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Abstract—Geophysical exploration methods are important in
discovering essential resources like oil and gas. However, tra-
ditional exploration often involves environmentally detrimental
practices. To address this, software solutions simulate seismic
imaging techniques for oil detection. In this scenario, the industry
is now transitioning these applications to cloud-based Software
as a Service (SaaS) models, offering benefits like resource
optimization, eco-friendliness, and advanced data analytics. This
shift, however, presents challenges in performance, scalability,
and cost management. This paper presents a case study on
the Fletcher modeling application as a SaaS in geophysical
exploration, exploiting cloud hardware heterogeneity. Through
an extensive set of experiments on the Google Cloud instances
with different multicore processors, we show that the Fletcher
SaaS model scales with increased hardware resources, with AMD
instances offering a better performance-cost trade-off than Intel.

Index Terms—Cloud Computing, Performance, Fletcher, Geo-
physical Exploration

I. INTRODUCTION

Geophysical exploration methods play an important role
in advancing human civilization by facilitating the discovery
of vital resources for the economic development of nations,
including commodities like oil and gas. Nevertheless, investi-
gating new oil reservoirs frequently requires the employment
of intrusive practices, including the excavation of drilling
sites in ecologically sensitive areas and the improper dis-
posal of waste materials. In response to these environmental
challenges and in pursuit of more sustainable and precision-
driven exploration practices, software solutions are designed to
replicate and simulate seismic imaging techniques, primarily
focused on oil detection. By harnessing the capabilities of
such applications, the geophysical exploration industry aims
not only to reduce the negative ecological impacts associated
with traditional methods but also to significantly enhance the
accuracy and efficiency of drilling operations. Therefore, as
the geophysical exploration industry strives to address such
challenges, a compelling imperative emerges regarding the
migration of these applications to the cloud [1].

The integration of geophysical exploration methods with
cloud-based Software as a Service (SaaS) not only yields
efficiency optimization but also signifies a substantial stride
toward environmentally conscientious, agile, and forward-
looking exploration methodologies. By harnessing cloud com-
puting, these applications stand to benefit from inherent advan-
tages, including on-demand resource allocation, parallel pro-
cessing capabilities, and robust data analytics. Consequently,
this transition fosters a more eco-friendly approach, as it min-
imizes the environmental footprint associated with traditional

on-premises data centers and computational infrastructure.
Furthermore, it empowers practitioners to achieve heightened
operational flexibility, real-time collaboration, and rapid scal-
ability, thereby advancing the state of the art in geophysical
exploration while aligning with contemporary sustainability
objectives and best practices.

However, the transition to a SaaS model in geophysical
exploration presents challenges. The secure management of
large, sensitive datasets is paramount, requiring advanced data
security measures, encryption, and compliance with industry
regulations [2]. Ensuring reliable, high-performance network
connectivity in remote exploration sites is crucial for seamless
data transfer and real-time collaboration. Maintaining consis-
tent performance and availability of cloud services is essential
to prevent disruptions [3], [4]. Cost management is also a
concern, as scalable cloud resources can lead to unpredictable
costs. In this scenario, striking the right balance between
resource provisioning and cost containment is vital to realize
the benefits of SaaS in geophysical exploration and to uphold
performance standards.

Considering the aforementioned scenario, in this paper, we
present a case study on the provision of the Fletcher modeling
application as a SaaS in the geophysical exploration domain.
For that, we provide different versions of the SaaS to exploit
the heterogeneity of hardware resources available in the cloud.
By doing so, we seek to demonstrate the practicality and
benefits of this transition in a real-world context. (ii) delve
into the critical discussion surrounding the trade-off between
maintaining optimal performance and achieving cost-efficiency
in a cloud-based environment. (iii) Outline and analyze the
prospective challenges and emerging trends in the field of
geophysical exploration SaaS. Anticipating and understanding
these challenges is crucial for charting a path forward toward
more sustainable and high-performance exploration practices
in the cloud era.

Through the execution of the Fletcher SaaS model in
different instances with distinct architectures from the Google
Cloud, we show that it is able to scale as the number of
hardware resources assigned to the instance increases. In the
most significant case, it shows a speedup of 29.5× over the
sequential implementation on an instance with AMD Epyc
processors. We also show that AMD instances are more
capable of delivering a better trade-off between performance
and costs than Intel ones to execute the Fletcher SaaS model.
However, when comparing Intel to AMD instances, the effec-
tive utilization of hardware resources with increasing thread
counts is better on Intel instances.

