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Abstract—Cloud computing represents an extensively imple-
mented paradigm for provisioning distributed services, offering
a significant degree of scalability for global applications.
Nonetheless, when confronted with the necessity to scale, the
system encounters monitoring challenges, as it must contend
with an increased volume of requests while simultaneously
accommodating fluctuating demands across various geographic
regions. Aside from that, detecting errors in such a model
becomes increasingly difficult, because of the many abstraction
layers and interconnected microservices a cloud solution has.
In that context, metrics can be used to identify errors and
monitor the system’s state. The substantial diversity in the types
of services and the metrics themselves introduces a formidable
complexity to the analysis of an entire cluster. Therefore, it is
important to identify the essential metrics in microservices that
can be used to recognize issues or bottlenecks. In pursuit of
this objective, a cloud-based solution was implemented within
an Amazon Web Services Kubernetes cluster to emulate the
functionality of an online retail store and an automated testing
framework was made to inject errors in different parts of this
application while its metrics were obtained. In that way, it was
possible to identify the effects that errors have on the metrics
of components in the system, rendering the monitoring of the
cluster a more direct process and reducing the amount of data
to be analyzed in order to identify the presence of errors in a
cloud environment.

Index Terms—Cloud computing, Chaos engineering, Mi-
croservice, Observability

I. INTRODUCTION

Cloud computing is a recent infrastructure provisioning
model, which bases itself on the availability of virtual
machines, storage, networking, and software platforms in an
elastic and dynamic way. Such architecture has the purpose
of being highly scalable, besides having high-cost efficiency,
easy provisioning ability to many data centers around the
world, and many other characteristics [1]. Because of that,
it is possible to quickly create cloud-native services with
thousands of interconnected replicas in heterogeneous com-
puting nodes.

Moreover, it is seen that cloud applications have a high
volatility, given that the amount of replicas needed to keep
the services stable is variable [2]. Considering this, it is
perceptible that remaining in control of the system’s state is
a challenge because of that unpredictability, stating the need

for tools capable of providing observability of a cluster as a
whole with high granularity.

In this context, observability is the characteristic of being
able to determine the internal state of a system by analyzing
only output data from it [3]. In the case of cloud applications,
metrics are numerical data collected with a timely frequency
which can be used to generate observability in clusters [4].
Each microservice instance can generate its own metrics
based on computational resources, such as CPU or memory
usage, network packages sent or received, and many others.

However, there exists a high variety in the number of
metrics that can be collected in a cluster. This is seen in their
categorization by two parameters: granularity and limiting
resources. Granularity divides metrics into system-based, in-
cluding data of the cluster as a whole; and application-based,
considering only an instance of a running microservice [5].
In regards to limiting resources, CPU and I/O bound metrics
can be seen [6], depending on the hardware resource related
to it.

Furthermore, it is also of interest to consider that each
service inside a cluster has a special purpose, and the
metrics generated by an instance depend on their behavior.
In that case, the same distinction of limiting resources can
be applied to applications themselves, CPU or I/O bound
[6].

Therefore, it is clear that, in field deployments, the amount
of metrics in union with the amount of microservice replicas
makes the identification of errors and their causes a difficult
task [7]. Hence, it is of interest to analyze which of the
many metrics obtained from a service are in fact relevant
to identify different kinds of errors inside a cloud-native
application.

II. OBJECTIVES

This project is part of a bigger one, at Ph.D. level [8],
which proposes a system to detect the root cause of incidents
using probabilistic inferences via Bayesian networks. Such
a system consumes logs and microservice metrics and is
able to automatically find correlated access points of log
anomalies and metrics. This results in the reliable detection
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of critical software errors and potential interruption trigger
[9].

In this context, the project aims to identify, of the many
application and system metrics in a cloud environment,
which are the most relevant to be monitored in order to
find errors in service delivery. With that, the main project is
able to reduce the amount of data to be analyzed and use the
conclusions reached with this research in order to implement
its root cause detection.

III. RELATED WORK

Numerous systems have been developed with the primary
objective of error detection within microservices architec-
tures. An approach that uses metrics is [10], however it does
not differentiate between CPU and I/O metrics, and does not
seem to consider some application level metrics as separated
by containers, such as CPU and RAM usage. Additionally,
it employs metric analysis exclusively in response to high
latency incidents between applications, which may not en-
compass the entirety of potential anomalies that could be
promptly detected.

