
A Preliminary Review of Function as a Service
platform running with AWS Spot Instances

Luciana da Costa Marques
Institue of Mathematics and Statistics

University of Sao Paulo
Sao Paulo, Brazil

lucianadacostamarques@gmail.com

Alfredo Goldman
Institute of Mathematics and Statistics

University of Sao Paulo
Sao Paulo, Brazil
gold@ime.usp.br

Abstract—Cloud computing enabled users to easily implement
what was previously a complex data center infrastructure,
reducing its maintenance related costs. However, cloud costs can
be challenging to predict with all its variety of resources and
price schemes. Amazon Web Services offers the spot pricing
mechanism for virtual machines (VM), in which an end user
buys idle VM capacity for up to 90% cost reduction. But, these
machines can be terminated by AWS at any given time, so not
every application may be a good fit using them. We here explore
the deployment of function as a service (FaaS) platforms in spots
by using funcX, a distributed and high performance FaaS project.
We chose MASA-OpenMP, a DNA sequence comparison project,
to be executed in two different scenarios: one with in-memory
execution in spot VMs, orchestrated with HADS, a Hibernation-
Aware Dynamic Scheduler for spot instances, and the other using
a funcX client deployed in spot instances as well. Our initial
results showed that costs using the funcX approach are potentially
smaller, and it also offers more implementation flexibility. We
also present possible next steps for more experiments and
investigation.

Index Terms—cloud computing, spot instances, preemptive
virtual machines, function as a service

I. INTRODUCTION

Cloud pricing and costs have received both academic and in-
dustry interest for many years now. With the rise of popularity
of big cloud providers, such as Amazon Web Services (AWS),
it has become incredibly easier to build software services,
since that involved building a complex infrastructure prior to
the Cloud. This has amplified services and products that can
be built on top of it, and demand will only increase in coming
years. This is because cloud resources are chosen based on
their characteristics (e.g. CPU, Disk) rather than what would
imply in their physical construction [6]. Another interesting
cloud computing fact is that users do not need to upfront
big financial investments, but pay-as-you-go for the resources
needed and used [7].

With this increased demand, it is expected, naturally, that the
relevance in cloud pricing will increase as well. With the de-
velopment of the public cloud market, the resources provided
by these companies were also expanded, but this resulted in
part the providers’ resources being underutilized. Monetizing
these idle, underutilized resources became then a challenge.
To address such challenges, AWS launched in November 2009

an auction mechanism to provide users with these temporarily
unused virtual machines, named spot instances [8].

A. Spot instances

This work is concentrated in the field of preemptive virtual
machines, most specifically AWS’ spot instances, providing a
preliminary review of how these machines can be used to run
Function as a Service (Faas) platforms. This type of virtual
machine has received a considerable amount of attention in
the past decade after AWS started offering it in 2009.

What is most interesting about spot instances and their
definition opposed to their on-demand equivalent is that their
price can be up to 90% cheaper while AWS offers no Service
Level Agreement (SLA) for them, meaning they can be termi-
nated at any given time. An example of such price difference
can be seen in Table I, extracted from [8]. When renting a
virtual machine through their Elastic Cloud Computing (EC2)
product, one can choose its pricing mode: on-demand and spot.
In the first case, the EC2 instance has a fixed price and 99%
of guaranteed availability, while in spot model there is no such
guarantees but it offers the potential of high savings.

TABLE I: Comparison between on-demand instance prices and
spot instance prices for Linux as the operating system, March
30, 2022, US East (Ohio), extracted from [8]

Instance
Type vCPU Memory

(GB)
Spot instances

(per-hour)
On-demand
(per-hour)

a.medium 1 2 $0.0049 $0.0255
a1.xlarge 4 8 $0.0197 $0.1020

m4.10xlarge 40 160 $0.4245 $2.0000
m5n.2xlarge 96 384 $0.9578 $5.7120

B. Function as a Service and funcX

Function as a Service (FaaS) is a paradigm that aims to
simplify the deployment of applications. With this paradigm,
the user registers a function, which is a piece of code with
defined inputs and logic to be executed, into the FaaS system,
and this function is executed by it returning generated outputs.
The benefit of this paradigm is that users usually do not
have to develop the physical aspect of the system (such as
a computer or data center), neither the virtual one (virtual
machines, containers) [12].

