
Dynamic Provisioning of Container Registries in Edge
Computing Infrastructures

Lucas Roges1, Tiago Ferreto1

1School of Technology
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

roges.lucas@edu.pucrs.br, tiago.ferreto@pucrs.br

Abstract. The emergence of applications with latency-sensitive demands high-
lighted some limitations of cloud computing and led to the advent of edge com-
puting. Accompanied by challenges such as mobile users and limited resources,
this decentralized computing paradigm is frequently associated with container-
based virtualization. However, the traditional container registry has significant
limitations in properly provisioning container images on edge infrastructures.
Consequently, previous authors focused on improving the application provision-
ing process by modifying this entity. This paper examines previous attempts at
decentralizing container registries in edge computing infrastructures. Based on
our initial comparison results, we propose a strategy for dynamically provision-
ing and deprovisioning container registries based on each server’s storage and
the infrastructure’s application demands. The final results show that our strat-
egy can optimize resource utilization in the infrastructure, but needs adjustments
to reach the lowest overall latency for application users.

1. Introduction
In recent decades, the position of the most dominant computing paradigm has been
alternating between centralized and decentralized paradigms [Satyanarayanan 2017].
For a while now, the centralized paradigm of cloud computing has been the pre-
dominant choice to handle computing demands across multiple verticals, mainly due
to its cost-effectiveness. By offering subscription-based services and using the pay-
as-you-go model, cloud computing emerged as the backbone of the modern econ-
omy [Buyya et al. 2018]. However, the increasing number of smart devices connected
to the Internet has made this traditional computing model no longer sufficient to sup-
port today’s data processing needs [Cao et al. 2020] since long WAN (wide area network)
latencies are a fundamental obstacle to adopting cloud computing to execute resource-
intensive applications with strict latency requirements [Satyanarayanan et al. 2009].

In this sense, the edge computing paradigm emerged as a decentralized al-
ternative representing an extension of the cloud infrastructure to locations near end
users (e.g., urban centers). Along with the benefits of this physical proximity, such
as low latency and less bandwidth congestion, there are several challenges to ensur-
ing adequate Quality-of-Service (QoS) for edge computing users. In this context,
handling user mobility [Mao et al. 2017, Rejiba et al. 2019] and orchestrating edge re-
sources [Luo et al. 2021] are fundamental necessities for infrastructure providers due to
the several use cases related to mobile entities (e.g., autonomous vehicles) and the lim-
ited resources available in such infrastructures, respectively. To fulfill these requirements,

edge computing is often associated with container-based virtualization [Ismail et al. 2015,
Mansouri and Babar 2021], which offers low overhead compared to other virtualization
techniques (e.g., virtual machines).

Generally, this type of virtualization is achieved through platforms that manip-
ulate low-level components. In Docker [Merkel et al. 2014], the most popular of these
platforms, applications are packaged into container images and stored in container reg-
istries. The container images are templates with software resources to run a particular
application, while the container registries are a repository of container images that handle
push and pull requests to receive and send these images to hosts with the Docker daemon.
Although the user can rely on cache mechanisms, it depends on the container registry
to deploy new applications locally. During this deployment process, image download
accounts for 76% of the application provisioning time [Harter et al. 2016], turning the
container registry into a significant entity in this process. Consequently, several works
focus on enhancing this application provisioning process through modifications to the
container registry. In edge computing, most efforts are toward distributing the container
registry to obtain a lower application provisioning time.

In this context, this paper analyzes existing optimization strategies for allocating
container registries on edge infrastructures and their impact on the latency of mobile users
accessing composite applications. More specifically, we compare a static and a dynamic
approach against baseline registry provisioning, focusing on their capacity to minimize
the overall latency. Based on preliminary results, we propose modifications to the dy-
namic approach and evaluate the impact of these modifications on the target metrics. The
remainder of the paper is organized as follows. Section 2 presents the work related to our
paper. Section 3 introduces the edge computing scenario on which our research is based.
Section 4 describes how we conducted the experiments of this research. In Section 5, we
present the preliminary results comparing existing techniques and, based on these exper-
iments, introduce an algorithm to improve the registry provisioning process in Section 6.
In Section 7, we evaluate this algorithm and conclude the paper in Section 8.

2. Related Work

Various approaches focus on improving the container image provisioning process through
optimizations to the container registry. This section focuses on work that turns the con-
tainer registry into a distributed entity.