A system that selects only useful metrics and differentiate
between kinds of microservices for root cause analysis is
[11], using traces and historical metric data between each
pair of services to determine which metrics are useful for
analysis. However, it is essential to note that this approach
does introduce a degree of system overhead, particularly if
continuous system analysis were to be implemented. Conse-
quently, the ultimate solution necessitates manual initiation
in response to system faults.

IV. METHODOLOGY

A. Research and tool setup

1) Definition of a cloud test system: Initially, it was
needed to organize a cloud system architecture to develop
the following activities. The first step was obtaining the
cloud provider platform, for that, Amazon Web Services
(AWS) was chosen, being considered by many as the biggest
cloud platform used in the market, showing itself as the
ideal environment for the execution of tests that simulate a
real service. Besides that, for the provisioning of dynamic
compute, Kubernetes1 was used in the form of the Amazon
Elastic Kubernetes Service (EKS) system. The AWS cloud
creation was possible thanks to the USP-AWS partnership2.

Kubernetes is a cloud orchestration platform widely used
in the market due to its high fault tolerance, easy workload
replicability, and simple interconnection between its com-
ponents. Particularly, the following concepts are of utmost
importance in the development of all cluster applications
created:

• Container: a unit of software bundled with all its
dependencies for the bootstrap.

1https://kubernetes.io
2https://www.usp-aws.org/homes

• Pod: a computing unit in the Kubernetes system, com-
posed of one or more containers with many configu-
rations, such as CPU and memory limits or persistent
storage associated.

• Node: a machine (physical or virtual) provided by EKS
(via the EC2, Elastic Compute Cloud, service) capable
of executing pods. As the amount of nodes increases,
the possibility of system outage becomes smaller, es-
pecially if the nodes are in different availability zones.

• Deployment and ReplicaSet: constructs for implement-
ing replicability and redundancy in a pod workload. The
first is based on a configurable number of replicas of
a pod distributed in the cluster as a whole, such that if
a pod fails or gets deleted another instance is created;
while the second determines the amount of replicas of
a pod that should be present in every node.

• Service: a DNS entry accessible within the cluster that
connects to a load balancer of all pods in a deployment
or replicaset, such that every connection to this service
may go to different pods.

B. Application for test execution

Having the main cloud principles used defined, it was
necessary to search for a cloud-native application architec-
ture to resemble a real system, although smaller for the
need to make controlled tests. In that regard, an application
developed by Weaveworks called Sock Shop was found,
which simulates an online shop with a login, cart, orders, and
shipping systems. This environment example is "intended to
aid the demonstration and testing of microservice and cloud-
native technologies"3, being ideal for the use case of this
research.

Sock shop is composed of a total of 14 services, with 14
related deployments, each with two replica pods. The created
services are:

• front-end, providing web pages directly accessible by
users;

• session-db, a memory key-value Redis database, storing
the session for registered and non-registered users.

• users-db, containing a non-relational MongoDB
database with registered user data (including cards and
addresses);

• users, controlling the access to users-db via a REST
API;

• carts-db, containing a non-relational MongoDB
database with cart data for each user;

• carts, controlling the access to carts-db via a REST API;
• payment, simulating a payment system that accepts or

denies purchases (it is important to note that this system
is not real, it just accepts purchases with a simple logic
based on the value purchased);

• orders-db, containing a non-relational MongoDB
database with all user product orders;

3https://microservices-demo.github.io
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• orders, which creates new orders, connect to the pay-
ment system to approve purchases, and sends them to
the shipping service;

• catalog-db, containing a relational MySQL database
with all items that can be purchased;

• catalog, controlling the access to catalog-db via a REST
API;

• RabbitMQ, being a message queue with all shipping
orders already paid to be processed;

• shipping, which includes orders to the queue;
• queue-master, that receives approved orders from the

queue and processes them, ending the purchasing flow.
It is important to see the tool variability used in the

sock-shop application, because some deployments use inter-
preted languages with complex frameworks (such as Node-
JS in JavaScript for front-end), while others are created in
compiled languages such as go or java. Moreover, there
is variability in the software architecture used, such as
relational and non-relational databases, messaging queues,
and key-value cache systems.

