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Abstract—This study investigates microservices grouping
within containers, exploring its impact on performance, resource
utilization, and availability. Experiments using the Sock-Shop
microservice benchmark tool across varying workloads revealed
benefits in terms of optimizing performance, computational re-
sources and improving availability in scenarios grouping loosely-
coupled microservices. However, this approach can incur oper-
ational complexity and costs. Therefore, grouping microservices
within containers offers potential advantages, but careful consid-
eration is needed to balance benefits and challenges effectively.

Index Terms—Microservices architecture, Benchmark, Con-
tainerization, Performance optimization, Resource utilization,
Availability, Workload, Kubernetes, Microservices grouping, Op-
erational complexity, Cost analysis

I. INTRODUCTION

With the advent of technologies and practices such as

cloud computing, on-demand virtualization, DevOps and agile

methodologies, it was necessary to adapt applications and

teams organization for this new scenario. With that, a new

architectural style called microservices emerged [1]. In short,

the microservice architectural style is an approach to develop-

ing a single application as a suite of small services, each run-

ning in its own process and communicating with lightweight

mechanisms, often an HTTP resource API. These services are

built around business capabilities and independently deploy-

able by fully automated deployment machinery. There is a

bare minimum of centralized management of these services,

which may be written in different programming languages

and use different data storage technologies [2]. This new

architectural style brought several benefits to the applications

and developers such as resilience, scalability, technological

heterogeneity, organizational alignment and autonomy.

However, the micorservices architectural style has also

brought new challenges and complexities for developers and

companies that use this architectural style for deliver their

applications. The most commons challenges and complexities

in the microservices architecture are related to the distributed
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systems challenges and complexities like deployment, re-

silience, scalability and communication [3]. Furthermore, other

challenges and complexities in this type of architecture are

related to the microservices size definition (granularity).

With these complexities and challenges, several design

patterns have emerged to be used in microservices architecture

and help developers to solve common problems [4]. One of

these common problems faced for the developers is related to

the microservices deployment model. A microservices based

application can have thousands of microservices what makes

almost impossible for developers to deploy it manually. To

minimize this complexity, some tools and techniques like con-

tinuous integration, cloud computing, infrastructure as code,

containerization, Docker 1 and Kubernetes 2 began to be used

by developers, and one of the most used pattern to deploy

microservices in a cloud environment it is the one service

per container pattern [4]. This pattern says that each service

must be packaged in a container image and each instance of

the service must be deployed as a container. The beneficial

results of using this pattern can be the following: Ease of

horizontal scalability of services, abstraction of technologies

used to deploy services, isolation of services and limitation in

CPU and memory consumption consumed by each instance of

services.

However, some studies [5] [6] [7] have been carried out to

assess the impact that the use of containers can have on the

performance and resource consumption of applications based

on the microservices architecture and concluded that the use

of containers can decrease the application performance and

increase the network resource consumption.

In addition to the problems related to deploying microser-

vices with containers, there is another major challenge re-

lated to microservice architecture, which is the definition of

microservice granularity. Some subject matter experts have

different approaches to defining the granularity of microser-

vices. At Amazon, a microservice is characterized as an

1https://www.docker.com/ (visited on Jul. 15, 2023)
2https://kubernetes.io/ (visited on Jul. 15, 2023)
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application that can be maintained by a team of no more than

a dozen people (two pizzas team) [2]. Jon Eaves characterizes

a microservice as an application that can be rewritten in two

weeks [1]. [2] and [1] believe that a microservice represents a

business capability and the bounded context of Domain Driven
Design [8] helps to define the size of a microservice and its

boundaries.

Therefore, because there are several approaches to defining

the size of a microservice and because these approaches are

abstract, the size of a microservice can vary depending on

the developer or architect who is creating a microservice-

based application, that is, in a real scenario it is possible to

verify different microservices granularity in an application,

some very granular and some not so granular. Because of

this, there are also studies [9] [10] that evaluated the impact

of defining the microservices granularity in an application

and these studies concluded that the decomposition of an

application into more granular microservices can decrease the

application performance.

Given the problems related to the one service per container

deployment pattern and the problems related to the impact on

the applications performance with very granular microservices,

it is possible that there is a potential problem of performance

and resource consumption in applications based on microser-

vices architecture and that are deployed with one service per

container.

