
Case Study on the Use of Winograd-Based Convolution for
CNN Inference in FPGA

Artur H. C. Pereira1, Marcus V. Lamar1

1Departamento de Ciência da Computação – Universidade de Brası́lia (UnB)
Caixa Postal 4466 – 70.910-900 – Brası́lia – DF – Brazil

arturhcpereira@aluno.unb.br, lamar@unb.br

Abstract. This work explores the implementation of Convolutional Neural Net-
works (CNNs) on FPGAs. Two circuits are investigated: one based on the spa-
tial 2-D convolution algorithm and another based on the Winograd algorithm
for convolution. The Winograd algorithm simplifies the convolution process
through linear transformations that reduce the number of multiplications re-
quired. However, there is an increase in circuit complexity due to the additional
logic to perform the transformations. The two implementations are compared in
a case study of a simple architecture to solve the handwritten digits classifica-
tion problem in the MNIST dataset.

Resumo. Este trabalho explora a implementação de Redes Neurais Convolu-
cionais (CNNs) em FPGAs. Dois circuitos são investigados: um baseado no al-
goritmo de convolução espacial 2-D e outro baseado no algoritmo de Winograd
para convolução. O algoritmo de Winograd simplifica o processo de convolução
por meio de transformações lineares que reduzam o número de multiplicações
necessárias. No entanto, há um aumento na complexidade do circuito devido à
lógica adicional para realizar as transformações. As duas implementações são
comparadas em um estudo de caso de uma arquitetura simples para resolver o
problema de classificação de dı́gitos manuscritos no conjunto de dados MNIST.

1. Introduction
Convolutional Neural Networks (CNNs) are a class of deep artificial neural networks de-
signed to preserve the spatial relationship within their inputs. Therefore, they are highly
suitable and effective for processing and analyzing images in computer vision tasks. How-
ever, CNNs come with a high computational cost. This makes it interesting, if not neces-
sary in some cases, to use dedicated hardware to accelerate model processing.

Nowadays, the most widely adopted approach for accelerating CNNs is the use of
Graphics Processing Units (GPUs). However, GPUs come with a high cost in terms of
energy consumption, making this solution unsuitable for more constrained scenarios such
as embedded systems. Other technologies that can be explored for CNN acceleration are
Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits
(ASICs). The implementation of CNNs on FPGAs has been consistently studied in recent
times due to the greater flexibility this approach provides through the ease of reconfiguring
the designed circuit. To harness this flexibility, this work aims to study the implementation
of the convolution circuit based on the Winograd algorithm. A circuit based on classic
spatial convolution has also been implemented for reference comparison.



2. Related Work
A relatively recent literature review on FPGA acceleration of neural networks shows that
there is still relevance to this field [Wu et al. 2021]. An argument presented is the greater
flexibility the FPGA platform provides and its efficient use of energy. In that work, the
optimization techniques are divided into categories, one of which is the reduction of com-
putation complexity. That class of optimization involves using fast algorithms, such as
the Winograd algorithm.

The Winograd algorithm has been evaluated as a technique for convolution ac-
celeration and found to be more efficient for small filter convolutions when compared
to the Fast Fourier Transform (FFT), other fast algorithm [Lavin and Gray 2016]. Some
following works, [Wang et al. 2017] and [Liang et al. 2019], present FPGA implementa-
tions that incorporate this algorithm in their designs, being able to achieve performances
comparable to GPU acceleration in the state of the art models.

3. Winograd Algorithm
Let denote the computation of m outputs of an input tile convolved with an r-tap filter
F (m, r). The conventional convolution requires m × r multiplications to perform the
computation. For instance, F (2, 3) requires 2 × 3 = 6 multiplications. Winograd docu-
ments the following algorithm in [Winograd 1987] that uses m+r−1 = 4 multiplications,
according

F (2,3) =

[
d0 d1 d2
d1 d2 d3

]g0g1
g2

 =

[
m1 +m2 +m3

m2 −m3 −m4

]
, (1)

where

m1 = (d0 − d2)g0, m2 = (d1 + d2)
g0 + g1 + g2

2
,

m4 = (d1 − d3)g2, m3 = (d2 − d1)
g0 − g1 + g2

2
.

(2)

The 1-D algorithm can be nested with itself to perform the 2-D convolution
F (m×m, r × r). In matrix form, the 2-D algorithm can be written as

Y = AT
[
(GgGT )⊙ (BTdB)

]
A , (3)

where g and d are the filter and the input data tile, G and BT are their respective transfor-
mation matrices and AT is the inverse transformation matrix. The purpose of the transfor-
mations is to have the filter and inputs with the same dimensions so that an element-wise
multiplication can be performed. The inverse transformation then brings the output back
to the pixel space.