95

2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)

979-8-3503-8160-3/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PADW60351.2023.00024

FaaS systems are offered by cloud providers usually in a pay
as you go implementation that don’t necessarily scale for big
applications. With this challenge, funcX project was proposed
to enable users to use FaaS in a distributed environment [12]
[3].

Concerning the use of funcX service, it provides registration
of remote systems by deploying a funcX agent, and users
interact with it via a REST API that can be hosted virtually.
It offers registration of remote systems and, with this, allows
function registration and sharing that can be used by funcX
clients.

The use case of FaaS is interesting to be explored with
execution of spot instances. Since functions can be executed
independently, if a large application can be broken down into
smaller pieces (in this case, functions), then a net of spot
instances can be used to deploy and execute such functions.
This work is a preliminary investigation in running funcX
using spot instances.

II. PREVIOUS WORK

The papers that mainly inspired this research effort are: [7],
[10], [12] and [3]. They are briefly detailed in this chapter
for better context. As the writing of this paper, there is
no knowledge of prior work citing deploying Function as a
Service systems with preemptive virtual machines.

A. Deadline Constrained Bag-of-Tasks Dynamic Scheduler

The work in [7] presents Hibernation-Aware Dynamic
Scheduler (HADS), a scheduler for efficiently allocating spot
instances while taking advantage of their hibernation feature.
This is an interesting aspect of spots because, instead of
terminating the instance after the two minute termination
notice, the VM’s state is recorded into an EC2 Block Storage
(EBS) and the user is only charged for the EBS memory usage
during hibernation time. In this way, the VM can restart when
it becomes available again from the point it got hibernated.

This work also explores Burstable VMs by proposing
an extension to HADS name Burst-HADS, which not only
considers the hibernation feature but also the burst capacity
of burstable on-demand instances. This type of VM offers
the same technical specs as regular instances, but with the
potential 20% less costs but with controlled CPU power
offered to users.

Both HADS and Burst-HADS focus on the execution of Bag-
Of-Tasks (BOTs) applications, which the author defines as a
task that can be divided in a set of independent and identical
smaller tasks and thus can be run independently. This kind
of application is ideal for spot instances because knowing the
cost of a small task it is possible to infer the cost of all the
tasks together, and they can be executed in a fault-tolerant
manner.

The architecture of both frameworks is based on a
coordinator-worker architecture standard. The coordinator de-
fines the scheduling plan, chooses the VMs to be launched,
request the resources to the provider and migrates tasks to
other VMs. The workers operate as asynchronous applications

working on the background of each VM, with the main
responsibility to communicate to the coordinator any update
in the VM’s status.

The scheduler optimizes the execution to be ran in spot
instances as much as possible, respecting a set of inputs
defined by the user. In case a running spot hibernates and
there is no other substitute available, then it allocates an on-
demand VM so the total execution time will respect the input
deadline.

The framework execution steps are defined below:
1) User provides input parameters, such as instance types

that can be considered to be allocated, deadline con-
straint for total execution time, and others (defined in
env.json and job.json files).

2) Then the initial scheduling map is initiated.
3) Finally, the VMs are allocated and workers are started.
4) In case of spot termination or hibernation prior to the

deadline constraint, new VMs are scheduled.
HADS software implementation was used to run the exper-

iments described in III.

