
A Performance Comparison of HPC Workloads on
Traditional and Cloud-based HPC Clusters

Vanderlei Munhoz∗, Antoine Bonfils†, Márcio Castro∗, Odorico Mendizabal∗
∗Federal University of Santa Catarina, Florianópolis, Brazil

†Polytech Grenoble, Grenoble, France
vanderlei.filho@posgrad.ufsc.br, antoine.bonfils@etu.univ-grenoble-alpes.fr,

marcio.castro@ufsc.br, odorico.mendizabal@ufsc.br

Abstract—Cloud Computing allows users to access large
computing infrastructures quickly. In the High Performance
Computing (HPC) context, public cloud resources emerge as an
economical alternative, allowing institutions and research groups
to use highly parallel infrastructures in the cloud. However,
parallel runtime systems and software optimizations proposed
over the years to improve the performance and scalability of
HPC applications targeted traditional on-premise HPC clusters,
where developers have direct access to the underlying hardware
without any kind of virtualization. In this paper, we analyze the
performance and scalability of HPC applications from the NAS
Parallel Benchmarks suite when running on a virtualized HPC
cluster built on top of Amazon Web Services (AWS), contrasting
them with the results obtained with the same applications running
on a traditional on-premise HPC cluster from Grid’5000. Our
results show that CPU-bound applications achieve similar results
in both platforms, whereas communication-bound applications
may be impacted by the limited network bandwidth in the
cloud. Cloud infrastructure demonstrated better performance
under workloads with moderate communication and medium-
sized messages.

Index Terms—High Performance Computing, Cloud Comput-
ing, NAS Parallel Benchmarks, Performance Evaluation

I. INTRODUCTION

High Performance Computing (HPC) enables innovative
scientific research in several areas of knowledge, such as
Engineering, Medicine, Biology, Meteorology, among others.
Often, research carried out in these areas is heavily based
on using mathematical models, computational methods and/or
numerical simulations to study existing problems and propose
new solutions.

Traditionally, HPC clusters are deployed in large institutions
or computing centers that carry out research that demands
high computational power (a solution known as on-premise).
In general, access to these computational resources is restricted
to researchers from the institutions or computing centers them-
selves, thus limiting sharing of these computational resources
with external researchers. Few institutions or research centers
have such large-scale infrastructures, as the cost of acquisition
and maintenance is extremely high.

This work was partially funded by the National Council for Scientific
and Technological Development (CNPq) and Amazon Web Services (AWS)
through the CNPq/AWS call Nº 64/2022 - Cloud Credits for Research. The
authors would also like to thank Jean-François Méhaut for granting access to
Grid’5000 infrastructure.

On the other hand, the Cloud Computing paradigm allowed
greater democratization of access to large data processing and
storage infrastructures to millions of organizations and individ-
uals with few capital resources, applying massive economies
of scale and reducing costs with Information Technology (IT)
[1]. Public clouds rely on the same model for renewing and
maintaining the physical infrastructure of large computing
centers but differ in their business model. Cloud providers
have their business focused on optimizing the use of physical
infrastructure, regardless of the focus of the application or the
user. Cloud resources are offered to clients based on a pay-
as-you-go pricing model [2], reducing the entry barrier for
small institutions and research groups as they can create and
dispose of resources as needed [3], paying solely for what they
use. With the ability to dynamically scale resources in real-
time as per their application requirements, users can avoid
over-provisioning or under-provisioning resources. According
to Gartner,1 Amazon Web Services (AWS), Microsoft Azure,
Alibaba Cloud, Google Cloud Platform (GCP), and Huawei
Cloud are the top public cloud providers today, collectively
accounting for 80% of the market share.

Originally, Cloud Computing platforms were created and
later optimized to support commercial web applications run-
ning on virtualized hardware over a shared physical infrastruc-
ture. In this way, the paradigm aims to allow the quick allo-
cation and deallocation of virtualized resources in a dynamic
way [4]. However, cloud providers have recently developed
specialized products and services for the HPC domain. These
products and services often include computing infrastructure
options with high-speed interconnects, large instances with
dozens of virtual CPUs (vCPUs), and instances equipped with
Graphics Processing Units (GPUs) or Tensor Processing Units
(TPUs) to accelerate parallel simulations and Machine Learn-
ing. Some providers also offer bare metal instances, giving
users direct access to hardware without any virtualization.
These recent advances in cloud infrastructures can allow the
HPC community to leverage Cloud Computing resources on-
demand, drastically reducing resource waste and maintenance
costs of (traditional) on-premise HPC clusters [5], [6].