Thus, this paper aims to investigate, in a real scenario of

microservices architecture that use the deployment pattern of

one service per container, cases in which the consolidation

of more than one microservice within the same container

would be interesting, verifying impacts related to performance,

resource consumption (computational and financial) and avail-

ability of the application. To do this investigation there are

some research questions to be answered. The main question

that need to be answered in this study is: Are there cases

where it is interesting to group microservices in the same

container? However, to answer this research question, there

is a subset of questions that need to be answered first. So

it is necessary to answer the following sub-questions before

answer the main research question: (1) How the microservices

grouping could impact the application performance? (2) How

the microservices grouping could impact the computational

and financial resources in a public cloud? (3) How the mi-

croservices grouping could impact the application availability?

In order to allow the replication of the experiments, all im-

plemented code is publicly available under the GNU General
Public License v3.0 license on https://github.com/fernandohlb/

microservices-container-grouping.git.

The rest of this text is organized as follows: the Section

2 lists and compares the related works to the purpose of

this article; the Section 3 describes the methods used in this

study, the criteria used to grouping the microservices and

how the workloads were established; the Section 4 describes

each experiments, how the benchmark tool were selected, how

the microservices were grouped, how the experiments were

performed and the results and discussions about them; the

Section 5 highlights the conclusions about the study.

II. RELATED AND PREVIOUS WORKS

A. Microservices with containers performance and computa-
tional resources evaluation

The authors M. Amaral et al. [5] evaluated the compu-

tational resource consumption and performance impact that

the use of containers could have on a system based on

microservices architecture. In the observed results, the use of

container did not significantly impact the CPU consumption

when compared with virtualized applications without con-

tainers. In addition, network consumption in containerized

applications and virtualized applications without containers

was also very close, except when configurations with Linux

Bridge or OpenvSwitch were used in the experiment, which

significantly impacted the network consumption of container-

ized applications. In this case the authors demonstrated that the

use of containers with Linux Bridge or OpenvSwitch network

configurations can decrease the transfer rate and increase the

network latency by about two times. The same way, the

author N. Kratzke [6] presented an evaluation about the

impact on network performance when there is communica-

tion between two services executing in separated containers.

On this paper the author executed four experiments with

the following configurations: (i) two services communicating

directly over the network, without the use of containers, (ii)

two services communicating directly over the network, with

one container per service, (iii) two services communicating

over the network through an unencrypted SDVN (Software

Defined Virtual Network), using one container per service,

and (iv) two services communicating over the network through

an encrypted SDVN, using one container per service. The

conclusion reached by the author was that the use of a

container can degrade the network throughput performance

about 10% to 20%. When using an SDVN (Software Defined

Virtual Network) the network throughput performance can

degrade about 30% to 70%. In this study the experiments

were performed considering the use or not of containers with

microservices separately and the scenario with the deployment

of more than one microservice inside the same container was

not verified.

B. Microservices architecture impact on systems performance

The authors O. Al-Debagy and P. Martinek [11] proposed

to conduct an investigation into the performance impact that

the microservice architecture can cause in the system in

terms of response time and throughput. Basically the author

performs some experiments comparing the same system in

a monolithic architecture and in a microservice architecture,

capturing the results of the response time and throughput

metrics. The conclusion of this study was that in monolithic

architecture the system presented a better response time for a

small number of users, however, for a large number of users

the microservices architecture presented a better result than the

monolithic architecture. In a concurrency test, the monolithic
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architecture showed a better throughput than the microservices

architecture.

With a similar approach, the authors T. Ueda, T. Nakaike,

and M. Ohara [12] investigated the impact in systems per-

formance that the microservices architecture can cause. The

authors used a widely used benchmark called ACME Air 3 to

execute the experiments. This benchmark simulates a flight

reservation system and was executed in a scenario with a

microservice architecture and in a scenario with a monolithic

architecture. The author also explored the issue of deployment

using container and comparing two programming languages

Node.JS and Java. Basically, the conclusion reached by the

author was that monolithic architecture can be 79% more

performative than microservice architecture. However, this

result was based only on the observation of throughput, not

observing other metrics that are also important when it comes

to system performance.