B. Comparing SARS-CoV-2 Sequences using a Commercial
Cloud with a Spot Instance Based Dynamic Scheduler

The work in [10] focused on executing a High Performance
Computing (HPC) application with spot instances in AWS in
comparison with the same execution but using on-demand
instances. The application chosen was MASA-OpenMP [4],
a parallel implementation of the Smith-Waterman algorithm
for string comparison in instant time complexity. For the spot
instances experiments, the application was also run using the
Burst-HADS framework [9], a dynamic scheduler specialized
in bag-of-tasks applications to run efficiently in the cloud
minimizing costs given a deadline constraint.

This genome comparison is an application of great interest
to be run in the cloud, for it mostly consists in a string
comparison algorithm that be paralleled. Due to the covid-19
pandemic, comparing sars-cov DNA sequences became rele-
vant for scientists to understand better the disease. According
to the work, each DNA sequence needed to be compared to
other 22,600 sequences (with 30,000 characters each), making
it necessary to run 22,600 MASA-OpenMP executions to
finish the task.

Apart from the number of concomitant executions, [10]
also defined well one of the main problems for cloud end
users: unlike the advertising of cloud providers who advocate
the ease of use of cloud environments as one of the main
advantages, when considering all the necessary variables to be
defined to execute a given application efficiently, a cloud can
become a complex environment where any decision impacts
directly in the final execution and respective monetary costs.

For that reason, using the Burst-HADS framework [9]
makes it easier for the end user on scheduling efficiently
spot instances and what to do when they become unavailable.
It also takes advantage of the hibernation feature of AWS
[1] which made possible to handle hibernation easier in the

96

AWS environment. More details on the implementation of this
framework is in chapter IV-A.

The execution model of this work inspired the methodology
approach used in this paper, described more in depth in
section III. Since there were 22,600 independent and very
short tasks, running them in sequence would compromise the
efficiency of the experiment. So Burst-HADS allows grouping
tasks in a supertask to be executed, and since each task is very
short, there is no need to use check points for this execution.
The tasks in a super task are executed sequentially, and each
of them is done in a few milliseconds.

The experiments in this work aimed for using the spot
instance’s hibernation feature, so the final set of VM types
used were the C family, optimized for intense computing (c3,
c4, c5), the M family (m3, m4 and m5) and the R family,
optimized for massive data processing in memory (r3, r4 and
r5).

Another important information is that everything was done
in a single region (us-east-1) and using the x86 64 archi-
tecture. In each of these machine types, three executions of
MASA-OpenMP were run to obtain the average time spent
(in seconds) of a single genetic comparison (NC 045512.2
and MW240720.1) and its associate monetary costs in U.S.
dollars.

This work presented final results for one task of DNA
comparison and a bag of tasks divided in supertasks. For all
the scenarios, using spot instances had a better price efficiency
when comparing to on-demand only.

C. Serverless Supercomputing: High Performance Function as
a Service for Science

The work in [3] is where funcX is presented. The main
purpose of this project was driven by recent demands of
different applications (Machine Learning, Data Analytics) for
software to be more distributed and close to data, and also
to be triggered by events such as the arrival of new data.
The authors cite challenges to be overcome with a distributed
FaaS platform, including: complex and expensive infrastruc-
ture, slow and unreliable network communication, security
challenges, inflexible authorization and authentication models
and unpredictable schedule delays. This caused monolithic
applications to be decoupled into smaller and independent
parts that can be here defined as functions, enabling a more
efficient execution of the whole system.

FuncX is thus proposed as a high performance function-
as-a-service (FaaS) open-source project. This project enables
distributed, high performance function execution that can
be deployed in different infrastructure types, such as cloud
computing (in the case of this work, spot instances), but also
supercomputers and clusters (used in different research fields).
Users can register functions to be executed by using the Python
programming language, which can be deployed independently
from of the physical location where it will run.

The authors present a brief survey of commercial FaaS
platforms, such as AWS Lambda, Google Functions and Azure
Functions. While these platforms present good integration with

other resources within the same platform such as file systems,
monitoring and others, as applications scale in data intensive-
ness they bring pricing models challenges and oftentimes its
deployment is tied to that same platform. Because of this,
open-source platforms such as funcX offer more flexibility
since they can be deployed on-premise and are not tied to
a specific pricing model.