Figure 1 is a diagram of services and their connections,
differentiated by limiting resources.

Fig. 1: Sock-shop application diagram

As it can be seen, the application is sufficiently close to a
real distributed system, ideal for the purposes of the research,
as it was also used by other academic works in the area [10].

1) Definition of the metric collection system: Besides the
creation of the cloud application itself there was a need to
plan the tools to collect and store metrics. It was identified
that, because metrics are of high interest for the observability
of any cloud system, solutions were especially developed
for this scenario. In this context, Prometheus 4 is a time
series database created for the storage and access control of
metrics of all types described, using a standard format called
openmetrics.

openmetrics5 is a specialized protocol for the description
and communication of metrics between databases and gen-
erators (which will be described later), basing itself in the
usage of unique identifiers for each metric, having labels
to increase granularity, and numeric values for each data
point with certain labels. In the standard, each application or
generator makes its metrics available in a certain path (such

4https://prometheus.io
5https://openmetrics.io

as "/metrics") and obtains them in the moment of a GET
request for that specific time. Importantly, it is Prometheus’
responsibility to make requests with a certain interval for all
analyzed services and keep control of timestamps for each
value.

In this context, there are metric generators that analyze
a whole scope of metrics in the moment of a request and
obtain important values. Between these generators, two were
identified which, besides being widely used, have a high
variety of metric types: the node-exporter and Cadvisor
services. Node-exporter samples data for each node and
some data regarding the whole cluster, being a part of
prometheus; while Cadvisor obtains metrics for each pod
and is not part of the prometheus stack directly.

2) Definition of a test automation system: Having systems
for metric collection and the application to be analyzed, the
next step is the definition of a testing system and the tests
to be executed.

To simulate a web solution with an approximately real
workload, it was necessary to create user traffic in an auto-
mated way. For that, locust6 was used, a system for scalable
and easily programmable load testing for cloud applications.
Locust generates by default data such as response time
distributions, mean response size, amount of responses with
a given HTTP return code, all of that for each request
path accessed by the load test. Besides that, the number
of fake users to be created is fully configurable, as are the
probabilistic distributions of which pages will be accessed.

Furthermore, it was necessary to determine which kinds
of errors can be caused in a cloud system, and how to
generate them in a systematic and replicable way. For that,
the chaos-mesh7 service was seen as ideal, as it is capable of
introducing many types of exceptions inside in application
or in the connection between microservices to analyze its
fault tolerance.

3) Replicabilidade of Experiments: Finally, it was seen
the need to execute the tests without human interference and
in a reproducible way, while also adding cluster components
orderly. For that, the continuous integration and continuous
deployment (CI/CD) named CircleCI8 was used, being able
to, via configuration files and scripts, create Kubernetes
resources, execute tests and introduce errors, all described
in a code repository.

C. Developed Activities

1) Creation of the whole system: Initially, the AWS
cloud system and the Kubernetes cluster were instantiated,
besides the initialization of the code repository with all
the project’s files. In order to facilitate a heightened level
of reproducibility, the infrastructure as code system, the
infrastructure as code system Terraform9, together with its
own CI/CD called Terraform cloud, were used to declare all
of the AWS service instances. Aside from the usual users,

6https://locust.io
7https://chaos-mesh.org
8https://circleci.com
9https://terraform.io
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a special one was created for use with CircleCI, allowing it
to change the cluster’s state systematically.

After that, an instance of CircleCI was generated outside
of the project’s AWS environment and associated with the
base repository, with an initial deployment workflow for
the creation and updating of Kubernetes applications: every
time a tag of the code versioning system git is created
with a specific syntax (that identifies which application is
to be acted upon), a CircleCI machine would test the code
for that application, create a container for it, and deploy
the application in the cluster via a Kubernetes resource
description file. If errors happen at any step, the previous
state of the system is restored.

Using the CI/CD system described, besides the use of
other tools such as helm10, it was possible to instantiate
prometheus, node-exporter and the Cadvisor metrics gen-
erators in a Kubernetes namespace, such that they would
not influence the sock-shop services that will be included,
but would still collect a total of 356 unique metrics from
it. Other monitoring services were included too to allow
real-time analysis of the metrics, such as Grafana11, which
only reads prometheus data and shows them in dashboards,
without interfering with the metric collection, sock-shop
services, or tests.