The authors D. Shadija, M. Rezai, and R. Hill [9] pre-

sented the question about the microservices granularity and

their effects in systems latency. The experiments was made

through a university admissions system use case and explored

basically two scenarios: in the first scenario, all functionalities

was deployed together in the same web server. The second

scenario, some of these functionalities was separated in a

second web server, simulating a more granular microservice.

Some workloads were executed in both scenarios to verify

the response time and the conclusion was that there was no

significant increase in response time in the second scenario

(with more granular microservices).

The same way, the authors M. Jayasinghe, J. Chathurangani,

G. Kuruppu, P. Tennage, and S. Perera [10] investigates the im-

pact on performance that the decomposition of microservices

can cause in a system based on a microservice architecture.

In the study, the author used some specific benchmarks to

evaluate some situations such as Echo-Service to evaluate the

decomposition in an I/O investigation scenario and Prime-

check to evaluate the decomposition in a CPU usage inves-

tigation scenario. The conclusion reached by the authors was

that the microservices decomposition linked to I/O can degrade

the system’s performance when analyzing the throughput and

response time. On the other hand, when the decomposition is

related to CPU processing, the decomposition is beneficial for

the system’s performance, increasing throughput and decreas-

ing response time.

C. Previous Works

In a previous work [7] we followed a different approach

than the studies previously presented. In this paper, it was

verified whether the resources consumption (I/O, network,

CPU and memory) could be optimized depending on the

microservice deployment model. To carry out the study, two

microservices deployment models with container were veri-

fied: (i) One container for each microservice layer and (ii)

A single container with all microservice layers. The study

3https://github.com/acmeair/

showed interesting results, such as the optimization of about

99% in network consumption when all microservice layers

were deployed within a single container.

These related and previous works presented that containers

can impact directly the system performance and resources con-

sumption in a microservice architecture. Also the microservice

architecture as well their granularity can impact directly the

system performance.

III. METHODS

In order to carry out the study and check if there were

scenarios in which was interesting to group more than one

microservice in the same container, the study was executed in

two stages, an exploratory stage, in which some inputs were

collected to base the experiments, and another experimental

stage, in which the experiments were executed and the results

were collected and analyzed. In the experimental stage a mi-

croservices benchmark tool was used to run the experiments.

This tool provides an application based on the microservice

architecture and tools for executing the workload and capturing

the results.

A. Exploratory Stage

At this stage, systematic bibliographical reviews were car-

ried out in order to find answers, even if incomplete, to

evaluate some scenarios where it would be interesting to group

more than one microservice in the same container. The main

works analyzed in this stage, as well as their results, were

presented in the section II.

Still in this stage, a pre selection of two benchmark tools

that was used in the experiments was carried out. First, it

was selected six microservices benchmark tools that were

used in important published scientific papers: μSuite [13],

NDBench [14], DeathstarBench [15], TeaStore [16], ACME

Air benchmark [12] and Sock Shop [17] [15]. After, it was

defined some requirements to be evaluated and filter the two

best qualified benchmark tools. The requirements evaluated

was based on the authors C. M. Aderaldo, N. C. Mendonça,

C. Pahl, and P. Jamshidi work [18] and was adapted to

the study necessities. So the benchmark tools were evalu-

ated considering the following requirements: R1 - Explicit

Topological View, R2 - Pattern-based distributed architecture,

R3 - Easy Access from a Version Control Repository, R4

- Support for deployment in multiple environments, R5 -

Container orchestration support, R6 - Alternate Versions, R7

- Community Usage and Interest, R8 - Configurable work-

loads for testing, R9 - Metrics generation for application

performance, R10 - Metrics generation for application resource

consumption, R11 - Reports/Visualization of results and R12

- Scenarios for running the benchmark. After defining the

requirements, each benchmark were evaluated according to

the requirements fulfillment and a score were attributed to

each benchmark. After calculating the final scores for each

microservice benchmark tool and classified them, the Sock

Shop and DeathstarBench benchmark tools were selected to

be evaluated in the experimental stage.
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B. Experimental Stage

After the exploratory stage III-A, 2 experiments were exe-

cuted: One to select the benchmark tool and other experiment

to compare the microservices grouping scenarios and capture

the results about performance, resources consumption and

availability.