Aside from the edge computing context, most works present solutions based
on peer-to-peer (P2P) protocols, such as BitTorrent (BT). Generally, these solutions
present requirements unsuitable for edge computing infrastructures, such as the need
for dedicated resources for specific tasks (e.g., controlling the communication between
peers and seeds). For example, this is the case for HDID [Liang et al. 2016] and
FID [Kangjin et al. 2017], two BT-based approaches to registry provisioning focused on
cloud data centers. While HDID encompasses an adaptive strategy that does not build tor-
rents for small image layers due to the overhead of this process, FID focuses on scalability
and fault tolerance by presenting an architecture with distributed management entities. In
the industry, Kraken [Uber 2022] and Dragonfly [Alibaba 2022], proposed by Uber and
Alibaba, respectively, are open-source projects focused on accelerating image provision-
ing through P2P distribution entities.

In edge computing, the variety of alternative solutions is more extensive. Based on
the network bottleneck between edge nodes from the same locality that request common
layers to a registry server in the cloud, Gazzetti et al. [Gazzetti et al. 2017] propose a
strategy for edge nodes to share these container images, similar to a P2P model. In this
solution, every request for a new container image passes through a gateway that checks
which layers are already available on other infrastructure nodes and which ones need to
be downloaded from the registry in the cloud. Also focused on taking advantage of locally
available container images, Becker et al. [Becker et al. 2021] highlight the challenges of
adopting BT-based solutions in edge computing environments. Thus, the authors propose
EdgePier, a P2P image distribution tool based on the InterPlanetary File System (IPFS),
which is not dependent on centralized or dedicated services, such as BT. In their scenario,
the container registry in the cloud starts provisioning container images, and then, through
IPFS, nodes can share container images among themselves.

Considering that the image provisioning process occurs entirely in the edge in-
frastructure, Knob et al. [Knob et al. 2021] look into the problem of decreasing the appli-
cation deployment latency on such infrastructures. To avoid significant alterations in the
container orchestration process, the authors propose a community-based heuristic solu-
tion to find the best nodes for placing fully replicated container registries. With distributed
nodes acting as container registries, the heuristic decreases the chances of network bot-
tleneck for provisioning container images from a distant node. Compared to previous
strategies aimed at edge environments, this strategy has a static aspect (i.e., container
registries are provisioned once with the same set of container images each).

Given our focus on the edge computing scenario, we consider the community
registry strategy and a naive version of the P2P registry strategy to provision container
registries in our experiments. We also consider a baseline registry provisioning approach,
which does not use distributed resources. Our primary interest is understanding each
strategy’s behavior and getting insights into new improvements for registry allocation
decisions. In addition to previous works, we consider the impact on resource utilization
of allocating multiple container registries in the infrastructure and its applications. This
aspect is disregarded, or at least implicit in the previous works.

3. System Model

This section presents the edge computing scenario in which container registry provision-
ing strategies are evaluated with respect to their capacity to minimize overall latency when
transferring container images to reallocate composite applications in the infrastructure.
The following paragraphs describe the notation representing the infrastructure elements
and their relationships. This notation is summarized in Table 1.

The edge infrastructure comprised in this paper is based on the WAN infrastructure
of cellular networks [Klas 2017]. There is a set of base stations B modeled as Bn = {an},
in which an represents the wireless latency for the users connected to Bn. These base
stations are responsible for wireless connectivity in a particular area, represented as a
hexagonal cell, based on the map model of Aral et al. [Aral et al. 2021]. Furthermore,
there is a set of network links (L) to interconnect the base stations and allow commu-
nication between distant entities. In this set L, each link is modeled as Lf = {bf , lf},
representing the link bandwidth (bf) and link latency (lf).