The remainder of this paper is organized as follows. In
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Fig. 1: Data collection in a marine seismic survey

Section II, we describe the SaaS and Fletcher model and list
the Related Work. In Section III, we discuss the steps when
providing the SaaS Fletcher. The evaluation is discussed in
Section IV, while final considerations are drawn in Section
V.

II. BACKGROUND

A. Cloud Computing - SaaS
Cloud computing has emerged as a transformative paradigm

in the field of information technology, reshaping the way
computing resources are provisioned, managed, and utilized.
This paradigm shift has implications for various industries
and domains, revolutionizing traditional IT infrastructure and
service delivery models. At the forefront of this transformation
is the concept of Software as a Service (SaaS), a cloud
computing model that has gained widespread adoption.

Unlike traditional software deployment, where applications
are installed locally on individual devices or servers, SaaS
offers a compelling alternative. In the SaaS model, soft-
ware applications are hosted and maintained by cloud ser-
vice providers, making them accessible to users via web
browsers or APIs. This fundamental shift from ownership to
subscription-based access heralds numerous advantages, such
as eliminating the need for local installation and maintenance,
reducing upfront capital expenditures, and enhancing scalabil-
ity and flexibility.

B. Fletcher Modeling
Fletcher modeling works as a technique for simulating

wave propagation over time. This propagation is expressed
through the acoustic equation (Equation 1), where the velocity
varies according to the specific geological layers (Equation 2).
Referring to the equations, p(x, y, z, t) indicates the pressure
at each location in the domain with respect to time, V (x, y, z)
is a representation of the propagation velocity, and ρ(x, y, z)
reflects the density [5].

1

V 2

∂2p

∂t2
= ∇2p (1)

1

V 2

∂2p

∂t2
= ∇2p− ∇ρ

ρ
· ∇p (2)

Seismic modeling initializes by collecting data in a seismic
survey, as illustrated in (Fig 1). The procedure begins with

equipment attached to a ship, which at regular intervals emits
seismic waves that reflect and refract in interactions with dif-
ferent environmental undergrounds, working as a sonar to map
geological structures. When these waves return to the ocean’s
surface, specific sensors installed on cables towed by the ship
capture and record seismic variations. These variations, a.k.a.
seismic traces, correspond to the set of signals obtained by
each sensor during the wave emission. Therefore, with each
emission of waves, the seismic traces of all the microphones on
the cable are recorded, providing an understandable overview
of the subsoil. During this operation, the ship continues to
move and emit signals periodically, thus producing a detailed
image of the seabed and underground [6].

The algorithm Fletcher implements is based on the numeri-
cal solution of the wave equation. It is a partial differential
equation that considers the environment’s elastic properties
(e.g., the propagation velocity of the wave) and is represented
in a three-dimensional grid. The wave propagation process
is iterative, where in each iteration, the algorithm calculates
the approximate solution of the wave equation at each grid
point, considering the information from previous iterations.
During propagation, the wave energy spreads and changes as it
interacts with the heterogeneities of the environment, updating
the values at each grid point and allowing the algorithm to
model seismic waves’ reflection, refraction, and diffraction as
they propagate underground.

We demonstrate the implementation of the Fletcher method
using Algorithm 1. It takes the following input parameters: the
number of iterations for wave propagation (endTime), the in-
terval at which the wave state is saved to disk (threshToWrite-
Wave), and the grid dimensions (sx, sy, and sz). The algorithm
starts by initializing the grid with the physical properties of
the environment using the initializeGrid() function. Then, a
pressure point representing the amplitude of the seismic wave
at a specific moment is inserted at the central position of
the three-dimensional pressure vector. Prior to the kernel’s
execution, this three-dimensional array is mapped to a one-
dimensional array, following the conventional order of (x, y,
and z). In this mapping scheme, points along the x-axis of
the grid are placed contiguously within the resulting one-
dimensional vector.