To define the microservices grouping scenarios, 4 criteria

were considered: The first, was considering the benchmark

itself in which there was no microservice grouping in contain-

ers and each microservice was executed in its own container.

The second, was considering the opposite of the benchmark,

where all the application’s microservices were grouped in a

single container. The third, was considering the dependency

between the microservices, where the microservices that had

more dependency on each other were grouped into a single

container. And the fourth and last one, was considering the

execution stack of each microservice, where the microservices

that execute with the same stack were grouped in the same

container. Therefore, 4 execution scenarios were defined to

be compared in each experiment: Benchmark, All-in-one, By-

dependencies and By-stack.

In this study it was established 3 workloads to be executed:

a small workload with few users accessing the application, a

high workload with lot of users accessing the application and

a medium workload with the average number of users consid-

ering the small and high workloads. As the application family

provided by the benchmark tool selected in the first experiment

is an e-commerce, workloads from large e-commerces used

nowadays by users around the world were considered to define

the number of users in each workload for the experiments.

The Fig. 1 shows the average number of users on a day

that accessed these e-commerces during the period between

November 29, 2022 and December 2, 2022. These data was

consulted in the website Similarweb 4. Thus, for the maxi-

mum workload, the Amazon.com 5 workload was considered,

and for the minimum workload, the Mercadolivre.com.br 6

workload was considered. To calculate the number of users

of each workload in the experiments, the number of users of

each e-commerce was linearly distributed during the 24-hour

period. Thus, for example, Amazon’s workload presented an

average amount of approximately 60000 users accessing the

platform every minute. From this number, users who visited a

single page on the websites before leaving (Bounce rate) were

excluded, therefore, in the example of Amazon, the workload

considered was 40200 users per minute. It was also considered

a load balance factor for this workload on these websites, so

for this study the factor considered was 100 processing replicas

and therefore the Amazon workload would be 402 users per

minute for each replica. For this study, the high workload

based on this Amazon workload was 450 users per minute

for a single replica of the services. A processing period of

10 minutes was also considered for each workload, in which

4https://www.similarweb.com/ (visited on Jul. 26, 2023)
5https://www.amazon.com/ (visited on Jul. 26, 2023)
6https://www.mercadolivre.com.br/ (visited on Jul. 26, 2023)

the first 5 minutes were used for processing and entering

new users in the application and the final 5 minutes only for

processing with the maximum number of users. Therefore,

in the high workload, 4500 users were processed in total,

with a spawn rate of 15 users per second during the first 5

minutes and during the final 5 minutes with the maximum

number of simultaneous users in the application. The low

and medium workloads followed the same method as the

high workload, however, the low workload was calculated

considering the Mercado Livre workload and the medium

workload was calculated by the average of the low and high

workloads. The workloads details it is presented in the Table I

Fig. 1: E-commerces workloads

TABLE I: Table Experiments Workloads

Workloads Users Spawn rate
Small 300 1 user/second
Medium 2400 8 users/second
High 4500 15 users/second

IV. EXPERIMENTS AND RESULTS

In this study two experiments were executed to verify cases

in which the consolidation of more than one microservice

within the same container would be interesting. In the sub-

section III-B were presented the methods used in each one

experiment and the following sections will present the exper-

iments details the results and discussions about the results.

A. Benchmark tool selection

To selected the benchmark tool it was executed a simpli-

fied experiment in a local machine comparing the two best

qualified benchmark tools that were presented in the sub-

section III-A. So it was compared the Sock-Shop benchmark

tool and the DeathstarBench benchmark tool. The experiment

was executed in a local kubernetes clustes using the Minikube

tool 7 and the microservices benchmark tools were compared

considering four requirements: Ease of deployment, Alternate

Version, Workload customization and results completeness in

the generated reports. Some of these requirements are part of

the requirements presented in the subsection III-A. Comparing

the deployments between DeathstarBench and SockShop, both

7https://minikube.sigs.k8s.io/docs/ (visited on Jul. 26, 2023)
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provided a very similar deployment model in which, the