Coupled with some base stations, there is a set of edge servers E . Each edge server
is modeled as Ei = {ci, ri, di}, with the three attributes representing a capacity of the
server: ci represents the CPU capacity, ri represents the RAM capacity, and di represents
the disk capacity. Among the entities that take advantage of the edge server’s capacity, the
container registries R are each modeled as Rl = {wl, gl}. Both attributes represent the
demands of the registry: wl is the CPU demand, and gl is the RAM demand. Furthermore,
the registry placement matrix is represented by xi,l,t and is detailed in Equation 1.

xi,l,t =

{
1 if edge server Ei hosts registry Rl at time step t

0 otherwise.
(1)

A set of users U is distributed across the infrastructure, where each user accesses a
single application from A, modeled as Aj = {uj, sj, pj,t, δ(Aj, t)}. The user that accesses
Aj is represented by uj , while sj is an ordered set of services from S that comprise the
application. The communication path matrix pj,t is made up of communication paths
between uj and sj last service, with each path comprising network links that connect these
two entities in a given time step t from T . Each path is calculated using Dijkstra’s shortest
path algorithm [Dijkstra 1959] (link latency as weight), and the application latency, at the
time step t, is represented by δ(Aj, t). Aj’s latency is calculated considering the wireless
latency an of Bn (the base station in which uj is located) and the aggregated latency of
the set of network links in pj,t, as depicted in Equation 2.

δ(Aj , t) = an +
∑

Lf∈pj,t

lf (2)

As described, applications are composed of an ordered service chain. The whole
set of services in the infrastructure is represented by S , and each service is modeled as
Sk{hk, dk, vk, zk}. The CPU and RAM demands of Sk are represented by hk and dk,
respectively, while zk represents Sk’s container image. Furthermore, yi,k,t is the service
placement matrix detailed in Equation 3. The set of container images C represents the
necessary container images to support the applications used in the infrastructure. Each
container image has a layered structure with Io’s set of layers represented by eo, a subset
of layers from C. This organization allows users to use caching mechanisms for entire
container images or partially with a subset of container layers.

yi,k,t =

{
1 if edge server Ei hosts service Sk at time step t

0 otherwise.
(3)

Our experiments aim to understand the capacity of each registry provisioning strat-
egy to minimize overall latency throughout time (Equation 4), a crucial demand in edge
environments. As depicted in this equation, we consider the mean latency of all applica-
tions during a set of time steps to calculate this target metric. Additionally, we consider
that the constraints of Equations 5 and 6 should be met. These constraints ensure that each
service is placed only once on a single edge server and that the edge servers’ capacities
are not exceeded, respectively, during all time steps of the set T .

Min:

∑|A|
j=1 δ(Aj , t), ∀t ∈ {1, ..., |T |}

|A| ∗ |T |
(4)

subject to:

|E|∑
i=1

yi,k,t = 1 ∀k ∈ {1, ..., |S|}, ∀t ∈ {1, ..., |T |} (5)

ci ⩽ |R|∑
l=1

tl · xi,l,t +

|S|∑
k=1

hk · yi,k,t

+

ri ⩽ |R|∑
l=1

gl · xi,l,t +

|S|∑
k=1

dk · yi,k,t

 = 0,

∀i ∈ {1, ..., |E|}, ∀t ∈ {1, ..., |T |}

(6)

4. Methodology

The experiments were performed using EdgeSimPy [Souza et al. 2023b], a simulator for
modeling and evaluating resource management policies in the edge. In EdgeSimPy, the
entities detailed in Section 3 are agents interacting with each other and the environment
over time according to communication and decision-making rules. The simulator’s paper
includes a verification process to show the correctness of EdgeSimPy’s conceptual model.

We consider an infrastructure with a homogeneous mesh network topol-
ogy [Aral et al. 2021] with 261 links, each with bandwidth = 100 Mbit/s and latency = 5.
The wireless latency of the base stations is also 5. There are 24 edge servers on the map
distributed with the K-Means algorithm [MacQueen 1967], configured with real CPU and
RAM specifications [Ismail and Materwala 2021], uniformly based on three models: (i)
32 cores and 32 GB RAM, (ii) 48 cores and 64 GB RAM, and (iii) 36 cores and 64 GB
RAM. In addition, all servers have a default disk size of 128GB.

Container registries are organized according to each registry provisioning strategy.
For central and community registry strategies, each registry contains a copy of all con-
tainer images distributed in the infrastructure, and their positioning is static (i.e., it does
not change over time). In the central registry strategy, only one server hosts a registry. At
the same time, we define the k number of communities in the community strategy as six
(25% of the edge servers have a container registry). For the P2P registry strategy, only
one registry has all container images distributed in the infrastructure, and the remaining
distribute only container images from services that have been or are currently hosted on
that server. In addition, new container registries can be created over time in the P2P strat-
egy. Regarding registry CPU and RAM demands, we consider two variations based on
hardware requirements to support the Docker Trusted Registry (DTR)1. The variation in
minimal requirements demands two cores and 8 GB of RAM. In contrast, the variation of
the recommended requirements demands four cores and 16 GB of RAM.