The loop from line 3 to 10 is responsible for iterating
until the simulation is performed. Then, for each iteration,
a modulated Gaussian pulse representing the amplitude of the
seismic wave at a given time instant is inserted in the center
of the three-dimensional grid (insertSourcePointToDevice()).
Then, the propagation of the seismic wave is based on the
computation of a 5-point stencil during the Kernel execution.
Once the point associated with the acoustic wave is computed,
the wave state is propagated to the previous state to proceed
with the next iteration. Furthermore, when the number of
iterations reaches a defined threshold, the wave is written to
the disk (writeWave()). To date, we have Fletcher available
through parallel implementations with OpenMP and OpenACC
for multicore architectures; and with OpenACC and CUDA for
heterogeneous architectures.

C. Related Work
Cloud computing has become a popular alternative to

dedicated infrastructure for HPC applications [7]–[9]. There
has been a noticeable shift from traditional software delivery
models to SaaS in recent years, gaining popularity due to its
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Algorithm 1 Fletcher Implementation
Input: endT ime: number of iterations the wave will propagate.

threshToWriteWave: number of iterations where the wave
will be stored in disk.

sx: size of dimension x.
sy: size of dimension y.
sz: size of dimension z.

1: initializeGrid(grid, sx, sy, sz)
2: initPropagatePointers(grid, initPoint)
3: for each dt in endTime do
4: insertSourcePointToDevice()
5: propagateWave(...)
6: updatePointers()
7: if dt == threshToWriteWave then
8: writeWave()
9: end if

10: end for

benefits, including better scalability and accessibility, easier
administration, and operational efficiency. It also eliminates
the need for upfront investment and long-term commitment,
making it an attractive option.

Previous works explore running HPC applications in the
cloud, evaluate the current performance of HPC applications
on existing cloud infrastructures, and discuss various tech-
niques to mitigate interference, virtualization overhead, and
issues due to shared resources in the cloud [9], [10]. However,
there are few works that address the use of SaaS for such
applications. Church et al. [11] developed a technology that
exposes HPC applications as a service through a SaaS cloud to
allow researchers easy access to cloud computing resources.
Stavrinides and Karatza [12] evaluate the performance of a
SaaS cloud under various delay limits and different levels of
variability of the workload’s computational demand.

In the Oil & Gas area, there is an increasing, but still small,
transfer of the processing of geophysical exploration models
to the cloud [13], [14]. Some studies have investigated the
factors that influence cloud adoption in this sector [15]–[17].

III. FLETCHER SAAS MODEL

As already discussed throughout the previous sections, the
modern oil and gas industry increasingly harnesses computa-
tional simulations and data analytics to optimize exploration
and extraction processes. With the ever-evolving complexity of
these tasks and the vast computational demands they present,
the traditional model of localized software deployment is
proving restrictive. Recognizing this shift, in this Section we
describe the SaaS model tailored specifically for the Fletcher
modeling, designed to operate seamlessly across diverse cloud
environments and instances.

Our Fletcher SaaS model capitalizes on Docker, a leading
containerization technology. Docker facilitates the encapsu-
lation of applications and their intricate dependencies into
isolated, portable containers. This ensures that the Fletcher
modeling runs consistently, irrespective of the underlying
cloud infrastructure. Moreover, Docker’s lightweight nature,
in comparison to traditional virtual machines, allows for rapid
deployment and efficient use of system resources. There-
fore, integrating Docker into the SaaS delivery model offers
providers the flexibility to update, scale, and maintain their
services seamlessly, ensuring a reliable and consistent user
experience. By abstracting the complexities of the application

Fig. 2: Fletcher SaaS Stack

environment, Docker effectively eliminates compatibility is-
sues, enabling Fletcher SaaS to offer a truly ”write once, run
anywhere” capability.

One of the primary advantages of this Docker-based SaaS
deployment is its innate scalability. Given the unpredictable
computational demands of oil and gas simulations, the ability
to scale resources up or down based on real-time requirements
is invaluable. Docker containers can be rapidly replicated and
deployed across multiple cloud nodes, ensuring that compu-
tational bottlenecks are minimized and that simulations run
efficiently. Furthermore, security, a paramount concern in the
oil and gas sector due to the sensitive nature of exploration
data, is bolstered in our Fletcher SaaS model. Docker’s isolated
environment means that each application instance runs in its
own protected space, safeguarding against potential vulnera-
bilities and breaches. Cost-effectiveness is another compelling
advantage. By allowing oil and gas firms to run simulations
in a SaaS model on any cloud platform, they can leverage
competitive pricing, avoiding vendor lock-in and optimizing
operational expenses.