Moreover, using CircleCI, it was possible to deploy the
sock-shop application. Besides the Kubernetes resources, an
EKS ingress gateway was created to expose the front-end
service in a public URL, such that it can be accessed by the
test system directly (without the use of the Kubernetes client
port-forward capability, because this is not a recommended
ingress method by the developers, so it was considered that
its use could change test results).

Moving on to the test framework, another CircleCI work-
flow was created for load testing: code using locust is
developed with a certain page distribution and added to
the repository; then, after the user creates a git tag that
indicates the user amount and a total test time, the CircleCI
machine executes the test and sends all results, for data
centralization, to the cluster prometheus database as metrics.
Such metrics are not used in the analysis, differently from
the node-exporter and Cadvisor ones, because the results
would only be seen by the final user, not by the cluster
in a real environment. They were primarily collected for
the confirmation of test execution properties and to detect
procedural errors in the test itself. Figure 2 shows a Grafana
dashboard with data related to locust

10https://helm.sh
11https://grafana.com

Fig. 2: Locust metric visualization dashboard via Grafana
during a load test with 5 users

Finally, the creation of a cluster error generator using
chaos-mesh was developed. For its use, the previous work-
flow git tag was modified to include an optional parameter
with the error that should be generated after a certain time of
normal load test execution, defined as a custom Kubernetes
resource read by the chaos-mesh daemon.

D. Execution and extraction of important results

With the complete infrastructure, a load test program was
developed with Locust capable of simulating the normal
use of the application, applied in all scenarios described
ahead. Regarding the kinds of errors generated, initially,
the analysis considers the failure of pod provisioning for
a certain microservice. To ensure the correctness of results,
it is needed to repeat the tests with different services. The
final list of errors generated is presented below:

• Provisioning error for front-end pods;
• Provisioning error for users pods;
• Provisioning error for payment pods;
• Provisioning error for shipping pods;
• Provisioning error for carts-db pods;
Furthermore, another test was included without the ex-

ecution of errors, as a base case. Lastly, the execution of
each test is as follows: the load test would be initiated, a
metric stabilization time of fifteen minutes would pass, then
the chaos-mesh error would be introduced with a duration
of five minutes, and, after the error time passes, another ten
minutes are needed to stabilize the metrics again and finish
the load test.

After the execution of all tests, its Cadvisor and node
exporter metrics were collected via a single program to
generate the results.

V. RESULTS

For the front-end application, it was seen that I/O bound
metrics related to the network from both Cadvisor (in
Figure 4) and node-exporter (in Figure 3) are strongly
correlated with the failure. Such a fact can be explained
by the centrality of the application, being connected to all
other microservices directly or indirectly and acting as the
entrypoint for users. This centrality causes the whole system
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to stop responding to user requests, and therefore the data
transfer suffers heavly.

Fig. 3: Network data downstream per second for all nodes
during tests

Fig. 4: Network data downstream per second for sock-shop
microservices during front-end fail

Furthermore, because of the same centrality, CPU bound
metrics also had a direct impact due to error, as seen in
Figure 5 and 6, because without access to the gateway, no
requests could be processed. However, this kind of metric in
node-exporter was not conclusive, this can be explained by
two factors: the influence of the kubernetes runtime itself,
which, specially in error scenarios, may consume more CPU
time; and the fact that the majority of applications in the
sock-shop system are I/O bound, with the exception of the
caching layer.

Fig. 5: total CPU usage for all nodes during tests

Fig. 6: total CPU usage in sock-shop microservices during
front-end fail

An interesting result is that, during the various creation
retries during the failure, the front-end application had high
disk reading metrics. This happens because, during the
initialization phase, HTML files and code were brought
from secondary memory to primary many times while the
application failed to start repeatedly. It is important to note
that this only happened until the Kubernetes runtime noted
this repeated scheduling failure and stopped trying to create
front-end pods (a process called crash loop backoff). The
disk reading metrics are seen in Figure 7.