1https://docs.docker.com.zh.xy2401.com/v17.12/datacenter/ucp/2.2/
guides/admin/install/system-requirements/

Table 1. Summary of notations used in this paper.

Symbol Description
B Set of base stations
L Set of network links
E Set of edge servers
R Set of container registries
U Set of users
A Set of applications
S Set of services
I Set of container images
C Set of container layers
T Set of time steps
an Bn’s wireless latency
bf Lf ’s bandwidth
lf Lf ’s latency
ci Ei’s CPU capacity
ri Ei’s RAM capacity
di Ei’s disk capacity
wl Rl’s CPU demand
gl Rl’s RAM demand
xi,l,t Container registry placement matrix
uj Aj’s user
sj Aj’s service chain
pj,t Aj’s communication path matrix
δ(Aj, t) Aj’s latency at time step t
hk Sk’s CPU demand
dk Sk’s RAM demand
zk Sk’s container image
yi,k,t Service placement matrix
eo Io’s container layers

In our simulation, 36 randomly distributed users are moving on the map using the
Pathway mobility model [Bai and Helmy 2004]. They move from one base station to an-
other in 60 time steps, and, according to this mobility, applications and their services are
reallocated using the Follow User strategy [Yao et al. 2015] to maintain the lowest pos-
sible latency. To reallocate a service, the strategy initially checks if the container image
or some of its layers are cached on the target server, and the remaining data, if there is
any, that must be downloaded from the nearest container registry with the data available,
using the minimum network latency as the weight to select the registry. Each user is
accessing a different application, and the applications are composed of a different num-
ber of services: 1, 2, or 3 services. Each service corresponds to different layers of the
application. Services have CPU and RAM demands uniformly defined, as in Souza et
al. [Souza et al. 2023a], using the following combinations of values (CPU demand/RAM
demand): 2 cores/2 GB, 4 cores/4 GB, 8 cores/8 GB, and 16 cores/16 GB. The container
images that comprise these services are extracted from the most popular images in the

Docker Hub. The container images vary between programming languages, stream pro-
cessing tools, databases, and others.

The users have the exact initial positioning in each registry provisioning strategy’s
dataset. Their applications are allocated as close as possible, based on their latency, with
slight differences due to the registries’ resource usage. We executed five seeds for each
dataset, each corresponding to different user mobility due to the random seed. This vari-
ation aims to understand whether changing how users move on the map has a relevant
impact on the target metrics. The bar charts of Sections 5 and 7 represent the mean value
of these five executions for each strategy. On the contrary, the line graph represents the
execution of a single seed to facilitate visualization. Lastly, this paper’s material and
algorithms are available in a GitHub repository2.

5. Preliminary Results

Based on the overall latency results during the simulation, shown in Figure 1, the com-
munity registry provisioning strategy has the lowest mean latency using minimal and rec-
ommended hardware requirements to host the container registry. Although we expected
that the P2P registry provisioning strategy would provide better or similar results regard-
ing mean latency, given its dynamic aspect, the fully replicated and strategically placed
registries from the communities were more effective. Observing the number of service
reallocations that occurred during the simulation, which is shown in Figure 2, it caught
our attention that most of the reallocations are using cached images (i.e., the container
image necessary to deploy the service in the reallocation target host is already available
on its disk). Furthermore, the community registry provisioning strategy appears to have
the best cache awareness among the three strategies, since it has the largest mean number
of total service reallocations, but the lowest mean number of reallocations without using
the cache (i.e., reallocations that need to download container images from a container
registry through the network).

Central Community P2P
Registry Provisioning Strategy

0

5

10

15

M
ea

n
La

te
nc

y

Minimal Recommended

Figure 1. Overall Latency.

Central Community P2P
Registry Provisioning Strategy

100

1000

10000

Se
rv

ic
e

Re
al

lo
ca

ti
on

s

Minimal (Total)
Minimal (W/O Cache)

Recommended (Total)
Recommended (W/O Cache)

Figure 2. Serv. Reallocations.