However, the HPC ecosystem available in public clouds

1https://www.gartner.com/en/newsroom/press-releases/2022-06-02-gartner-
says-worldwide-iaas-public-cloud-services-market-grew-41-percent-in-2021

108

2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)

979-8-3503-8160-3/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PADW60351.2023.00026

has not yet evolved enough to support widespread use, not
only due to technological limitations but also the laborious
process of migrating legacy HPC applications to a completely
different environment than the one in which they were initially
designed [7]. In addition, existing runtime systems and legacy
HPC applications are optimized for on-premise HPC clusters,
where users have direct access to the underlying infrastructure
without any kind of virtualization. In this paper, we compare
the performance and scalability of HPC applications extracted
from the well-known NAS Parallel Benchmarks (NPB) suite
on two platforms: a virtualized HPC cluster built on top of
Amazon Web Services (AWS)2 and a traditional on-premise
HPC clusters from Grid’5000 (G5K).3 Our results show that
CPU-bound applications achieve similar results in both plat-
forms, whereas communication-bound applications may be
impacted by the limited network bandwidth in the cloud.
Cloud infrastructure demonstrated better performance under
workloads with moderate communication and medium-sized
messages.

This paper is structured as follows. Section II discusses
the fundamentals of the platforms and applications considered
in this study. Section III presents the experimental method-
ology adopted in this work. Section IV provides details on
the gathered experimental data and discusses the obtained
results. Section V discusses related work in this area. Finally,
Section VI concludes the paper by summarizing our findings
and outlining future work.

II. BACKGROUND

In this section, we first present an overview of the platforms
used in our experimental evaluation. Then, we briefly discuss
the HPC applications considered in this study.

A. Grid’5000 (G5K)

G5K is a renowned testbed that provides researchers with a
large-scale and versatile platform for conducting experiment-
driven research across various Computer Science domains [8].
It is designed to support Open Science and reproducible
research, with full traceability of infrastructure and software
changes on the testbed.

It offers a dedicated infrastructure that enables researchers
to design and execute experiments in a controlled environment.
It provides a wide range of resources, approximately 15,000
cores, and 800 compute nodes, including 9 computing cluster
sites, storage systems, and networking infrastructure, allowing
researchers to investigate and evaluate different aspects of
computer science at a large scale. It is used in all areas
of Computer Science, focusing on parallel and distributed
computing, covering areas such as Cloud Computing, HPC,
Big Data, and Artificial Intelligence (AI).

The platform is highly reconfigurable and controllable, so
researchers can experiment with a fully customized software
stack thanks to bare metal deployment features and isolate
their experiment at the networking layer. It also provides

2http://aws.amazon.com/
3http://grid5000.fr

advanced monitoring and measurement features for trace col-
lection of networking and power consumption, providing a
deep understanding of experiments.

B. Amazon Web Services (AWS)

Public clouds are designed to be accessible to anyone
via the Internet without the need for long-term contracts or
direct interaction with the provider. Three types of services
traditionally describe their service model. Infrastructure as a
Service (IaaS) refers to online services that provide APIs for
users to spawn and manage compute infrastructure, includ-
ing low-level details such as network, storage, and backups.
The user often can choose the computing capacity of the
infrastructure to be rented — typically in terms of virtual
CPUs (vCPUs) — and can also configure other details such
as hypervisor types, pre-installed OS, accelerators, and more.
Platform as a Service (PaaS) refers to services that the user
can use to create and deploy custom software applications
using a configurable environment hosted by the cloud provider.
Runtime, middleware, and software features are abstracted
from the user and managed by the provider. Finally, Software
as a Service (SaaS) are ready-to-use software applications with
specific purposes that the provider typically offers through
APIs, which users can use directly in their applications.