The survey also includes open-source projects, such as
Apache Open Whisk, Fn and Kubeless and academic platforms,
SAND and ABACO. They all are Docker or Kubernetes-
based when deployed externaly, which can bring additional
development overhead. When compared with these platforms,
funcX provides more flexibility of deployment for not being
tied to Docker, being able to be deployed locally and not
attaches to a specific pricing model. As a disadvantage, it only
allows function implementation in the Python programming
language, while other platforms also support other popular
languages.

Concerning the authentication and authorization part, it
uses Globus Auth [11], an authentication and authorization
academic platform that supports different applications from
the research community. It is used to outsource the user/client
authentication process for the project.

The funcX service consists in a registry of endpoints and
registered functions. The service provides a REST API to
register and manage functions, as well as setup, initiate and
terminate endpoints so users can execute such functions.
Interactions between users and registered functions are done
between REST APIs.

In other to prove optimization, automation, fault-tolerance
and scalability, the authors investigated and described use
cases for scalable metadata extraction, machine learning in-
ference as a service, synchrotron serial crystallography, neu-
roscience, and correlation spectroscopy. This work showed the
overall benefit of using funcX as a FaaS platform, because it
is not only has similar performance as other solutions in the
market but it also offers great flexibility for different use cases.

D. Real-time HEP analysis with funcX, a high-performance
platform for function as a service

The work in [12] is one of the references listed in funcX’s
website [5]. It presents a detailed use case of the project for
High-Energy Physics (HEP), which requires the processing of
massive volume of data.

The use of funcX in this case was favourable due the the
following advantages:

• funcX accelerated software development by facilitating
the break down of large applications into smaller mod-
ules (functions). This was even further optimized when
scheduling compute resources, for some functions were
appropriate to run with CPU while others with GPU.

• The funcX endpoints provided a common interface to
registered functions and resource allocation was scaled
according to demand.

• The possibility of using containers offer uniform environ-
ments, reducing reproducibility errors of scientific results.

97

• Globus Auth, used by funcX to outsource its Authoriza-
tion and Authentication flow, facilitated authentication for
the experiments.

• As demonstrated in [3], function execution is low-latency,
which optimizes the analysis execution performed in
Jupyter Notebooks.

As part of this work, the authors provided some code
listings, which helped the development of the function def-
inition code in python programming language as illustrated
in Code Listing 1, which was used in all the experiments in
subsection II-C.

Apart from the function code definition, a backend project
is also described for Coffea, a HEP analysis framework, which
provides tools for data visualization, analysis and correction.
The project makes processing of event data in parallel due to
funcX, enabling real-time data analysis. Since all the processes
use the same registered function, this process can be easily
scaled.

III. METHODOLOGY

This chapter will describe how the work was developed and
the preliminary results obtained for deploying a FaaS system
using AWS spot instances. Overall, the methodology followed
up to this point is similar to in [10]: the experiments are
executed with spot instances, and their final cost is compared
to what it would have been if executed with on-demand prices.

It is important to emphasize that this is still a work in
progress and that more experiments and investigations will
be conducted for this work.

A. Tests with HADS to execute MASA-OpenMP

Here are defined the replicated experiments as described in
[10]. It consists in executing the application of MASA-OpenMP
using the Burst-HADS framework, but we limited the number
of DNA sequence comparison tasks to only one. The executed
code can be found in [2].

B. Definition of input sets

The input sets for executing HADS are the following:
1) Accepted machine types (M)
2) Deadline constraint (maximum amount of time to com-

plete the application). (D)
For defining the instance type input set M , the choice of

the instance types was based on the experiments conducted in
[7], which focused on the C instance family due to its better
availability in the execution region (us-east-1) and reasonable
pricing. It was also not included the possibility of hibernation
in this set of experiments since it was not relevant for this
particular initial investigation.