Both scenarios of hardware requirements experience lower latency with the com-
munity registry provisioning strategy, but the other strategies behave differently. Taking
into account the minimal requirements scenario, the P2P registry follows the community
registry with a mean latency lower than the central registry. On the other hand, the P2P
registry has the worst mean latency when we consider the recommended requirements.
This behavior occurs due to the significant resources demanded to allocate a registry when
we consider the recommended requirements and the large number of container registries

2https://github.com/lucasroges/wscad-registry

allocated in the infrastructure, as shown in Figure 3. When the simulation starts, the ap-
plications and services are spread over the edge servers in the infrastructure, meaning that
any of these servers that have CPU and RAM capacity to host a container registry will
already host one from that point, which means that this strategy allocates a registry in
each edge server very early in the simulation.

0 500 1000 1500 2000 2500 3000 3500
Time Steps

0

5

10

15

20

25

N
um

be
r

of
 R

eg
is

tr
ie

s

Central Community P2P

Figure 3. Allocated Registries.

Central Community P2P
Registry Provisioning Strategy

0%

20%

40%

60%

%
 o

f S
te

ps
 A

ct
iv

e

Minimal Recommended

Figure 4. Registry Usage.

Taking into account the distinct amount of registries allocated for each strategy, we
also analyzed the usage of these registries during simulation time, as shown in Figure 4.
The behavior and mean values are very similar for both hardware requirement scenarios.
Since the central registry strategy only allocates a single container registry to provision
container images to the entire infrastructure, this registry spends more than 60% of the
simulation time actively provisioning container images. Given the distributed aspect of
the remaining strategies, this percentage is lower for both. Each community registry
spends almost 20% of the simulation time provisioning images, while each P2P registry
spends only around 6% of the time in an active state. These values indicate a possible
resource underutilization, especially if it impacts the mean latency in the case of the P2P
registry.

6. Dynamic Registry Provisioning Algorithm
Focusing on the possible resource underutilization pointed out in the previous section,
we extend the P2P registry provisioning with a simple strategy to dynamically provision
and deprovision container registries in the edge infrastructure. Compared to P2P registry
provisioning, the strategy considers that the use of common hosts as container registries
is still possible. However, our goal is to dynamically select only a few hosts to maintain
as a container registry until the subsequent execution of the algorithm.

The strategy is depicted in Algorithm 1 and receives the base registry and the
current time step as input. Initially, the algorithm filters the edge servers that can host
a container registry (line 1). This filter includes both servers already hosting, or not, a
registry, but with at least one container image and CPU/RAM resources available. Then,
we iterate for each edge server to gather metrics regarding its capacity to host a potentially
active container registry. To this end, there is an inner loop over every application in the
infrastructure in which we check if the application user is closer to the current server
than to the base registry. Since the registry selection for provisioning a container image
is based on latency proximity, we use this condition to ignore the next steps for servers
distant from the current application user in the inner loop.

For users near the server, we check the percentage of container layers from their
services that are already available on the server (line 5). If there is any layer stored, we add

this percentage to the layer matching attribute of the edge server (Ei[lm]), and consider
that application as a possible recipient (Ei[pr]) (lines 6 - 8). After gathering the layer
matching and possible recipients metrics for the edge servers in E ′, we select the servers
with the highest number of possible recipients and layer matching to the applications in
the infrastructure, sequentially, using the average of each of these metrics as the cutoff
(lines 9 - 12). Lastly, we provision registries on qualified servers that do not have a
registry yet (lines 14 - 15), and we deprovision registries from unqualified servers (lines
16 - 17).

Algorithm 1: Dynamic Registry Provisioning Algorithm.
Input: Rc – base registry (initial registry with all container images)

t – current time step
1 E ′ = edge servers with capacity to host a registry
2 foreach Ei ∈ E ′ do
3 foreach Aj ∈ A do
4 if uj is closer to Ei than to Rc then
5 lm = percentage of Aj’s service layers that are in Ei’s disk
6 if lm > 0 then
7 Ei[lm] + = lm
8 Ei[pr] + = 1

9 prmean = int(
∑|E′|

i=1 Ei[pr]

|E′|)