AWS is one of the most popular public cloud providers.
It maintains physical resources in several geographically dis-
persed data centers, giving users access to computing resources
in the form of instances. A Virtual Machine (VM) is a
virtually allocated instance on a shared physical infrastructure
maintained by AWS and is generally the most available and
affordable option. AWS offers various types of instances
with different characteristics such as type of hypervisor, CPU
architecture, number of vCPUs, amount of memory, and much
more, allowing users to choose the instance that best suits their
needs.

Recently, AWS has launched numerous products and ser-
vices for HPC. Its offerings include infrastructure options
featuring (i) high-speed interconnections, which employ its
proprietary Elastic Fabric Adapter (EFA) network interface
that enables customers to run applications requiring high levels
of inter-node communications at scale; (ii) large VM instances
equipped with hundreds of vCPUs to cater to applications
with substantial processing demands; (iii) instances equipped
with accelerators such as GPUs or TPUs; (iv) fully managed
shared storage named FSx built on popular high-performance
file systems (e.g., Lustre and OpenZFS).

C. NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB)4 is a suite of par-
allel benchmark programs designed by the NASA Advanced
Supercomputing (NAS) Division [9]. By measuring various
aspects of performance, such as computational speed and
efficiency, NPB provides a standardized way for researchers
and developers to assess the capabilities of parallel computing

4https://www.nas.nasa.gov/software/npb.html

109

systems, including clusters, supercomputers, and distributed
memory architectures. It focuses on various aspects of par-
allel computing, including computation, communication, and
memory access patterns.

NPB kernels are derived from Computational Fluid Dynam-
ics (CFD) applications, representing real-world aerospace and
engineering applications. Reference implementations of the
benchmarks are provided by NASA using different parallel
programming libraries such as OpenMP and Message Passing
Interface (MPI). In this paper, we used the most recent
reference MPI implementation (version 3.4.2), which includes
five kernels (two implemented in C and three in Fortran).

Input problem sizes in NPB are predefined and indicated
as different classes. The standard sizes consist of six classes
(S, W, A, B, C, and D): (i) S and W are designed for quick
test purposes; (ii) A, B, and C are the standard inputs, with
each class experiencing approximately a four-fold increase in
size compared to the previous one; and (iii) D, E and F are
the large inputs, with each class experiencing approximately
a sixteen-fold increase in size compared to the previous one.
A brief description of the kernels considered in this paper are
given below:

• Integer Sort (IS): It performs an integer sorting (bucket
sort) among a sparse set of numbers, which simulates
an important computation for particle-in-cell applications.
This kernel simulates and measures integer computation
and data communication capabilities.

• Embarrassingly Parallel (EP): It is an embarrassingly
parallel benchmark that generates pairs of Gaussian ran-
dom deviates according to a specific scheme. This kernel
features negligible communication overhead.

• Conjugate Gradient (CG): It employs a Conjugate Gra-
dient method to compute an approximation to the smallest
eigenvalue of a large, sparse, unstructured matrix. This
kernel tests unstructured grid computations and commu-
nications by using a matrix with randomly generated
locations of entries. It features irregular memory access
and communication patterns.

• Multi-Grid (MG): It uses a V-cycle MultiGrid method to
compute the solution of the 3D scalar Poisson equation.
The algorithm works continuously on a set of grids that
are made between coarse and fine. It tests both short and
long-distance data movements.

• Discrete 3D Fast Fourier Transform (FT): It contains
the computational kernel of a 3D Fast Fourier Transform
(FFT)-based spectral method. FT performs three one-
dimensional (1D) FFTs, one for each dimension, and
features long-distance communications.

III. EXPERIMENTAL METHODOLOGY

G5K and AWS feature a large diversity of hardware con-
figurations. To make a fair comparison, we first analyzed
the available configurations of processors and interconnection
networks in both infrastructures. We compared the available
processors using the following criteria: processor generation,
number of cores, processor launch date, and Last-level Cache

TABLE I: Selected processor configurations from G5K and
AWS.