The definition of D was arbitrary, as the main focus in
this step was to understand the framework’s behavior and
financial results. The value used was the default provided in
the implementation (5 minutes), which was more than enough
for a simple execution of MASA-OpenMP.

So, summarizing the experiments performed: HADS was
used to schedule five different executions, each of them

Instance Type vCPU Memory
(GiB)

On-demand
hourly rate

c4.large 2 3.75 $0.10
c4.xlarge 4 7.5 $0.199
c4.2xlarge 8 15 $0.398
c4.4xlarge 16 30 $0.796
c4.8xlarge 36 60 $1.591

TABLE II: VM attributes used in the MASA-OpenMP exper-
iments

consisting in a single DNA comparison task and in a different
AWS instance type (c4.large, c4.xlarge, c4.2xlarge, c4.4xlarge
and c4.8xlarge).

C. Testing with funcX endpoints

This set of experiments with funcX is to execute the same
BoT application of DNA comparison as performed in [10],
but using the FaaS computing paradigm. To perform this, a
function is defined to be executed.

To deploy funcX using spot instances, the methodology
followed was this:

1) A remote virtual machine in spot billing mode is set up
to start and host a new funcX endpoint.

2) The defined DNA comparison function is then executed
by client calling the endpoint.

3) Total time to execute the function is counted, and an
extra 45s are added to the total execution time to account
for the starting and terminating period of the machines
(empirically calculated).

An example of a function to be executed with funcX can be
defined as in Code Listing 1.

Code Listing 1: Python file to execute a function in a funcX
endpoint
from globus compute sdk i m p o r t C l i e n t
from globus compute sdk i m p o r t E x e c u t o r

en d id=<ENDPOINT ID>

f i l e 1 =<DNA SEQUENCE 1>. f a s t a
f i l e 2 =<DNA SEQUENCE 2>. f a s t a

d i r e c t o r y =<DIRECTORY TO EXECUTE MASA>

C l i e n t ()

d e f m a s a f u n c t i o n (command) :
i m p o r t s u b p r o c e s s
i m p o r t os
os . c h d i r (d i r e c t o r y)
r = s u b p r o c e s s . run (command . s p l i t ())
r e t u r n r . r e t u r n c o d e

wi th E x e c u t o r (e n d p o i n t i d = e nd id) a s gce :
cmd = ” . / masa −openmp f i l e 1 f i l e 2 ”
f u t u r e =gce . s ubmi t (m a s a f u n c t i o n , cmd)

98

p r i n t (f u t u r e . r e s u l t ())

IV. RESULTS AND DISCUSSION

A. Executing MASA-OpenMP with HADS

The results for the execution of MASA-OpenMP with
HADS, referred in subsection III-A, are shown in Table III.
All results are for a single execution only. For each instance
type, their technical specification are presented, as well price
breakdown by scheme (on-demand and spot), as well as the
total experiment time (including waiting for scheduling) and
the estimated cost given by HADS.

TABLE III: MASA-OpenMP execution with HADS results

Instance
Type

On-demand
hour rate

Total
time

Estimated
cost

Estimated spot
hour rate

c4.large $0.100 2min43s $0.0018 $0.0398
c4.xlarge $0.199 2min30s $0.0040 $0.0960
c4.2xlarge $0.398 2min37s $0.0087 $0.1995
c4.4xlarge $0.796 3min07s $0.0217 $0.4178
c4.8xlarge $1.591 3min18s $0.0227 $0.4127

Time elapsed and estimated cost were data provided by
HADS software. The time elapsed for all five results are close,
the minimum being 2 minutes and 30 seconds, while the
maximum being 3 minutes and 18 seconds. The estimated
cost increases with the machine size, as expected, since the
smaller machines tend to cost less. Since the spot hour rate is
variable, the estimated spot hour rate column was calculated
by spot hour rate = (3600/total time in seconds) ∗
estimated cost. These same values were used in subsec-
tion IV-B as reference for comparison between HADS and
funcX.