tools provide kubernetes manifests that can be executed by

the kubectl command to create services and deployments

inside the kubernetes cluster. When comparing the tools by

Alternate Versions requirements, the Sock Shop benchmark

tool presented a more heterogeneous architecture than the

DeathstarBench benchmark tool. The DeathstarBench tool pro-

vides three applications, however, each of these applications

are homogeneous in relation to the language in which each

microservice was built, for example, the hotel reservation

application, has microservices all written in GO. On the other

hand, the Sock Shop application, despite providing only a

single application scenario, has heterogeneous microservices

in terms of language. Therefore, the Sock Shop application is

built using microservices in NodeJS, Go and Java. Regarding

the workload, both tools provide scripts that simulate users’

navigation within the system and both tools allow for cus-

tomizations in these scripts. However, the Sock Shop tool

uses the Locust.io 8 tool as a test tool, which has a greater

dynamism to parameterize workloads, such as the users spawn

rate. In addition, the Locust.io tool allows the export of various

performance information to csv and html files with graphics,

while the wrk2 tool used in DeathstarBench, exports the data

only to the terminal where the workload is being executed.

So, after running locally the benchmark tools and comparing

the results, it was concluded that the Sock Shop benchmark

tool obtained better results for the evaluated requirements and

therefore was chosen for the other experiments.

B. Workload execution experiments

Before running the workloads, it was necessary to develop

and create the docker images for each grouping scenario.

Considering the Sock-Shop benchmark tool, there are 8 mi-

croservices and 5 infra-services. Following the microservices

grouping criteria presented in the subsection III-A, the docker

image for the all-in-one scenario were developed consolidating

the 8 microservices from the benchmark tool in just one

docker image. The docker images for the by-stack scenario

were developed consolidating 3 microservices in the by-stack-

go docker image, 4 microservices in the by-stack-jvm docker

image and 1 microservice in the by-stack-node docker image.

The docker images for the by-dependencies scenario were de-

veloped consolidating 3 microservices in the by-dependencies

docker image and the other 5 microservices were kept in their

own images as in the benchmark tool. In addition to grouping

the microservices in each docker image, it was necessary

to calibrate the resources in the Kubernetes deployments.

So, based on the cpu and memory requests and limits in

each microservice deployment in the benchmark scenario,

it was necessary to sum the cpu and memory requests and

limits in the deployments with docker images that grouped

microservices. For example, in the benchmark scenario the

Orders deployment had 275Mb of requested memory and

550Mb of limit memory, the Shipping deployment had 200Mb

8https://locust.io/ (visited on Jul. 26, 2023)

of requested memory and 400Mb of limit memory and the

Payment deployment had 15Mb of requested memory and

30Mb of limit memory. The by-dependencies docker image

consolidated the Orders, Shipping and Payment microservices,

so the by-dependencies deployment had 490Mb of requested

memory and 980Mb of limit memory. The Table II presents

the information about the docker images consolidation and the

resources for each deployment.

Resources Metrics
CPU Milicores Memory Mb

Scenarios Microservices Containers Requested Limit Requested Limit

Benchmark

Carts Carts 460 920 275 550
Catalogue Catalogue 30 60 15 30
Front-end Front-end 465 930 340 680
Orders Orders 400 800 275 550
Payment Payment 15 30 15 30
Queue Queue 150 300 200 400
Shipping Shipping 150 300 200 400
User User 150 300 50 100

All-in-one

Carts

All-in-one 1820 3640 1370 2740

Catalogue
Front-end
Orders
Payment
Queue
Shipping
User

By-Stack

Catalogue
bystack-go 195 390 80 160Payment

User
Carts

bystack-jvm 1160 2320 950 1900
Orders
Queue
Shipping
Front-end by-stack-node 465 930 340 680

By-Dependencies

Payment
by-dependencies 565 1130 490 980Orders

Shipping
Carts Carts 460 920 275 550
Catalogue Catalogue 30 60 15 30
Front-End Front-End 465 930 340 680
Queue Queue 150 300 200 400
User User 150 300 50 100

TABLE II: Microservices per Container and Kubernetes de-

ployment resource requested and limits

After develop the docker images and configure the Ku-

bernentes deployments, the experimentes were executed. All

experiments were executed in the Amazon AWS with an

EKS cluster, Kubernetes 1.22 and Docker Engine 20.10.23. It

was created one Kubernetes nodegroup for each microservices

grouping scenario and each nodegroup had just one node.