G5K AWS

Code Name Skylake Skylake
Model Intel Xeon Gold 6130 Intel Xeon Platinum 8124M
Lithography 14 nm 14 nm
Launch Date 2017 2017
Cores/vCPUs 16 16
Clock frequency 2.1 GHz 3.0 GHz
Cache size (LLC) 22 MB 24 MB

(LLC) size. Based on the available clusters in G5K and VM
instances in AWS, we selected the Dahu cluster from G5K and
c5n.4xlarge VM spot instances from AWS Elastic Compute
Cloud (EC2). It is worth mentioning that although it would
be possible to use bare metal instances in AWS, they are
substantially more expensive than the virtualized ones (6 times
more expensive during our experiments). Because of that, we
did not select these instances in our study. AWS also offers
HPC-optimized instances, such as the hpc6a.48xlarge, but we
did not find similar hardware configurations in G5K, so we
did not use those instances. More details about the processor
configurations selected for this study are shown in Table I.

We considered clusters composed of 1 (single node), 2,
4, and 8 nodes in both platforms and we evaluated the
results with a variable number of MPI processes per node
(1, 2, 4, 8 and 16). Nodes were interconnected by either
a 10 Gbps Ethernet network (G5K) or a 25 Gbps Ethernet
network (AWS). Considering the availability of VM instances
in AWS and their monetary costs, we selected the appropriate
C class for all experiments. The execution time of each
application/configuration using the C class ranged from a few
seconds to a hundred seconds, depending on the application
and number of MPI processes.

Nodes from the Dahu cluster (G5K) were reserved using the
OAR5 batch scheduler, which gave us exclusive access to the
reserved nodes. We leveraged the HPC@Cloud toolkit [10],
[11] to build the cluster on top of AWS/EC2. HPC@Cloud is
an open-source toolkit that offers a suite of tools that enable
users to configure cloud infrastructure, execute jobs, monitor
performance, predict costs, and interact with the provisioned
resources in an automated and provider-agnostic manner. The
same software stack was installed on both platforms, includ-
ing the Operating System (CentOS v7.8), GCC (v7.3), and
OpenMPI (v5.1).

We relied on the overall execution times of the NPB
kernels’ output to assess the scalability of NPB kernels on
both platforms. All results in this paper are based on the
average execution times taken from 10 repetitions of each
experiment. Considering all possible scenarios (5 NPB kernels
× 4 numbers of nodes × 5 numbers of MPI processes per
node × 2 platforms × 10 repetitions of each experiment),
the average and maximum standard deviation observed in

5http://oar.imag.fr

110

100 101 102 103 104 105 106

Data size (bytes)

0

1000

2000

3000

4000

5000

6000

La
te

nc
y

(u
s)

G5K Latency
AWS Latency

(a) Latency results

100 101 102 103 104 105 106

Data size (bytes)

0

200

400

600

800

1000

1200

Ba
nd

wi
dt

h
(M

B/
s)

G5K Bandwidth
AWS Bandwidth

(b) Bandwidth results

Fig. 1: Network performance comparison using OSU microbenchmarks (OMB).

G5K were 0.14 and 0.82 seconds, respectively, and in AWS
were 0.16 and 0.85 seconds, respectively. Speedups were
calculated by dividing the average execution times of NPB
kernels running with a single MPI process (single node) by
their average execution times when running in parallel (one
or more nodes). The scalability results shown in Section IV-B
with 2, 4, 8, 16, 32, 64, and 128 MPI processes were obtained
from the combinations of number of nodes and number of MPI
processes per node that gave the best results in each platform.

IV. RESULTS

A. Latency and Bandwidth

To get a better overview of the network performance of
both platforms, we first executed two microbenchmarks to
measure the latency and bandwidth while stressing inter-
node communication. We chose the OSU Micro Benchmarks
(OMB) suite6 for these experiments, which is a well-known
microbenchmark for measuring and evaluating the perfor-
mance of communication operations. OMB offers a set of
host-based microbenchmarks that can evaluate the sustained
message passing bandwidth and latency between two compute
nodes. Although OMB also implements benchmarks for testing
OpenSHMEM, UCP, and CUDA, we focused on the MPI
benchmark implementation (OMB v 7.2). A description of the
microbenchmarks evaluated in this paper is given next:

• Latency: We chose the osu_latency test to measure
the ping-pong latency between two nodes. A process
sends a message with a certain data size to the receiver
and waits for the reply. Upon receiving a message from
the sender, the receiver replies with the same data size.
This ping-pong test executes many successive iterations,
and average one-way latency numbers are obtained.
The blocking version of MPI functions (MPI Send and
MPI Recv) are used in the tests.

