs. The potential benefit is twofold: (i) to reduce the execution
times of the application on multi-GPU nodes; and (ii) to allow the execution of finite
difference grids whose size exceeds the memory of single GPUs. The parallelization for
GPUs placed on different nodes, however, is beyond this work’s scope.

Our baseline code implements the acoustic wave solver on single GPUs using
OpenMP. The data is copied to the device memory at the beginning of the target region.
Within the target region, the spatial loops for the stencil calculation are parallelized as
described in [de Souza et al. 2022b]. At the end of the target region, results are moved
to the host memory. The process is straightforward and there is no need for explicit data
allocation and manipulation [Mattson et al. 2019].

Algorithm 2 provides an abstract view of our multi-GPU implementation. Line 1
computes the subdomain bounds by partitioning the matrix in the z axis (because y and x
axis are closer in memory than z). Line 3 distributes the subdomains for parallel execution
on multiple devices. Line 3 assigns one subdomain for each device to process, and Lines
4 to 10 compute the stencil inside each subdomain. A point of attention is the exchange

1https://github.com/HPCSys-Lab/simwave.git



of the halo regions (i.e., data elements shared between neighbor GPUs) at the end of each
time step, as illustrated in line 11 of Algorithm 2.

One drawback of OpenMP target data map is the lack of support for overlapping
array sections (i.e., the halo zones) on multiple devices. One possible solution is mapping
the entire arrays onto all devices, with the halo regions explicitly updated. However, this
strategy prevents us from taking advantage of the extended memory pool and from using
peer-to-peer communication mechanisms. Another solution involves explicitly allocating
and copying the arrays, which may increase complexity. A second approach consists in
using the CUDA runtime library to explicitly handle data movement between the devices.
These approaches will be investigated in the coming sections.

Algorithm 2 Multi-GPU wave propagation algorithm
1: S = ComputeSubdomainBounds(); ▷ Compute begin/end for subdomains in z axis
2: for iteration ∈ [0, n] do
3: for each subdomain s ∈ S do in parallel ▷ Each device computes one

subdomain in parallel
4: for k ∈ [radius+ s.begin z, s.end z − radius] do in parallel ▷ Data

parallelism occurs within each subdomain/device
5: for j ∈ [stencil radius, size y − stencil radius] do
6: for i ∈ [stencil radius, size x− stencil radius] do
7: Compute pn+1

i,j,k as described in Eq. 2
8: end for
9: end for

10: end for
11: exchange halos(d);
12: end for
13: end for

4. Data mapping strategies

Figure 1. Data required for processing a cell using a radius 1 stencil

This section proposes four strategies for implementing the wave propagation
solver on multi-GPU systems. Our implementations aim to compare the complexity and
performance of different domain decomposition strategies using either CUDA’s runtime
library or OpenMP’s native device data transfer functions.



Figure 2. Visual representation of domain decomposition for four gpus

4.1. OpenMP native data mapping

This strategy uses the OpenMP target data map constructs [Xu et al. 2015] for domain de-
composition. Although it features implicit data transfers into the devices before execution,
updating the halos between iterations must be done explicitly. It is built directly upon the
baseline implementation by creating one host thread for each device, which is responsible
for defining its starting and ending indexes and initiating the GPU kernel execution.

Figure 3. OpenMP domain decomposition

Using omp target data map to map data and omp target update to
exchange halo data between devices presents some drawbacks. First, it does not support
mapping overlapping array sections (e.g., halo data). To allow multiple devices to access
shared data sections, the entire array must be mapped onto every GPUs in the node. This
requires every device to have enough memory to house the entire array (as depicted in
Fig. 3), thus wasting memory space. Second, the halo data exchanges must be managed
explicitly, which makes the process more error-prone. Finally, current implementations
of these mechanisms (by the compilers) does not take advantage of direct communication
between devices. Therefore, OpenMP native data mapping is unsuited for this application,
which exchanges halo data in each iteration.

4.2. Unified Virtual Addressing

Our second implementation uses the CUDA’s Unified Virtual Addressing (UVA) for ma-
nipulating data across multiple GPUs . This strategy aims to improve performance while
maintaining low complexity. We use the cudaMallocManaged function (implemented
by the CUDA runtime library) for allocating data in a unified space between the host and
the devices. As memory allocation and copy are handled by the CUDA runtime driver,
all devices can access the same pointers, and no explicit updates are necessary between
iterations. We implemented data prefetching at the end of each iteration to avoid page
faults and on-demand data copy, thus improving performance.