This configuration was necessary to evict the interference from

the network in the communication between the services inter

nodes. Each node used in each scenario was created using

EC2 instances. The instances flavors used in this study was

a t3.xlarge with 4 Intel Xeon Scalable processor vCPUs of

3.1 GHz, with 16Gb ram memory and with 50Gb of EBS-

Storage disk. In addition to the nodes for each scenario, we

created three accessory nodegroups for the experiments: one

for the load testing tool, for executing workloads, one for the

application monitoring tool to capture resource consumption

and performance metrics, and a third node for the financial

resource consumption monitoring tool. The results related

to performance were generated generated in html and csv

files from locust tool and the results related to resource

consumption, cost and availability were generated in csv files

from Grafana’s dashboards. The Fig. 2 shows the experiments

architecture design.
The experiments were executed from a bash file that sent

the configurations of each workload to the Locust tool and

controlled the beginning of the execution of the tests. Each

workload ran the 4 microservices grouping scenarios presented
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Fig. 2: Experiments Architecture

in the subsection III-B, and each scenario ran for 10 minutes.

Therefore, each workload took at least 40 minutes to run all

scenarios. Due to cost and execution time, 6 samples were

run for each workload. After performing the experiments, the

results of the six samples were consolidated and analyzed

using the boxplot due to the small number of samples and

the lack of data normality.

1) Results: One of the mainly results captured in the

experiments was the results related to the application perfor-

mance. The Fig. 3 represents the boxplots generated from the

results and the Table III presents the metrics and the median

results for each scenario and workload. When comparing the

benchmark scenario with other scenarios, it was possible to

verify that the scenarios with some microservices grouping

had better performance than the benchmark scenario. For

example, in the medium workload, with 2400 users, the All-

in-One scenario presented a throughput about 26% better than

the benchmark scenario and a response time about 20.5%

better than the benchmark scenario. The other scenarios also

presented expressive improvement in the performance metrics

compared to the benchmark scenario. The By-stack scenario

presented a throughput improvement about 18% and a latency

improvement about 15.5%. The By-dependencies presented a

throughput improvement about 10% and a latency improve-

ment about 9.4%. The error rate in this workload were very

similar between the scenarios, but in the high workload the

All-in-One scenario was the only one that presented a better

error rate than the Benchmark scenario. Even with worst error

rate than the Benchmark, the scenarios By-stack and By-

dependencies presented better response time and throughput

than the Benchmark scenario, which showed that the error

rate did not significantly interfered in the performance.

Low Medium High

benchmark

all−in−one

by−stack

by−dependencies

benchmark

all−in−one

by−stack

by−dependencies

benchmark

all−in−one

by−stack

by−dependencies

200

250

300

350

300

350

400

450

375

400

425

450

475

Grouping Scenarios

R
eq

ue
st

s/
s

(a) Requests/s

Fig. 3: Performance results - Comparison between scenarios

in different workloads

Scenarios
Workload Metrics Benchmark All-In-One By-Stack By-Dependencies

Low

Throughput
(Requests/s)

409.76 473.66 426.51 430.65

Latency
(ms)

547.51 473.95 525.79 520.40

Error Rate
(Failures/s)

0.0100 0.0033 0.0092 0.0083

Medium

Throughput
(Requests/s)

310.26 391.47 367.75 343.18

Latency
(ms)

5,608.42 4,459.34 4,737.41 5,082.69

Error Rate
(Failures/s)

0.0450 0.0558 0.0524 0.0458

High

Throughput
(Requests/s)

222.48 344.55 272.45 237.24

Latency
(ms)

14,035.36 9,211.59 11,479.73 13,464.91

Error Rate
(Failures/s)

39.37 36.51 44.15 46.99

TABLE III: Performance metrics median results

The Fig 4 presents the CPU boxplots results and the

Table IV presents all computational resources consumption

median results. The scenarios with microservices grouping

presented higher CPU consumption than the benchmark sce-

nario in all workloads. On the other hand, scenarios with

microservices grouping presented lower memory consumption

than the benchmark scenario in all workloads. The high CPU

consumption in the scenarios with microservices grouping can

be justified by the requested and limits resource configuration

in each deployment, mainly in the all-in-one scenario that

grouped the Front-End microservices in the same container.