• Bandwidth: For bandwidth evaluation, we used the
osu_bw test. In this test, the sender sends out a fixed

6http://mvapich.cse.ohio-state.edu/benchmarks/

number (equal to the window size) of back-to-back
messages to the receiver and waits for a reply. The
receiver replies only after receiving all these messages.
This process is repeated for several iterations, and the
bandwidth is calculated based on the elapsed time from
the sending of the first message until the time the sender
receives the reply from the receiver and the number
of bytes sent by the sender. This bandwidth test aims
to determine the maximum sustained data rate that can
be achieved at the network level. Thus, non-blocking
versions of MPI functions (MPI Isend and MPI Irecv)
are used in the test.

Figure 1 exhibits the latency and bandwidth achieved with
the point-to-point microbenchmarks from OMB running on
G5K (red line) and AWS (blue line). The x-axis corresponds
to the data size in bytes, and y-axis shows the latency (Figure
1a) and bandwidth (Figure 1b). For small-size messages, the
latency remains consistent and very similar on both platforms.
When dealing with messages ranging from 2 to 4 MB or
potentially larger, both platforms experience an increase in
latency. Regarding bandwidth, a similar pattern emerges when
transmitting small messages (up to 4 kB), with a bandwidth
of approximately 600 MB/s. As the message size increases,
the G5K bandwidth keeps increasing, reaching twice the
bandwidth capacity compared to AWS.

B. Results with NPB

As explained in Section III, we carried out experiments
with NPB applications using different numbers of nodes
(N = {1, 2, 4, 8}) and varying the numbers of MPI processes
per node (P = {1, 2, 4, 8, 16}). We analyzed the scalability of
the applications on both platforms, ranging the total number of
MPI processes from 2 to 128 (np = {2, 4, 8, 16, 32, 64, 128}).
Since some combinations of N × P can result in the same
number of MPI processes (np), we selected the combination
that achieved the best result for each np value in each platform.
This strategy guarantees that the performance comparison

111

248 16 32 64 128

Number of MPI processes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Sp

ee
du

p

(a) IS

248 16 32 64 128

Number of MPI processes

0

20

40

60

80

100

120

Sp
ee

du
p

(b) EP

24 8 16 32 64 128

Number of MPI processes

0

10

20

30

40

50

60

70

Sp
ee

du
p

(c) CG

248 16 32 64 128

Number of MPI processes

0

10

20

30

40

50

Sp
ee

du
p

(d) MG

248 16 32 64 128

Number of MPI processes

0

5

10

15

20

25

Sp
ee

du
p

(e) FT

Legend

Fig. 2: Performance scalability (speedups) obtained with NPB kernels (class C).

considers each platform’s best results. Next, we discuss the
performance results observed by running the NPB kernel.

The IS kernel tests integer computation and communica-
tion performance. This benchmark combines point-to-point
and collective communication operators. Figure 2a shows the
speedup for AWS (blue line) and G5K (red line). Excepted by
the configuration with 32 processes, speedup was superior in
AWS. For instance, with 64 processors, the speedup measured
with AWS reached 14.2 compared to 7.7 in the G5K – almost
a twofold increase in performance. In both platforms, the
speedup decays to less than 2 with 128 processors, demon-
strating that the parallel execution does not scale well for
such a large amount of processes. The point in the graph
corresponding to 32 processes running on AWS coincides with
a change in the number of nodes used in the experiments, i.e.,
the addition of an extra node. Variations on the speedup curve
with adding extra nodes were not observed in the Grid’5000
test results. As the IS benchmark did not reach the AWS
bandwidth limit, AWS could still present a better performance
for this kernel.