Figure 2 illustrates the stack of the Fletcher Saas, where the
container has the Fletcher application binary and the parallel
programming libraries employed to parallelize it (OpenMP,
OpenACC, and CUDA, as discussed in Section II). It also
contains a lightweight Ubuntu OS version. The image of this
container can be obtained through the official repository1. In
order to execute the Fletcher SaaS, we illustrate in Figure 3 the
execution flow. The first step is to access the Cloud service,
which can be any environment with Docker support (e.g.,

1https://hub.docker.com/r/rdrigomachado/fletcher-cuda12-min

Fig. 3: Workflow execution of Fletcher SaaS
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TABLE I: Main characteristics of each instance

Instance n2d-
std-16

n2d-
std-32

n2d-
std-64

n2d-
std-128

n2d-
custom-16

n2d-
custom-24

n2d-
custom-48

c2-
std-30

c2-
std-60

c2-
custom-15

c2-
custom-30

Processor AMD Epyc Intel Xeon
Microarchitecture Zen 2 Cascade Lake
#Virtual CPUs 16 32 64 128 16 24 48 30 60 15 30
#Phys. CPUs 8 16 32 64 16 24 48 15 30 15 30
Main memory 64GB 128GB 256GB 512GB 128GB 128GB 128GB 120GB 240GB 120GB 120GB
Price per hour 0.27$ 0.54$ 1.08$ 2.16$ 1.02$ 1.46$ 2.93$ 1.25$ 2.51$ 1.25$ 2.51$

Microsoft Azure, Google Cloud, and Amazon AWS). Then,
the second step consists of deploying a given instance. At this
point, the user can choose to (a) deploy the instance with the
Fletcher SaaS container during the initialization of the instance
or (b) deploy the instance alone and then, when accessing the
instance, download the Fletcher SaaS container image through
docker commands. Once the container is accessible in the in-
stance, the user can run it, selecting the appropriate hardware:
CPU in the case of OpenMP and OpenACC implementations,
or GPU with the OpenACC and CUDA implementations.

IV. EVALUATION

A. Methodology
We have performed the experiments on eleven instances

from the Google Cloud, as depicted in Table I. Each instance
was configured to deploy the Fletcher SaaS as a container
during its initialization. Hence, to execute the Fletcher ap-
plication, the only step was to run the container through
the docker run command and start the application with the
input parameters. We considered two different grid input
sets: small (344x344x344) and large (512x512x512). All the
other parameters regarding the initialization were used as
defined in the original implementation. For each instance, we
have executed the Fletcher SaaS with a different number of
threads, varying from 1 to the maximum number of cores
available in the instance. This number was set through the
OMP NUM THREADS environment variable. Each combi-
nation of instance, number of threads, and input set was
executed 30 times and we collected the execution time, the
performance – measured through the number of samples
computed per second (msamples/s), and calculated the cost
to execute the application. The results in the next subsections
consider an average of all the executions.

B. Performance Results
We start by discussing the performance results achieved

when each combination of the number of threads and input
set is executed on each instance. For that, Figure 4 illustrates
the obtained numbers for the AMD and Intel instances, respec-
tively. These outcomes are showcased as speedups compared
to the sequential execution (using 1 thread) on the corre-
sponding instance. Therefore, the taller the bar, the better the
performance improvements. Each bar represents the values for
the execution with a given number of threads.

The first observation is that the performance of the Fletcher
SaaS model scales with an increase in the number of threads,
regardless of the instance type (be it standard or custom).
Consequently, the best performance on any given instance is
consistently achieved when all available hardware resources,
such as cores and cache memories, are fully utilized. Com-
pared to its sequential counterpart, the most significant perfor-
mance improvement was observed on the n2d-std-128 instance

running with 128 threads across 128 virtual CPUs, marking a
29.5× improvement over sequential execution. In the realm
of Intel instances, the best performance improvement was
20.1× over the sequential on the c2-std-60 instance. In a head-
to-head comparison between Intel and AMD architectures,
AMD consistently outperformed, primarily attributed to its
greater core count. Specifically, the AMD instance execution
surpassed its Intel counterpart by a notable 46%.