4. Circuit modeling and implementation
Figure 1 illustrates the workflow for generating the proposed circuit and obtaining its
outputs. The process begins with implementing and training a CNN model in software.



This step was carried out using Python with the Keras library. This library allows the
model to be saved in an HDF5 format file, from which the Memory Initialization Files
(MIFs) are generated for each layer that will be implemented in hardware. Similarly, the
input image to be processed is also converted into a MIF file and provided for circuit
compilation. Once compiled, the circuit is loaded onto the FPGA. Finally, the results are
written to an output memory, which can be analyzed after the time required for the circuit
to perform inference.

CNN
implemented in
software (Keras)

model.h5
weights.mif

Input
Image Python script input.mif Circuit

compilation

Python
script

FPGA

Output memory
analysis

Figure 1. Flow of the proposed system. Processes are highlighted in red, and the
generated circuit’s test device is highlighted in blue. The remaining blocks
represent intermediate files used in circuit compilation.

An internal memory module is instantiated for each layer implemented in the cir-
cuit to store its weights. The input image of the circuit is also loaded into a memory
module, and to evaluate the output results, the values of the neurons in the Fully Con-
nected (FC) layer are also written to an output memory. Figure 2 illustrates the schematic
of the overall developed circuit, including the relationship between layers and weight
memories, using a two-layer convolutional architecture as an example. The input of the
convolutional cores is stored in a module called window buffer. As illustrated in Figure 3,
data is sequentially received at the input and placed in the last row of registers within the
value window used in the convolution computation. As a value enters this window, the
previously entered values are shifted to the adjacent register. If no adjacent register is
available, the value is stored in the appropriate line buffer.

Conv. Layer 1 Output
memory

Weight
memory 1

Weigh
memory 2

FC weight
memory

Input
memory

Conv. Layer 2 FC Layer

Figure 2. Diagram of the general circuit structure using two convolutional layers
for illustration. Internal memory elements are shown in blue and the cir-
cuits responsible for processing each layer are represented in green.



Reg Reg Reg

Reg Reg Reg

Reg Reg Reg

Line buffer 1

Line buffer 0

Input data

Filter
height

Filter width

Figure 3. Diagram of two line buffers being used to form a sliding window for
convolution with a 3 ××× 3 filter.

The schematic of the internal components of the spatial convolution core is shown
in Figure 4. This circuit employs a module called a kernel, which implements the mul-
tiplication between the values of the input window from one channel and the values of a
channel in the filter. The kernel module performs these multiplications in parallel. The
results of these multiplications are summed together and accumulated in the channel acc
register.

Weight
registers

 Window
buffer
3x3

Kernel

Window
buffer 2x2

Max pooling

channel_acc
filter

weigths

input
data

output
data

Spatial convolutional core

Figure 4. Diagram of the internal components of a spatial convolutional core.
Elements in blue are replicated for each input channel. Elements in green
are replicated for each layer’s filter, i.e., output channels.

Weight
registers

Window
buffer
4x4

Kernel

Max pooling

channel_acc
2x2

filter
weights

input
data

output
data

Winograd convolutional core

Figure 5. Diagram of the internal components of a Winograd convolutional core.
Elements in blue are replicated for each input channel.

The implementation of Winograd convolution is somewhat more constrained, as it
is necessary to establish the transformation matrices to be used. As discussed in Section 3,
the F (2× 2, 3× 3) algorithm was implemented, meaning a convolution with a 3× 3 filter
and a 4×4 input window to produce a 2×2 output window. Due to this, the kernel module



of the Winograd convolution core does not have parameterizable input dimensions. This
module takes a 4× 4 input window in the spatial domain, performs linear transformation
to obtain values in the Winograd domain, multiplies them with the filter values in parallel,
and then inversely transforms to get the 2 × 2 result in the spatial domain. These values
are stored and accumulated in four channel acc registers, as shown in Figure 5. In
the implementation of this module, it was assumed that the weights read from memory
correspond to the coefficients of the already-transformed 4× 4 filters. This increases the
memory space required for weight storage but reduces circuit complexity.

5. Results
This work was developed in Verilog HDL, using the Quartus Prime Lite Edition tool, ver-
sion 21.1, for circuit synthesis and FPGA programming. The Quartus’ In-System Memory
Content Editor tool was utilized for analyzing the output memory. The machine employed
in the development was a computer with an AMD Ryzen 5 5600G processor, 16GiB of
RAM, and the Ubuntu 22.04.2 LTS operating system.