Besides data prefetching, preferred location functions were added wherever nec-
essary, and copies of read-only arrays used in the computation were explicitly allocated



Figure 4. UVA domain decomposition

in each device to ensure local access. As in the previous implementation, one host thread
was created for each device, to calculate the starting and ending points for each subdo-
main, and launching the GPU kernel execution. To allow UVA pointers to be interpreted
by the OpenMP kernels using the target directive, the is device ptr clause was used.

4.3. Explicit copy using Auxiliary Halos

Our third implementation introduces explicit memory allocation and transfer. This
method involves the allocation and initialization of grid slices on each device, as
well as separate arrays for top and bottom halo data as illustrated in Fig. 5.
This strategy allows overlapping the processing of inner grid cells and halo updates.
For this implementation, we also compare the performance between CUDA’s native
cudaMalloc() and cudaMemcpy(), and OpenMP’s omp target alloc() and
omp target memcpy() explicit device data management functions.

Figure 5. Visual representation of the explicit data copy with auxiliary halos.

Similar to in the previous strategy, we created one host thread per device, to allo-
cate and initialize the data in the device. Since the neighbor data is copied into auxiliary
arrays, the computation is split into three blocks: (i) the inner cells processing (overlapped
with the halo data prefetching); (ii) computation of the top border; and (iii) computation
of the bottom border. After the processing, the update of neighboring copies is initiated



and a new iteration begins. This method requires the use of the is device ptr clause
to allow the OpenMP kernel to use the device memory pointers.

Splitting data into three arrays, however, proved much too complex for deploy-
ment in the full version of Simwave, especially for supporting stencil radii bigger than 1.
Since the neighboring cells may be located on either the main or auxiliary arrays, as ex-
emplified in figure 6, a condition must be implemented to specify which memory address
should be utilized, for both top and bottom loops. Translating the array position between
local and auxiliary arrays also demands a lot of attention, introducing a lot of complexity
and decreasing code readability.

Figure 6. Auxiliary array access for a stencil radius of 2

4.4. Explicit copy using Coupled Halos

This implementation builds directly upon the previous, with explicit memory allocation
and data transfers. However, each device’s array was increased as to accommodate their
own copy of the halo, and a single loop was implemented instead of three distinct ones.
Just like in the previous one, this strategy was implemented in two ways - using CUDA’s
cudaMalloc() and cudaMemcpy(), and OpenMP’s omp target alloc() and
omp target memcpy() functions.

Figure 7. Domain decomposition for the Coupled Halos implementation

For data initialization, the height of data blocks are increased by 2×n (where n is
the stencil radius). The starting and ending positions are calculated by the host threads and
vary depending on which section of the array is being processed since the top and bottom



Baseline OMP UVA Auxiliary Coupled Auxiliary Coupled
Grid # of (1 GPU) Data map OMP OMP CUDA CUDA

SO size iters. Time Time S Time S Time S Time S Time S Time S
256³ 400 0,59 0,9 0,66 1,05 0,56 0,68 0,87 0,74 0,80 0,62 0,95 0,6 0,98

4000 4,2 4,31 0,97 4,66 0,90 2,4 1,75 2,36 1,78 1,72 2,44 1,65 2,55
2 512³ 400 3,62 2,87 1,26 3,05 1,19 1,79 2,02 1,68 2,15 1,54 2,35 1,6 2,26

4000 31,44 17,45 1,80 15,01 2,09 9,9 3,18 9,9 3,18 8,71 3,61 8,58 3,66
1024³ 400 30,17 15,23 1,98 17,08 1,77 10,16 2,97 10,12 2,98 9,67 3,12 9,9 3,05

4000 269,91 96,54 2,80 92,99 2,90 73,49 3,67 73,14 3,69 69,82 3,87 70,85 3,81
256³ 400 0,63 1,07 0,59 1,21 0,52 0,75 0,84 0,67 0,94 0,69 0,91 0,63 1,00

4000 4,76 6,31 0,75 5,58 0,85 2,89 1,65 2,52 1,89 1,83 2,60 1,77 2,69
4 512³ 400 4,78 3,65 1,31 3,52 1,36 2,01 2,38 2,05 2,33 1,78 2,69 1,82 2,63

4000 42,99 24,65 1,74 20,73 2,07 13,75 3,13 13,48 3,19 11,44 3,76 11,81 3,64
1024³ 400 36,82 19,74 1,87 22,13 1,66 11,86 3,10 11,43 3,22 11,41 3,23 11,18 3,29

4000 337,47 135,6 2,49 144,67 2,33 91,77 3,68 91,2 3,70 87,41 3,86 88,62 3,81
256³ 400 0,78 1,51 0,52 1,48 0,53 0,85 0,92 0,86 0,91 0,68 1,15 0,75 1,04

4000 6,36 10,89 0,58 8,31 0,77 3,39 1,88 3,02 2,11 2,05 3,10 2,15 2,96
8 512³ 400 6,54 5,01 1,31 4,61 1,42 2,46 2,66 2,48 2,64 2,35 2,78 2,34 2,79