The EP kernel estimates the upper achievable limits for
floating-point performance, representing CPU-intensive ap-
plications with minor or negligible communication between
processes. For communication, the EP application does not
use point-to-point communication operators like MPI Send()
and MPI Irecv(), but just a few collective communication
operators such as MPI BCast() and reduction operators. Figure
2b shows the speedup for AWS and G5K running the EP

kernel. As can be noticed, for both AWS and G5K, the speedup
increases linearly with the number of processes. Since the
network is not a bottleneck and has little influence on the
application performance, extra processes can accelerate the test
execution. G5K demonstrated a slightly superior performance
compared with AWS as we increased the number of processes,
but the difference is small (less than 4%). Although modern
virtualization technologies add minimal overhead to CPU-
bound applications, this difference could be caused by multi-
tenant usage, i.e., sharing the same physical server with other
VMs. Even though the memory and the processing cores
are segmented, the processor caches are still shared among
multiple VMs. Moreover, VMs may also interfere with each
other’s performance due to network interface sharing [12].

CG is used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite
matrix and incur irregular communication patterns using the
MPI Send() and MPI Irecv() point-to-point communication
operators. As demonstrated in Figure 2c, this kernel allowed
good improvements in performance with the parallel versions,
as indicated by the high speedup values. We still observed
a similarity between the results obtained on G5K and AWS.
For the scenarios with a higher number of processes, e.g.,
64 and 128, AWS surpasses G5K. We monitored network
traffic with the wireshark tool to investigate this phenomenon
further. We could observe the higher network traffic on AWS
and that MTU (Maximum Transmission Unit) was set to 1000
bytes on G5K and 9000 on AWS. The higher value in MTU

112

configuration aligns efficiently with the data size exchanged
during internode communication in AWS. It contributes to
the better performance even running on top of virtualized
infrastructure.

MG provokes intensive data communication using many
MPI send() and MPI BCast() calls. Figure 2d shows that MG
speedup using AWS is inferior to the G5K speedup. Unlike
IS and CG kernels, where AWS performed better than G5K,
the communication pattern comprises large messages with the
MPI BCast() operation in MG. Thus, even with an MTU set
to 9000, the data transferring cost through a network with
lower bandwidth becomes noticeable in this test scenario. The
better performance observed with G5K does not result only
from its bare-metal infrastructure; it is a consequence of the
higher network bandwidth.

FT performs 3D Fast Fourier Transform (FFT) methods,
executing three one-dimensional FFTs, one for each dimen-
sion, and features long-distance communications. It repre-
sents a computationally intensive application that uses col-
lective communication operators such as MPI BCast() and
MPI Alltoall(). Speedup curves depicted in Figure 2e, ob-
tained from the experimental results, resemble the observed
behavior with the IS application but with better scalability with
the increasing number of processes and higher speedup. IS and
FT execute the same collective communication operators, but
FT does not use point-to-point communication. In addition, the
message size with FT is smaller than in MG. Consequently,
the superior performance of AWS against G5K is due to the
difference between the MTUs and the fact that the network
bandwidth did not become a bottleneck neither for G5K nor
for AWS.

V. RELATED WORK

Recent advances in virtualization technology and invest-
ments in compute-optimized hardware done by public cloud
providers caught the attention of the HPC community. Because
of that, the performance evaluation of HPC applications in
public cloud environments has been a recurring theme in the
literature.

Application kernels from NPB have been used to evaluate
public clouds’ performance and cost efficiency. Okada et
al. [13] compared the performance achieved by LU and
SP kernels when running on GCP and on a private cloud
implemented with OpenStack. The results showed that the
performance of HPC applications can be affected by VM
allocation in physical hardware and by the use of hyper-
threading technology. Maliszewski et al. [14] evaluated the
performance of all NPB kernels when running on three dif-
ferent instances/network interconnections of Microsoft Azure.
They demonstrated that the interconnection plays a crucial
role in speeding up the kernels. Roloff et al. [15] performed
a more complete evaluation, comparing the performance and
cost efficiency of HPC applications running on three public
clouds against the same applications running on a traditional
on-premise cluster. They concluded that the cloud can provide
a viable platform for running HPC applications despite some

disadvantages in the deployment. Moreover, results obtained
with kernels from NPB showed that HPC applications can
run efficiently on the cloud, but care must be taken when
choosing the provider, as the differences between them are
significant. Big Data benchmarks have also been used to
evaluate the feasibility of clouds for HPC. Salaria et al. [16]
presented a comparative study of the performance of repre-
sentative big data benchmarks, and HPC benchmarks running
on supercomputer and cloud. Experiments using C4 compute-
optimized Amazon EC2 instances revealed that these instances
are feasible for scientific computing and its applications in
simulations, modeling, and analysis.