To examine the effective utilization of hardware resources
(e.g., cores) with increasing thread counts, Figures 5 and 6
illustrate performance efficiency for AMD and Intel instances,
respectively. Each graph showcases results for varying combi-
nations of input sets, instance types (standard or custom), and
thread numbers. Observing the standard instances (Figures 5.a,
5.b, 6.a, and 6.b), there is a noticeable decline in efficiency as
the number of threads increases. However, this trend is less
pronounced in custom instances, attributed to their 1 vCPU to
1 physical CPU binding. Moreover, as the parallelism degree
grows, Intel instances maintain better efficiency than AMD.
This behavior may arise from AMD’s memory hierarchy,
where thread communication often takes place in regions that
are more distant from the cores than in Intel’s architecture.

C. Trade-off between Performance and Cost-Efficiency
In the realm of cloud computing, the evaluation of parallel

applications usually lies in striking a balance between per-
formance and cost. While high-performing applications can
improve user experience, they can also incur higher compu-
tational costs, especially when scaled across vast cloud re-
sources. Conversely, cost-saving measures might compromise
the quality of performance, potentially negating the benefits
of parallel execution. Therefore, in this section, we assess the
trade-off between these two metrics.

Figure 7 showcases the performance, denoted in MSam-
ples/s on the x-axis, juxtaposed with the total cost, represented
in $ on the y-axis, for the Fletcher SaaS model executed on
both AMD and Intel instances. This evaluation is based on
the small and large input sets using the number of threads
that optimize performance for each instance. From the data, it
is evident that no single instance excels in both top-tier per-
formance and cost-efficiency simultaneously. The n2d-std-128
configuration yielded the highest performance for both input
sets, but it also incurred the highest cost for the large input
set (similar to the Intel ones). Contrarily, the Intel instances,
denoted by the c2- prefix, had comparable or even higher
costs than their AMD counterparts, yet their performance was
markedly inferior.

The insights drawn from Figure 7 emphasize the importance
of holistic decision-making in cloud deployments. Stakehold-
ers must weigh the dual imperatives of performance and cost,
understanding that the highest-performing instance may not
always represent the best value proposition. This underscores
the need for comprehensive benchmarks tailored to specific
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Fig. 4: Performance results for all instances, number of threads, and input set

applications, ensuring informed choices that balance both
operational needs and budgetary constraints.

D. Future Directions and Challenges
Considering the results presented in the previous subsec-

tions, one can envision future directions and challenges re-
garding the implementation of the Fletcher SaaS model.
Adaptive Resource Allocation. Develop a dynamic resource
allocation strategy that can adjust based on the computational
demands of the task at hand. By only using resources when
they’re needed, costs can be significantly reduced.
Multi-Cloud Deployments. Utilize multiple cloud providers
to take advantage of the best features and pricing models of
each. This approach also provides redundancy, ensuring high
availability.
Machine Learning-based Optimization. Employ machine
learning techniques to predict optimal configurations and
resource needs based on historical data and specific task
parameters. This predictive approach can lead to more efficient
resource utilization, improving performance while curbing
costs.
Cost Analysis Tools. Develop advanced tools that provide
real-time insights into cost implications based on current
resource usage. Such tools can guide decisions regarding when
to scale resources up or down.
Collaborative Cloud Models. Investigate models where mul-
tiple stakeholders can collaboratively share cloud resources for
their oil and gas simulations, effectively distributing costs.
Open Standards and Interoperability. Promote the use of
open standards to ensure the SaaS model remains compatible
across different cloud providers, enhancing portability and
reducing vendor lock-in risks.

V. CONCLUDING REMARKS

The evolution of geophysical exploration methodologies,
driven by the imperative need for sustainable and precision-
driven practices, has been significantly augmented by the

integration of cloud-based SaaS models. In this paper, the
Fletcher modeling application as a SaaS has underscored the
potential of such a transition, especially when leveraging the
heterogeneity of cloud hardware resources. We have shown
the Fletcher SaaS model’s scalability on Google Cloud, par-
ticularly with AMD instances, which showcases a promising
trajectory for the industry. However, the challenges—ranging
from data security to cost management—cannot be understated
and require attention to ensure the seamless adoption of these
technologies. Hence, in future work, we intend to perform a
comparative analysis of other cloud platforms beyond Google
Cloud could provide a more comprehensive understanding of
SaaS performance in geophysical exploration. Additionally,
as data security remains paramount, the development and
integration of advanced encryption and compliance measures
tailored for geophysical datasets will be crucial.
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