4000 60,56 37,07 1,63 31,93 1,90 18,65 3,25 18,31 3,31 16,04 3,78 16,43 3,69
1024³ 400 51,58 26,62 1,94 33,77 1,53 15,94 3,24 15,91 3,24 15,39 3,35 15,09 3,42

4000 484,92 212,68 2,28 261,45 1,85 132,17 3,67 130,87 3,71 126,01 3,85 127,8 3,79

Table 1. Execution times (seconds) and speedup (S) for all strategies processing
3D grids for 4 GPUs. Speedups above 3.5 are highlighted in dark green, light
green (3 < S ≤ 3.5), lime (2.5 < S ≤ 3), yellow (2 < S ≤ 2.5), and red (S < 2).

slices need not compute their own top and bottom borders. The kernel is similar to the
baseline code for single-GPU, except for the calculation of starting and ending positions,
the halo updates between iterations, and the is device ptr() clauses.

5. Experiments
We tested our implementations on a server with 2 Intel Xeon Gold 6130, 192 GB DDR4,
4 NVIDIA Tesla V100 SXM NVLink with 5,120 CUDA cores and 32GB of HBM2 mem-
ory. The code was compiled using LLVM’s Clang compiler, with OpenMP version 4.5
and CUDA version 11. The cluster uses SLURM for job management and Singularity
containers, with kernel version 5.12 and hosted on a CentOS linux operating system.

Table 1 displays the execution times taken as an average of 3 runs, for all multi-
GPU implementations of the acoustic wave solver. The first column presents the execution
times for the baseline (i.e., single GPU implementation). We used 3D grids of 2563,5123,
and 10243 FP32 cells. The solver used spatial discretizations with 2nd, 4th, and 8th spatial
orders. The simulations tested have 400 and 4000 iterations. Each cell’s color reflects
that implementation’s performance, with green representing high speedup (> 3) and red,
low speedup (< 2). Our best strategies achieved speedups of 3.7 (Coupled OMP), 3.85
(Auxiliary CUDA), and 3.8 (Coupled CUDA) on a four-GPUs system.

As displayed in table 1, larger data sets allow for higher speedups, owing to the
lower impact of communication overheads. Likewise, the impact of overlapping process-
ing and data movement as enabled by the Auxiliary methods diminishes as the overall
processing time increases.

5.1. Final remarks
In summary, the implicit methods tested (OpenMP data map and CUDA Unified Virtual
Addressing) yield unimpressive results from an execution time perspective, barely sur-
passing 2x speedup for larger number of iterations on larger grid sizes. While Unified



Virtual Addressing might be recommended for increasing memory capacity and small
performance gains, the OpenMP target data map is underpowered for multi-GPU
implementations of stencil-style algorithms, and thus is not recommended.

We tested two strategies for explicitly managing the allocation and data copy:
(i) using auxiliary arrays for the halo manipulation, and (ii) increasing the size of data
slices on each device to accommodate the halos and reduce complexity. Both strategies
lead to lower execution times when compared to implicit methods, while maintaining
minimal memory usage. Despite their increased complexity, the performance of explicit
allocation and copy functions justify their use over their implicit counterparts. Comparing
both explicit strategies, despite the use of auxiliary arrays for the halo enabling better
overlapping of data copy and computation, the benefits of such were inconsistent, while
demanding more complex and error-prone implementation. On the other hand, using a
single array presents better readability with similar performance.

When comparing CUDA’s cudaMalloc and cudaMemcpy functions to
OpenMP’s omp taget alloc and omp target memcpy, the former consistently
performs better for all combinations of grid sizes, stencil radii and number of iterations,
being a favorite for deployment and further optimization.

6. Conclusion
Seismic applications present huge computational costs and the industry demands increas-
ingly better and faster-resolution applications. GPUs have demonstrated outstanding per-
formance in the execution of seismic applications. Efficient single GPU implementations
are currently deployed on state-of-the-art industry seismic workflows. The current need
for increasing the performance of seismic applications allied to the availability of multi-
GPU architecture HPC clusters raises the urgent need to develop efficient implementations
on multi-GPU systems.

In this paper, we studied four data manipulation strategies focusing on the ef-
ficiency and implementation complexity of the halo exchanges on multi-GPU systems.
Our best strategies sustained approximate speedups of 3.7 (Coupled OMP), 3.85 (Aux-
iliary CUDA), and 3.8 (Coupled CUDA) on a four-GPUs system. This is only the first
step in the development roadmap for industrial seismic applications, including techniques
such as checkpointing and data compression that focus on multi-GPU systems.
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