The development board used for implementing the project circuits was the DE1-
SoC, which features an Intel Cyclone V FPGA model 5CSEMA5F31C6 with 32,070
Adaptive Logic Modules (ALMs), 85,000 Adaptive Look-Up Tables (ALUTs), and 87
Digital Signal Processors (DSPs). DSPs refer to specialized hardware circuits for per-
forming multiplications. The numerical representation precision adopted in the circuit
implementation was 32-bit Q16 fixed-point, meaning 16 fractional bits. Some spatial
characterization results couldn’t be compiled for loading onto the board, thus displaying
the usage of Logic Elements in ALUTs instead of ALMs. The source code for this project
is publicly available in the GitHub repository1.

5.1. Case Study
A simple problem of handwritten digit classification was chosen to assess the error intro-
duced by fixed-point precision and Winograd transformations. The choice of this problem
stems from the fact that the complexity of the required CNN to achieve good results is
relatively lower compared to more general classification problems and detection and seg-
mentation tasks. The implemented network was trained with the MNIST dataset, and its
architecture is illustrated in Figure 6.

32 activation
maps 13 x 13

Conv1 + pooling

64 activations
maps 5 x 5

Conv2 + pooling
FC

0

1

8

9

7

Input image 28 x 28

0,00
0,01

0,99
0,00
0,00

1600 inputs

Figure 6. Diagram of the implemented CNN. The neurons of the FC layer pass
through the softmax activation function to provide the classification prob-
abilities of the input.

1https://github.com/ArturHugo/cnn_fpga.git

https://github.com/ArturHugo/cnn_fpga.git
https://github.com/ArturHugo/cnn_fpga.git


The network consists of two convolutional layers with 32 and 64 filters respec-
tively, followed by a FC layer with 10 neurons, one for each digit from 0 to 9. This
architecture is an example presented in the Keras library documentation. It was cho-
sen as a case study due to its accuracy of approximately 99% on the test set of the used
dataset [Sim ].

5.2. Spatial Analysis

The implementation of a fully combinational one-layer FC network with 1,600 inputs and
10 outputs, needed in the case study, needs physical requirements estimated in 7,379,857
ALUTs and for the circuit synthesis 4,128,064 ALMs. These numbers of Logic Elements
do not fit in any commercial FPGA in 2023. Thus, a sequential version of the FC network
was developed to implement in the DE1-SoC development kit. However, the sequential
implementation might have potentially introduced delays in the temporal performance of
inference.

Table 1 presents the physical requirements after mapping the circuit onto the target
device. This provides an insight into the proportion of resources utilized, as the ALMs
of the FPGA are limited to 32,070 units. From the presented data, it is immediately
noticeable that the Winograd approach consumes slightly more resources than the spatial
approach, particularly the number of DSPs, which exceeds the target device’s limit of 87.

Table 1. Spatial requirements obtained for the case study for both spatial and
Winograd implementations, with and without the FC layer.

Spatial Conv. Winograd Conv.Requirements Without FC With FC Without FC With FC
ALMs 21,887 (68%) 22,831 (71%) 22,554 (70%) 23,359 (73%)

Registers 34,656 34,455 37,029 36,822
Memory Bits 2,589,424 (64%) 3,091,552 (76%) 2,590,394 (64%) 3,091,392 (76%)

DSPs 56 (64%) 86 (99%) 87 (100%) 87 (100%)

5.3. Time Analysis

Both circuits were simulated in order to measure the number of cycles necessary for com-
pleting the inference of one input image. The spatial convolution approach took a total
o 6,127,753 cycles, while the Winograd’s circuit took 2,334,853. Winograd’s convolu-
tion approach of simultaneously calculating four outputs provides a significant temporal
advantage to this implementation, needing only 38.10% of the cycles used by the spatial
convolution.

Table 2. Maximum frequencies, cycle counts, and total processing times for pro-
cessing input with and without a sequential FC layer.

Spatial Convolution Winograd ConvolutionResults Without FC With FC Without FC With FC
fmax (MHz) 29.54 22.15 21.25 19.97

Cycles 6,125,385 6,127,753 2,334,853 2,334,853
Total Time (ms) 207.36 276.65 109.88 116.92



In addition to the simulations, to evaluate the delay introduced by the sequential
FC layer, the number of cycles required to compute the output of the last convolutional
layer without a connected FC layer was also measured. Table 2 presents the values ob-
tained for each implemented circuit with and without the sequential FC layer.

The values clearly indicate that the Winograd circuit was not impacted by the
sequential nature of the layer, meaning that the time it takes for the FC layer to read the
next weights from memory is shorter than the time the previous layer takes to calculate
the next output of the same channel. However, in the case of spatial convolution, in some
instances, the convolutional layer had to wait for a hold signal from the FC layer to fall,
resulting in a difference of 2,368 cycles.