But even with high requested and limits configuration the

memory presented an opposite behavior, which means that

there was a memory consumption optimization in scenar-

ios with microservices grouping. Considering the disk usage

metric, there was expressive results in the low and medium

workloads. In the low workload, the disk usage presented an

optimization about 40%, 20% and 15% in the scenarios all-

in-one, by-stack and by-dependencies, respectively and in the

medium workload the all-in-one and by-stack presented an

optimization about 35% and 21%, respectively. In the high

workload, there were no optimizations in this resource, mainly
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due to the availability that was affected in each scenario. In

the network metric was possible to verify an expressive opti-

mization just in the all-in-one scenario. In the low workload

and medium workload, this scenario presented an optimization

about 15% and 6%, respectively.
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Fig. 4: Computational Resources Consumption results - Com-

parison between scenarios in different workloads

Scenarios
Workload Metrics Benchmark All-In-One By-Stack By-Dependencies

Low

CPU (cores) 2.95 3.16 2.94 3.01
Memory (Gb) 2.42 2.25 2.38 2.42
Network (Mb/s) 30.63 25.96 30.16 30.33
Disk (Mb) 163.74 98.74 132.94 141.58

Medium

CPU (cores) 3.25 3.33 3.43 3.27
Memory (Gb) 2.74 2.66 2.70 2.74
Network (Mb/s) 21.65 20.30 23.08 21.85
Disk (Mb) 179.41 115.08 140.99 183.31

High

CPU (cores) 2.41 3.60 2.95 2.57
Memory (Gb) 3.03 2.86 2.84 2.88
Network (Mb/s) 13.61 17.79 18.30 14.32
Disk (Mb) 100.19 124.82 122.38 123.32

TABLE IV: Computational Resources consumption median

results

The table V presents the financial costs results. The financial

cost estimates are based on cpu, memory, and persistent

volume allocation costs. The scenarios used in this study didn’t

use persistence storage, so the monthly cost was directly im-

pacted by the cpu and memory consumption in each scenario.

The CPU hourly price it is considerably more expensive than

the memory price and because of it the financial monthly costs

results were very similar to the cpu results. Observing the

results, it was possible to verify that the benchmark scenario

presented a lower cost than the other scenarios in the low

and high workloads. In the medium workload, the scenarios

all-in-one and by-dependencies presented lower costs than the

benchmark scenario.

Scenarios
Workload Metrics Benchmark All-In-One By-Stack By-Dependencies
Low Monthly Cost (U$) 109.95 111.02 111.88 114.3
Medium Monthly Cost (U$) 123.36 121.57 130.49 119.85
High Monthly Cost (U$) 100.92 127.56 121.97 71.67

TABLE V: Estimated Monthly Costs median results

Another important result that was analyzed in this study

was about the scenarios availability. The availability can be

verified by two aspects: The availability by error and the

availability by time. The first, refers to the number of errors

that occurred when the application received the call and was

unable to process and consequently was unable to respond to

the client. The second, refers to the time that the application

was down and could not receive requests from the client. The

second one can affect directly the first one. The availability in

both cases can be calculate by the following formulas:

AvailabilityByError = (TotalRequests−TotalErrors)
TotalRequests (1)

AvailabilityByT ime = (TotalT ime−TotalDownTime)
TotalT ime (2)

The availability results can be verified in the Table VI. In the

low workload all scenarios presented an availability by error

of 100%. In the medium workload all scenarios presented a

similar availability: The scenarios benchmark, all-in-one and

by-dependencies presented an availability by error of 99.99%

and the scenario by-stack presented an availability of 99.98%.

In the high workload, the scenarios presented a large variation

in the availability by error between them. Comparing the

differences of the availability by error with the benchmark,

the all-in-one and by-stack presented better results than the

benchmark and the by-dependencies presented a worst result

than the benchmark scenario. In this workload, the availability

by error was impacted directly by the availability by time.