Other researchers have focused on the use of private cloud
solutions for HPC. Tomić et al. [17] evaluated the HPL
and NAMD benchmarks on the HPE OpenStack testbed and
NAMD benchmarks on a supercomputer located at Rijeka
University Supercomputing Center. Their results revealed two
major bottlenecks: the throughput of the interconnect and
cloud orchestration layer, among others responsible for man-
aging the communication between Cloud instances. Lit et
al. [18] compared the performance of Open Source Clouds
platforms such as Nimbus, Open Nebula and OpenStack for
HPC according to the HPC Challenge (HPCC) benchmark
suite. They concluded that OpenStack achieved the best per-
formance. Gupta et al. [19] evaluated the performance-cost
tradeoffs of running a HPC application using NPB and two
real-world applications with up to 256 cores. They considered
two on-premise HPC clusters and one private cloud that uses
KVM for virtualization. They found that clouds are more cost-
effective for low communication-intensive applications such as
embarrassingly parallel and tree-structured computations, and
HPC-optimized clusters are better for the rest.

Our work is complementary to the aforementioned works.
We concentrated our analysis on a well-known cloud provider
(AWS) that offers instances optimized for HPC. To the best
of our knowledge, our study is the only one that evaluates the
performance of MPI-based NPB kernels running on the most
recent compute-optimized VM instances from AWS (c5n),
contrasting them against the results obtained with the same
kernels running on G5K.

VI. CONCLUSION

Access to HPC clusters is limited to the well-established
research and computing centers. Emerging research groups,
startups, and practitioners not well provided for financially
have found a barrier in advancing their HPC-related research.
The substantial costs and complexities associated with de-
ploying and maintaining on-premise HPC infrastructures have
created barriers for these entities. A low-cost alternative is
to adopt on-demand pay-per-use infrastructures such as those
provided by cloud computing for running HPC applications.
However, a fundamental question arises: Can these shared and
virtualized infrastructures deliver performance comparable to
that of conventional HPC clusters? To answer this question, we
presented a comparative study involving the Grid’5000 cluster
(on-premise) and AWS public cloud (on-demand) as platforms

113

to execute realistic MPI applications implemented by the NAS
Parallel Benchmark.

Our investigations were framed by extensive experiments,
detailed in Section III, encompassing varying numbers of
nodes and MPI processes per node. We carefully selected
similar infrastructure and hardware components to AWS and
G5K for a fair comparison. The results show that CPU-bound
applications achieve similar results on both platforms. The vir-
tualized infrastructure delivered a slightly small performance,
but the differences observed in speedup with AWS and G5K
were less than 4%.

Interestingly, AWS performed better in scenarios char-
acterized by workloads with moderate communication and
medium-sized messages. This performance gain in the virtu-
alized infrastructure can be attributed to AWS’s MTU con-
figuration, which is set at a higher value, thereby aligning
efficiently with the size of data exchanged between nodes.
However, an inherent limitation of cloud-based infrastructure
is its bandwidth capacity. As the workload and message sizes
increase, the G5K bandwidth reaches twice the capacity of
AWS. In scenarios with communication-bound applications,
AWS may be impacted by the limited network bandwidth
compared to G5K.

Our comparative study has depicted nuanced performance
behaviors between the G5K cluster and AWS infrastructure,
showcasing areas of superiority in specific scenarios for each
platform. However, it is worth mentioning that the perfor-
mance results with the virtualized infrastructure are similar
in most cases. There are no significant performance penalties
in CPU-bound applications. The main differences appear with
the communication-bound applications.

REFERENCES

[1] R. Buyya and B. Varghese, “Next Generation Cloud Computing:
New Trends and Research Directions,” Future Generation Computer
Systems, vol. 79, no. 3, pp. 849–861, sep 2017. [Online]. Available:
https://doi.org/10.1016/j.future.2017.09.020

[2] “The nist definition of cloud computing,” Gaithersburg, USA, Tech.
Rep., 2011.