From a delay analysis, it was possible to extrapolate the propagation delay of the
1,600 inputs combinational FC needed for the case study. The result was tpd = 2,721 ns.
Considering the maximum frequency value of 29.54 MHz obtained for the circuit with-
out FC in Table 2, the delay introduced by the combinational FC would be 81 cycles.
Therefore, for the spatial convolution circuit, using the combinational FC would be ad-
vantageous. The same is true for the Winograd circuit, which would have a delay of 58
cycles considering the frequency of 21.25 MHz.

5.4. Output Error Analysis

To test the implementations of the example CNN, a random sub-sampling of 30 images
from the test set was conducted, with 3 images from each class. This subset of the test
dataset was utilized to evaluate the magnitude of errors introduced by fixed-point preci-
sion and Winograd algorithm transformations. Since the hardware circuit does not imple-
ment the softmax activation of the FC layer, this activation function was removed from
the software implementation to obtain reference values for the neurons.

The graphs presented in Figure 7 illustrate the ratio of errors relative to the small-
est and largest errors obtained for each class. In Figure 7a, it can be observed that the
most significant error obtained with the spatial convolution algorithm implementation did
not exceed 3.5×10−4. Meanwhile, in Figure 7b, it can be seen that the highest error from
the Winograd circuit does not exceed 9×10−3. Consequently, the errors introduced by the
transformations in the Winograd implementation are an order of magnitude greater than
the errors introduced solely by fixed-point precision. However, errors of that magnitude
do not affect the classification accuracy of the CNN.

6. Conclusion

This work aimed to explore implementations of CNNs on Field-Programmable Gate Ar-
rays (FPGAs). Two implementations were investigated: one based on the conventional 2-
D convolution algorithm, also called spatial convolution, and another based on the Wino-
grad algorithm. To analyze the performance of both approaches and evaluate the error
introduced by fixed-point numerical representation and the linear transformations of the
Winograd algorithm, a case study was physically implemented on the DE1-SoC develop-
ment kit. Due to the resource limitations of the FPGA, the CNN used as a case study was a
network with two convolutional layers, solving the simple handwritten digit classification
problem from the MNIST dataset.



0 2 4 6 8
Digit classes

0.00010

0.00015

0.00020

0.00025

0.00030

Ci
rc

ui
t e

rro
r

Spatial convolution
Highest error
Average error
Lowest error

(a) Errors for each class obtained by
the spatial convolution circuit.

0 2 4 6 8
Digit classes

0.004

0.005

0.006

0.007

0.008

Ci
rc

ui
t e

rro
r

Winograd convolution

Highest error
Average error
Lowest error

(b) Errors for each class obtained by
the Winograd-based circuit.

Figure 7. Errors in the outputs of the FC layer calculated by hardware implemen-
tations relative to the reference values of the software implementation.

In the conducted case study, it was evident that the time performance of the Wino-
grad circuit was superior, completing the processing of a sample CNN input in almost
one-third of the cycles required by the spatial convolution circuit. This outcome was
anticipated, as the Winograd algorithm computes four output elements of convolution si-
multaneously for each processed input window. Consequently, four spatial convolution
filter modules would need to be parallelized to achieve this performance, which would
undoubtedly increase the spatial requirements of the circuit. For future work, it would
be interesting to improve some aspects of the presented implementation. For instance,
increasing the filter parallelism of the circuit by utilizing multiple convolutional cores per
layer. Additionally, it would be important to explore the use of external memory resources
or a more robust FPGA to enable the implementation of more complex architectures.

References
Simple MNIST convnet. https://keras.io/examples/vision/mnist_
convnet/. Acessado em: 26/07/2023.

Lavin, A. and Gray, S. (2016). Fast algorithms for convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4013–4021.

Liang, Y., Lu, L., Xiao, Q., and Yan, S. (2019). Evaluating fast algorithms for convolu-
tional neural networks on FPGAs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(4):857–870.

Wang, D., Xu, K., and Jiang, D. (2017). Pipecnn: An OpenCL-based open-source FPGA
accelerator for convolution neural networks. In 2017 International Conference on Field
Programmable Technology (ICFPT), pages 279–282.

Winograd, S. (1987). Arithmetic complexity of computations. CBMS-NSF regional con-
ference series in applied mathematics 33. Society for Industrial and Applied Mathe-
matics.

Wu, R., Guo, X., Du, J., and Li, J. (2021). Accelerating neural network inference on
FPGA-based platforms—a survey. Electronics, 10(9):1025.

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/

	Introduction
	Related Work
	Winograd Algorithm
	Circuit modeling and implementation
	Results
	Case Study
	Spatial Analysis
	Time Analysis
	Output Error Analysis

	Conclusion