Fig. 7: Bytes read from disk per second for front-end during
various tests
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For the user’s application, a compatible result was ob-
tained, with the same heavy downfall for the network and a
high disk reading rate, as seen in Figures 8 and 9. This is
due to a panic that happened in the front-end as a result of
the user failure, visible in Figure 10, which caused a crash
in the system as a whole as well.

Fig. 8: Bytes read from disk per second for front-end and
users during various tests

Fig. 9: Network data downstream per second for all nodes
during tests

Fig. 10: Network data downstream per second for users and
front-end during various tests

It is notable that the normal application workload only
returned after five minutes after the error ended. This does
not happen because of the user’s microservice, but because
of the front-end crash loop backoff, because, by default,
Kubernetes only allows recreation of applications in that
state after ten minutes.

On the other hand, it was seen that, because the user’s
pods are made in a compiled language, there was a deter-
ministic fall in the memory usage in their pods after the
error, as seen in Figure 11, because the restarts of the service
before the crash loop backoff made the application free all
it’s allocated memory during execution. Such behavior was
not seen in any other scenario with users, being an effective
way to detect the errors in these kinds of applications.

Fig. 11: Memory usage by users during tests

It is important that such behavior of memory freeing
happened with front-end, as seen in Figure 12, but, because
of its interpreted language with a complex runtime, it is
harder to see this, especially during the users fail that
triggered front-end crashes.

Fig. 12: Memory usage by front-end during tests

For the payment application, the error could not be
detected by CPU or I/O bound metrics from node-exporter,
this is because the failure did not trigger a whole system
panic different from the first two tests, so the processing
of other services (and consequently their resource usage)
was not affected. Only two metrics were useful in the
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detection of the error: the memory freeing as in the user’s
case, and a small increase in the CPU usage of the orders
microservice, which is the only application that directly
connects to payments. The disk usage was not seen in
the pre-crash loop backoff stage, differently from the other
cases. The payments’ service memory, orders’ CPU usage
and payments’ disk readings can be seen in Figures 13, 14
and 15, respectively.

Fig. 13: Memory usage by payments during tests

Fig. 14: CPU usage of orders during tests

Fig. 15: Bytes read from disk per second for payments
during tests

For shipping, a visible change in memory and disk read-
ings was seen in its own metrics, as shown in Figures 16

and 17, but not in the applications that connect to it (also
orders in that case, seen in Figure 18).

Fig. 16: Bytes read from disk per second for shipping during
tests

Fig. 17: Memory usage by shipping during tests

Fig. 18: CPU usage of orders during tests

Once more, as the error did not generate a complete
system failure, node-related metrics were not affected, as
seen in Figure 19.
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Fig. 19: Network data downstream per second for all nodes
during tests

Lastly, it was of interest to analyze the behavior of a
database, especially its disk reading metrics as a factor in
identifying errors. The results are near the ones from other
compiled microservices, visible in Figures 20 and 21.

Fig. 20: Bytes read from disk per second for carts-db during
tests

Fig. 21: Memory usage by carts-db during tests

VI. CONCLUSION

It is clear that, when dealing with pod provisioning
failures, a high amount of applications present an increase
in I/O bound metrics related to disk considering its own

containers due to the pre-crash loop backoff phase. Besides
that, microservices developed in compiled languages had
a deterministic fall in memory usage, while interpreted
languages had this behavior, but it was not as clear. However,
it was not possible to correlate node metrics to this kind of
error, except in the case of a complete application failure.
Finally, pod CPU data was not consistent during the analysis
of this error, once more with the exception of a complete
crash of the system.

Therefore, to identify pod failure, it is ideal to analyze an
abnormal fall in memory usage, together with an increase
in disk readings. If the application is compiled, memory is
a more reliable metric, while if the application has many
files associated (such as HTML pages or databases), disk is
essential for the detection.

A. Future works

Considering the direct correlation of disk I/O and memory
metrics in compiled languages from Cadvisor with the
presence of errors, it is of interest to expand this analysis
to other kinds of errors using the test system developed.
Especially, tests related to I/O failure in relational or non-
relational databases and connection failures between pods or
nodes are directly possible to do in chaos-mesh.

Furthermore, a future objective is to develop a microser-
vice capable of using the analysis provided in this project
to identify such failures in a cloud environment.
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