One interesting aspect in Table III is that the estimated spot
instance hour rate for c4.8xlarge instance is slightly smaller
than for c4.4xlarge instance. Since the price of spot instances
can vary throughout the day and only one experiment was
performed for each instance type, it is not possible to state
if this pattern would always be observed, but this may have
happened due to a lower demand in that particular time for
c4.8xlarge in comparison to c4.4xlarge in the us-east-1 region.

Regardless of the machine size, the spot cost was always
smaller than the equivalent on-demand price, indicating that
for this particular task spot instances have a cost advantage.

B. MASA-OpenMP execution with funcX endpoint

This experiment’s goal was to do a simple test to analyze
the execution of MASA-OpenMP with a funcX endpoint.
This consisted in deploying a spot instance, varying the
instance type using the same set from subsection IV-A, and
executing this function by calling this endpoint from a personal
computer.

The total execution time is the sum of the function execu-
tion, and an additional 45s to account for instance initialization
time (around 15s) and instance termination (around 30s). Both
the instance initialization and termination time were measured

manually, and as an improvement for future experiments this
measurement will be automatized.

Another limitation to this experiment was that both the
spot instance and the personal computer had to authenticate
with Globus Compute as mentioned in subsection II-C. The
authentication work in both machines was also done manually,
and the time required by it was not added to the total executed
time. Ideally this part should also be automatized, which could
change the total execution time but not significantly. Still,
for more precise results this will be automatized in future
experiments.

TABLE IV: MASA-OpenMP execution with funcX

Instance
Type

On-demand
hour rate

Spot
hour rate

Total
time

Estimated
cost

c4.large $0.100 $0.040 48.02s $0.0005
c4.xlarge $0.199 $0.096 47.66s $0.0013

c4.2xlarge $0.398 $0.199 47.42s $0.0026
c4.4xlarge $0.796 $0.418 47.43s $0.0055
c4.8xlarge $1.591 $0.413 47.48s $0.0054

V. CONCLUSION AND FUTURE WORK

This analysis is a work in progress, but at this moment there
is already some insightful data. The time to implement funcX’s
setup was considerably easier than the one with HADS, and
scheduling a spot instance with a funcX endpoint is a relatively
more straightforward task. There were some limitations to the
experiments with funcX as mentioned in section IV: the time
to initiate and terminate an instance were manually measured
and added to the total execution time, while the authentication
and endpoint setup work were also done manually but not
accounted for. These measurements will be automatized in
setup scripts so data can be more precise in future results,
however the authentication and endpoint setup time would not
have increased the total time significantly.

Based on the current data, we here conclude that funcX
has a potential to offer more flexibility, more straightforward
implementation and potentially less monetary costs. For a
more thorough analysis, though, we want to explore other
applications and scenarios.

A. Next steps

Given the presented conclusions, we will follow these next
steps in this research work:

• Automation for the following measurements: initializa-
tion and termination of instance in AWS in the funcX
tests;

• Perform another BoT test with MASA-OpenMP but this
time with more tasks in parallel, such as in [10]. We
can explore the scability feature of funcX by varying
the number of clients executing a similar function and
the number of endpoints, and comparing the results with
executing multi-task with HADS;

• Contribute with HADs to schedule uninterruptible funcX
endpoints. HADs has the potential of improving cost
efficiency of using funcX since user can input a set of

99

accepted instances and HADs schedules and terminates
instances in the most efficient manner, however now only
for a deadline constrained tasks;

• Although the focus of this work was in investigating the
spot instance usage, it would be interesting to compare
the costs of funcX experiments with similar applications
running with AWS Lambda, AWS’s commercial FaaS
platform product.

ACKNOWLEDGMENT

The authors would like to thank Luan Teylo Gouveia Lima,
for your immense support with the experiments with HADS
and for always being available for questions, and the São Paulo
Research Foundation (Fundação de Amparo à Pesquisa do
Estado de São Paulo - FAPESP) for funding project 19/26702-
8.