The availability by time in the low and medium workloads

was 100% in all scenarios because in these workloads didn’t

occurred pod restarts during the experiments. But in the high

workload occurred pod restarts in all scenarios and these

pod restarts affected the scenario availability. Comparing the

differences of the availability by time with the benchmark

also the all-in-one and by-stack presented better results than

the benchmark scenario and the by-dependencies presented a

worst result than the benchmark scenario.

Scenarios
Workload Metrics Benchmark All-In-One By-Stack By-Dependencies

Low
Availability by Error (%) 100.00 100.00 100.00 100.00
Availability by Time (%) 100.00 100.00 100.00 100.00

Medium
Availability by Error (%) 99.99 99.99 99.98 99.99
Availability by Time (%) 100.00 100.00 100.00 100.00

High
Availability by Error (%) 81.35 89.38 84.30 80.30
Availability by Time (%) 63.75 95.00 66.25 55.00

TABLE VI: Availability median results

V. DISCUSSIONS

The outcomes of the conducted experiments offer a valuable

perspective on identifying the most suitable scenarios for mi-

croservices grouping within containerized deployments. These

findings not only help organizations harness the advantages of

microservices architecture but also guide them in optimizing

performance, resource utilization, availability, and operational

costs.

In a low workload all scenarios presented similar per-

formance metrics. The all-in-one scenario and the by-

dependencies presented best performance metrics. On the

other hand, these scenarios presented higher cpu and memory
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consumption that affects directly the financial costs in a public

cloud. The benchmark scenario presented the best resource

consumption and the lowest financial cost. But this scenario

presented the worst performance metric. The by-stack scenario

in these workload presented better performance than the

benchmark and worst performance than the all-in-one and by-

stack scenarios. But this scenario presented a similar financial

cost and similar cpu and memory consumption compared

to benchmark scenario. Therefore, in the low workload, the

by-stack microservices grouping could be a good approach

for applications that needs a good performance, a balanced

resource consumption and a low financial cost.

With a medium workload, the all-in-one and by-stack sce-

narios presented best performance metrics and lowest disk

consumption. Also the all-in-one scenario presented a better fi-

nancial cost and a lower memory consumption compared to the

benchmark scenario. On the other hand, the by-stack scenario

presented high cpu, memory and network consumption which

led to a high financial cost. The by-dependencies presented the

lowest financial cost and the lowest cpu and memory consump-

tion. But this scenario did not present a good performance

and this scenario presented the highest disk consumption.

Considering all these facts, in the medium workload the all-

in-one could be a good approach for applications that needs a

good performance and a balanced resource consumption. On

the other hand, if the main requirement it is a low financial

cost, the by-dependencies scenario could be a better choice.

Under heavy workloads, the all-in-one scenario also pre-

sented best performance metrics and higher availability than

the other scenarios. But the resource consumption in this

scenario also was higher than the other scenarios. This high re-

source consumption may have been influenced by the scenario

availability. The scenario by-stack was the second with the

highest availability. Therefore, it was also the second highest in

resource consumption and financial cost. The benchmark sce-

nario presented the worst performance metrics, but it presented

a higher availability than the by-dependencies scenario. The

by-dependencies scenario presented the worst availability and

consequently the lowest resource consumption and financial

costs. But, even with a lower availability than the benchmark

scenario, this scenario presented higher performance metrics

than the benchmark. Therefore, in a heavy workload the all-

in-one or by-stack scenarios could be good choices because

the high availability and performance metrics.

VI. CONCLUSION

The microservices architecture and the deployment model

using containers are widely used in the industry due to the

ease of use of this model with the microservices architecture.

Through the results obtained in this study, it was possible

to verify that the microservices grouping in some scenarios

can bring benefits mainly in terms of performance and com-

putational resources optimizations such as memory, network

and disk. Furthermore, this approach can improve application

availability in scenarios where we grouped microservices that

are not highly dependent. However, microservices grouping in

the same container can be an operationally costly process, in

addition to not bringing significant optimizations in terms of

financial costs. So, a possible future work would be doing the

same study with the Kubernetes horizontal pod auto scaling

and verify the results and the scenarios behavior in the high

workload.
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