10 E ′′ = edge servers in E ′ with possible recipients above prmean

11 lmmean =
∑|E′′|

i=1 Ei[lm]

|E′′|
12 E ′′′ = edge servers in E ′′ with layer matching above lmmean

13 foreach Ei ∈ E ′ do
14 if Ei ∈ E ′′′ &&

∑|R|
l=1 xi,l,t == 0 then

15 Provision a registry on Ei
16 if Ei ̸∈ E ′′′ &&

∑|R|
l=1 xi,l,t == 1 then

17 Deprovision the registry allocated on Ei

7. Final Results

Figure 5 shows that the strategy from Algorithm 1 improves the mean latency compared
to the P2P registry strategy, especially considering the recommended hardware require-
ments. However, the community registry provisioning strategy still presents an advantage
in this target metric. According to Figure 6, the number of service reallocations without
using the cache is similar between P2P and dynamic registry strategies, so the community
registry strategy also has this advantage against the proposed strategy. The dynamic strat-
egy performs significantly better than the P2P registry strategy with respect to the number
of allocated registries and registry usage. Generally, the number of registries allocated by
this strategy is often lower than the number of registries of the community registry strat-
egy (Figure 7), while the percentage of time steps that each registry spends in an active
state is near 15% (Figure 8), both metrics indicating a lower resource underutilization.

Therefore, dynamically provisioning/deprovisioning container registries is more
efficient than P2P registries. Over time, increasing the allocation of edge servers to host
container registries demands excessive resources in the P2P registry strategy and becomes
a bottleneck impacting overall latency. In contrast, the community registry provisioning

Community P2P Dynamic
Registry Provisioning Strategy

0

5

10

15
M

ea
n

La
te

nc
y

Minimal Recommended

Figure 5. Overall Latency.

Community P2P Dynamic
Registry Provisioning Strategy

100

1000

10000

Se
rv

ic
e

Re
al

lo
ca

ti
on

s

Minimal (Total)
Minimal (W/O Cache)

Recommended (Total)
Recommended (W/O Cache)

Figure 6. Serv. Reallocations.

0 500 1000 1500 2000 2500 3000 3500
Time Steps

5

10

15

20

25

N
um

be
r

of
 R

eg
is

tr
ie

s

Community P2P Dynamic

Figure 7. Allocated Registries.

Community P2P Dynamic
Registry Provisioning Strategy

0%

5%

10%

15%

20%

%
 o

f S
te

ps
 A

ct
iv

e

Minimal Recommended

Figure 8. Registry Usage.

strategy has other advantages, such as cache awareness due to the complete replication
of container images on the servers hosting registries, which leads applications to take
advantage of these cached images in multiple locations of the infrastructure and avoid
network traffic to decrease the overall latency.

8. Conclusions

Edge computing emerged with the primary goal of supporting applications
that are latency-sensitive and compute-intensive [Satyanarayanan et al. 2009,
Satyanarayanan 2017]. Due to the constraints of edge infrastructures, container-
based virtualization is considered the most adequate virtualization tech-
nique [Ismail et al. 2015, Mansouri and Babar 2021]. As an essential element of
the container ecosystem, the container registry has been the target of multiple optimiza-
tions to improve the application provisioning process. In this context, we evaluated
techniques for distributing container registries on edge computing infrastructures
regarding their capacity to minimize overall latency.

Although the results indicate that the community registry strategy can perform bet-
ter than the P2P registry, we identified potential improvements to the latter’s performance
in our scenario. Aiming at one of these potential improvements (resource underutiliza-
tion), we propose a simple strategy to verify the impact of resource usage on the overall
latency. The results show that better resource utilization leads to lower overall latency,
but other aspects, such as cache awareness, might also play a relevant role in this metric.
For future work, we aim to investigate possible improvements to the proposed strategy,
such as incorporating more metrics from the infrastructure to refine the server selection
for hosting registries. We also aim to associate dynamic registry provisioning with cache
awareness since this feature seems to have a significant impact on maintaining the com-
munity registry provisioning as the strategy with the lowest overall latency, besides testing
the strategies with different datasets (e.g., scenarios with lower cache impact).

9. Acknowledgments
This work was supported by the PDTI Program, funded by Dell Computadores do Brasil
Ltda (Law 8.248 / 91). The authors acknowledge the High-Performance Computing Lab-
oratory of the Pontifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS)
for providing support and technological resources for this project.

References
Alibaba (2022). dragonflyoss/dragonfly2: Dragonfly is an intelligent p2p based image

and file distribution system, it also provides a variety of enterprise-level (efficiency,
stability, safety, low-cost) product features.