REFERENCES

[1] A AWS. Amazon EC2 Spot Lets you Pause and Resume
Your Workloads. 2017.

[2] Burst-HADS source code. URL: https : / / github . com /
luanteylo/hads .

[3] Ryan Chard et al. Serverless Supercomputing: High
Performance Function as a Service for Science. 2019.
arXiv: 1908.04907 [cs.DC].

[4] Edans F. De O. Sandes et al. “MASA: A Multiplatform
Architecture for Sequence Aligners with Block Prun-
ing”. In: ACM Trans. Parallel Comput. 2.4 (Feb. 2016).
ISSN: 2329-4949. DOI: 10.1145/2858656. URL: https:
//doi.org/10.1145/2858656.

[5] Federated function as a service. Accessed: 2023-06-09.
URL: https://https://funcx.org/.

[6] Gareth George et al. “Analyzing AWS Spot Instance
Pricing”. In: 2019 IEEE International Conference on
Cloud Engineering (IC2E). 2019, pp. 222–228. DOI: 10.
1109/IC2E.2019.00036.

[7] Luan Teylo Gouveia Lima. “Scheduling Deadline Con-
strained Bag-of-Tasks in Cloud Environments using
Hibernation prone Spot Instances”. PhD thesis. Flumi-
nense Federal University, 2021. URL: https://site.ic.uff.
br/teses-e-dissertacoes/#tab-102701.

[8] Liduo Lin, Li Pan, and Shijun Liu. “Methods for
improving the availability of spot instances: A survey”.
In: Computers in Industry 141 (2022), p. 103718. ISSN:
0166-3615. DOI: https: / /doi .org/10.1016/ j .compind.
2022 . 103718. URL: https : / / www. sciencedirect . com /
science/article/pii/S0166361522001154.

[9] Luan Teylo et al. “A dynamic task scheduler tolerant
to multiple hibernations in cloud environments”. In:
Cluster Computing 24.2 (2021), pp. 1051–1073.

[10] Luan Teylo et al. “Comparing SARS-CoV-2 Sequences
using a Commercial Cloud with a Spot Instance Based
Dynamic Scheduler”. In: 2021 IEEE/ACM 21st Inter-
national Symposium on Cluster, Cloud and Internet
Computing (CCGrid). 2021, pp. 247–256. DOI: 10 .
1109/CCGrid51090.2021.00034.

[11] Steven Tuecke et al. “Globus Auth: A research iden-
tity and access management platform”. In: 2016 IEEE
12th International Conference on e-Science (e-Science).
IEEE. 2016, pp. 203–212.

[12] Anna Elizabeth Woodard et al. “Real-time HEP analysis
with funcX, a high-performance platform for function
as a service”. In: European Physical Journal Web of
Conferences. Vol. 245. European Physical Journal Web
of Conferences. Nov. 2020, 07046, p. 07046. DOI: 10.
1051/epjconf/202024507046.

100

https://github.com/luanteylo/hads_
https://github.com/luanteylo/hads_
https://arxiv.org/abs/1908.04907
https://doi.org/10.1145/2858656
https://doi.org/10.1145/2858656
https://doi.org/10.1145/2858656
https://https://funcx.org/
https://doi.org/10.1109/IC2E.2019.00036
https://doi.org/10.1109/IC2E.2019.00036
https://site.ic.uff.br/teses-e-dissertacoes/#tab-102701
https://site.ic.uff.br/teses-e-dissertacoes/#tab-102701
https://doi.org/https://doi.org/10.1016/j.compind.2022.103718
https://doi.org/https://doi.org/10.1016/j.compind.2022.103718
https://www.sciencedirect.com/science/article/pii/S0166361522001154
https://www.sciencedirect.com/science/article/pii/S0166361522001154
https://doi.org/10.1109/CCGrid51090.2021.00034
https://doi.org/10.1109/CCGrid51090.2021.00034
https://doi.org/10.1051/epjconf/202024507046
https://doi.org/10.1051/epjconf/202024507046