[3] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. S. Netto,
A. N. Toosi, M. A. Rodriguez, I. M. Llorente, S. D. C. D. Vimercati,
P. Samarati, D. Milojicic, C. Varela, R. Bahsoon, M. D. D. Assuncao,
O. Rana, W. Zhou, H. Jin, W. Gentzsch, A. Y. Zomaya, and H. Shen,
“A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade,” ACM Computing Surveys, vol. 51,
no. 5, nov 2019. [Online]. Available: https://doi.org/10.1145/3241737

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility,” Future Generation
Computer Systems, vol. 25, no. 6, jun 2009. [Online]. Available:
https://doi.org/10.1016/j.future.2008.12.001

[5] P. Browne, X. Lu, J. Mills, and D. Panda, “OpenStack and Network
Fabrics,” in The Crossroads of Cloud and HPC: Exploring OpenStack
Cloud Computing for Scientific Workloads. CreateSpace Independent
Publishing Platform, oct 2017, pp. 14–22.

[6] B. Bethwaite and X. Lu, “OpenStack and Virtualised HPC,” in The
Crossroads of Cloud and HPC: Exploring OpenStack Cloud Computing
for Scientific Workloads. CreateSpace Independent Publishing Platform,
oct 2017, pp. 2–12.

[7] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F.
Cunha, and R. Buyya, “HPC Cloud for Scientific and Business
Applications: Taxonomy, Vision, and Research Challenges,” ACM

Computing Surveys, vol. 51, no. 8, jan 2018. [Online]. Available:
https://doi.org/10.1145/3150224

[8] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, ser. Communications in Computer and Information
Science. Springer International Publishing, 2013, vol. 367, pp. 3–20.

[9] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[10] V. Munhoz and M. Castro, “Hpc@cloud: A provider-agnostic software
framework for enabling hpc in public cloud platforms,” in Simpósio em
Sistemas Computacionais de Alto Desempenho (WSCAD). Sociedade
Brasileira de Computação (SBC), 10 2022, pp. 157–168.

[11] J. F. Uller, J. V. Souto, P. H. Penna, M. Castro, H. Freitas, and
J.-F. Méhaut, “Enhancing programmability in noc-based lightweight
manycore processors with a portable mpi library,” in Simpósio em
Sistemas Computacionais de Alto Desempenho (WSCAD). Sociedade
Brasileira de Computação (SBC), 10 2020, pp. 155–166. [Online].
Available: https://sol.sbc.org.br/index.php/wscad/article/view/14066

[12] J. R. Brunetta and E. Borin, “Selecting efficient cloud resources for
hpc workloads,” in Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing, ser. UCC’19. Association
for Computing Machinery, 2019, p. 155–164.

[13] T. K. Okada, A. Goldman, and G. G. H. Cavalheiro, “Using nas parallel
benchmarks to evaluate hpc performance in clouds,” in 2016 IEEE
15th International Symposium on Network Computing and Applications
(NCA), 2016, pp. 27–30.

[14] A. M. Maliszewski, E. Roloff, E. D. Carreño, D. Griebler, L. P. Gaspary,
and P. O. A. Navaux, “Performance and cost-aware hpc in clouds:
A network interconnection assessment,” in 2020 IEEE Symposium on
Computers and Communications (ISCC), 2020, pp. 1–6.

[15] E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux, “High
performance computing in the cloud: Deployment, performance and cost
efficiency,” in 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, 2012, pp. 371–378.

[16] S. Salaria, K. Brown, H. Jitsumoto, and S. Matsuoka, “Evaluation of hpc-
big data applications using cloud platforms,” in 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), 2017, pp. 1053–1061.

[17] D. Tomić, Z. Car, and D. Ogrizović, “Running hpc applications on many
million cores cloud,” in 2017 40th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics
(MIPRO), 2017, pp. 209–214.

[18] C. Li, J. Xie, and X. Zhang, “Performance evaluation based on open
source cloud platforms for high performance computing,” in 2013 6th
International Conference on Intelligent Networks and Intelligent Systems
(ICINIS), 2013, pp. 90–94.

[19] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”
in 2011 Sixth Open Cirrus Summit, 2011, pp. 22–26.

114