Aral, A., De Maio, V., and Brandic, I. (2021). Ares: Reliable and sustainable edge provi-
sioning for wireless sensor networks. IEEE Transactions on Sustainable Computing,
7(4):761–773.

Bai, F. and Helmy, A. (2004). A survey of mobility models. Wireless Adhoc Networks.
University of Southern California, USA, 206:147.

Becker, S., Schmidt, F., and Kao, O. (2021). Edgepier: P2p-based container image dis-
tribution in edge computing environments. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pages 1–8. IEEE.

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe,
E., Javadi, B., Vaquero, L. M., Netto, M. A., et al. (2018). A manifesto for future
generation cloud computing: Research directions for the next decade. ACM computing
surveys (CSUR), 51(5):1–38.

Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An overview on edge computing research.
IEEE access, 8:85714–85728.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271.

Gazzetti, M., Reale, A., Katrinis, K., and Corradi, A. (2017). Scalable linux container
provisioning in fog and edge computing platforms. In European Conference on Paral-
lel Processing, pages 304–315. Springer.

Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. (2016).
Slacker: Fast distribution with lazy docker containers. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 181–195.

Ismail, B. I., Goortani, E. M., Ab Karim, M. B., Tat, W. M., Setapa, S., Luke, J. Y., and
Hoe, O. H. (2015). Evaluation of docker as edge computing platform. In 2015 IEEE
conference on open systems (ICOS), pages 130–135. IEEE.

Ismail, L. and Materwala, H. (2021). Escove: energy-sla-aware edge–cloud computation
offloading in vehicular networks. Sensors, 21(15):5233.

Kangjin, W., Yong, Y., Ying, L., Hanmei, L., and Lin, M. (2017). Fid: A faster image
distribution system for docker platform. In 2017 IEEE 2nd International Workshops
on Foundations and Applications of Self* Systems (FAS* W), pages 191–198. IEEE.

Klas, G. (2017). Edge computing and the role of cellular networks. Computer, 50(10):40–
49.

Knob, L. A. D., Faticanti, F., Ferreto, T., and Siracusa, D. (2021). Community-based
placement of registries to speed up application deployment on edge computing. In
2021 IEEE International Conference on Cloud Engineering (IC2E), pages 147–153.
IEEE.

Liang, M., Shen, S., Li, D., Mi, H., and Liu, F. (2016). Hdid: An efficient hybrid docker
image distribution system for datacenters. In National Software Application Confer-
ence, pages 179–194. Springer.

Luo, Q., Hu, S., Li, C., Li, G., and Shi, W. (2021). Resource scheduling in edge comput-
ing: A survey. IEEE Communications Surveys & Tutorials, 23(4):2131–2165.

MacQueen, J. (1967). Classification and analysis of multivariate observations. In Pro-
ceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297.

Mansouri, Y. and Babar, M. A. (2021). A review of edge computing: Features and re-
source virtualization. Journal of Parallel and Distributed Computing, 150:155–183.

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A survey on mobile
edge computing: The communication perspective. IEEE communications surveys &
tutorials, 19(4):2322–2358.

Merkel, D. et al. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux j, 239(2):2.

Rejiba, Z., Masip-Bruin, X., and Marı́n-Tordera, E. (2019). A survey on mobility-induced
service migration in the fog, edge, and related computing paradigms. ACM Computing
Surveys (CSUR), 52(5):1–33.

Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1):30–39.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23.

Souza, P., Kayser, C., Roges, L., and Ferreto, T. (2023a). Thea-a qos, privacy, and power-
aware algorithm for placing applications on federated edges. In 2023 31st Euromi-
cro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pages 136–143. IEEE.

Souza, P. S., Ferreto, T., and Calheiros, R. N. (2023b). Edgesimpy: Python-based model-
ing and simulation of edge computing resource management policies. Future Genera-
tion Computer Systems.

Uber (2022). uber/kraken: P2p docker registry capable of distributing tbs of data in
seconds.

Yao, H., Bai, C., Zeng, D., Liang, Q., and Fan, Y. (2015). Migrate or not? exploring
virtual machine migration in roadside cloudlet-based vehicular cloud. Concurrency
and Computation: Practice and Experience, 27(18):5780–5792.

