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Abstract—The most used problem to compare these meta-
heuristics is the classical Travelling Salesman Problem (TSP) on a
network with sizes from tens to millions of nodes. Nature-based
metaheuristics are the main source of optimization techniques
to solve this problem. Although there is a zoo of possibilities,
Ant Colony Optimization (ACO) is still one of the most efficient,
parallel, and simple techniques to implement. The pheromone
evaporation rate, α, β, and ant number M are the four pa-
rameters fitted for finding the best solutions. Candidate list and
the use of a source solution are efficient strategies to optimize
large problems, but there are other strategies to improve quality
solutions such as local search strategies. Among the local search
techniques, k-opt search has proved to be very efficient to deal
with path-crossing. The initial route is split into k sub-routes
connected in (k−1)!2k−1 ways. Thus, 3-opt is an efficient strategy
balancing complexity and precision. Moreover, the best α and
β are the result of the used strategy. Finally, the solution is
improved by accelerating through parallel versions with multi-
GPUs.

In this article, four ACO algorithms were developed using
two variations (Rank Based 3-opt and Strong Elitist 3-opt), each
one with two strategies (candidate list and restricted). To test
the algorithms, TSPLIB95 was used with test problems between
N = 51 and 4, 461 nodes in a server with 4 RTX A4000
GPUs. After improving the algorithms and parallelization, the
parameters are tuned to get the highest performance improving
the local minimum search. Statistical analysis of repetitions shows
good stability of the chosen metaheuristics.

Index Terms—Multi-GPU, Ant Colony Optimization algo-
rithms, metaheuristics, local search, high performance.

I. INTRODUCTION

High performance computing is the main framework for
approximating solutions to complex combinatorial problems
through metaheuristics. On one hand, there is a hardware
race to offer more powerful tools, where GPUs are one of
the most cost-effective solutions for massive parallel problems
such as population-based metaheuristics. On the other hand,
massive simulations help to understand how algorithms work
on these architectures and to develop new strategies to avoid
memory and computing bottlenecks. Multicore architectures
were the first approach to parallellize discrete optimization
problems and later the emerge of GPUs offered a better

choice especially for routing problems [1], [2]. Programming
languages for GPUs, like CUDA, OpenCL, HIP, and SYCL
allowed increased possibilities for developing algorithms and
different accelerated architecture platforms appeared as CPU
on GPU, CPU on APU, or GPU on APU tested with the Ant
Colony Optimization algorithm [3]. More recently, Menezes et
al. [4] also worked on a single GPU developing strategies for
paralellizing the pheromone matrix and comparing the coarse-
grain and fine-grain ACO.

Among the main combinatorial problems, TSP models
several applications such as logistics, microchip manufacture,
and any problem requiring finding a Hamiltonian cycle on
graphs. Moreover, the increase in delivering services and
energy-saving solutions require fast and precise solutions. Ap-
plications like mobile surveillance systems [5], green vehicle
routing like [6], and large-scale problems such as the Santa
Claus Challenge 2020 [7] need more powerful algorithms and
hardware requirements.

Since its origin, ACO was developed to solve TSP [8]. The
ants find shortest-path solutions between food source and nest
through pheromone trails. Based on a Monte Carlo approach,
a high number of random ants gets a better solution but at a
high computational cost. To reduce this cost, several parallel
strategies were developed based on classical parallel algorithm
techniques, such as the master-slave model, coarse-grain or
fine-grain models, the multicolony model, among others [9].
CUDA opened a new way to develop well-suited parallel
ACO algorithms, improving tour construction and pheromone
update with a single GPU [10], [11] and parallelizing ants or
developing multiple colonies, including MAX-Min approach
with two GPUs [12] both with over 20x speedups in problems
with 2,000 nodes. Since ACO complexity is O(iter×nodes3),
more efficient parallel versions were developed based on
the GPU architecture by reducing local/global pheromone
updates and using a candidate set with warp size with similar
speedups and size problems [13]. RAM GPU size is one of
the bottlenecks to large problems. Dynamic load balancing on
several GPU generations [14] and dynamic kernel strategies
with larger RAMs allowing 4,000 nodes [15] were developed
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on a single GPU. More recently, new roulette strategies and
tuning with GPU parameters (warp) also with nodes near to
4,000 [16]. To improve solutions, MAX-MIN Ant Systems
together with 3-opt strategy allow us to reduce the complexity
to O(iter × nodes2) and speed up the solutions, where two
GPU generations are compared, showing the importance of
the hardware properties and increasing the node number up to
12,000 nodes [17]. Recently, using a static-dynamic balanced
candidate set strategy, new algorithms solved large problems
(up to 28,000 nodes) but reducing the ant number [18].

In this article, four ACO algorithms were developed using
two variations (Rank Based 3-opt and Strong Elitist 3-opt),
each one with two strategies (candidate list and restricted).
To test the algorithms, TSPLIB95 was used with test prob-
lems between N = 51 and 4, 461 nodes in a server with
4 RTX A4000 GPUs. The parallelization of the algorithms
was done by using the CUDA Thrust library to improve the
sorting algorithm. After tuning parameters for speeding up the
algorithms, the optimal parameters were α = 0.3, β = 5.0,
evaporation rate 0.01, and ant maximum number M = 4, 096.
Solutions between 0.0%−1.6% for problems below 561 nodes
and 1.15%−3.00% for problems between 1, 291 to 446 nodes.
Also, the standard deviation of the repetitions were computed
showing the stability of the algorithm w.r.t the stochastic
nature. Also, execution times were obtained between 1.1 to
180.0 sec giving a 4x increase in ant number and decreasing
the error by half.

II. ACO AND PHEROMONE UPDATE STRATEGIES

A. Basic ACO algorithm

A pseudo-code of ACO algorithm is shown in Algorithm 1.

Algorithm 1 Basic Ant Colony Optimization (ACO)
Require: α, β, ρ,N,M, I , tsp95libfile
Ensure: optimal route, optimal cost

1: BestSolution ← InitialSolution(tsp95libfile)
2: Initialize pheromones and heuristics(BestSolution)
3: while Iteration < I do
4: for ants<M do
5: Tour Construction(α, β, routeants,N)
6: end for
7: Update pheromone matrix(ρ,routeants)
8: Update the best solution(routeants)
9: end while

The input parameters related with the complexity are the ant
number M , iteration number I , and the nodes number N . Each
ant builds its own tour using Tour Construction() selecting
j ∈ J an unvisited node and defining a probability Pi,j , which
needs the global parameters 0 < α ≤ 1 and 0 ≤ β ≤ 5, τi,j
the amount of pheromone on the path from node i to node
j, and ηi,j the inverse of the distance between nodes i and j.
The formula is given by (1)

Pi,j =
ταi,jη

β
i,j∑

j∈J ταi,jη
β
i,j

. (1)

In Algorithm 2, Tour Construction() starts each route of the
ants at a random node of the graph and then chooses the next
node with select next node(), which uses (1) to distribute the
probabilities of visiting each node.

Algorithm 2 Tour Construction()
Require: α, β, routeants, N ,
Ensure: route ants

1: route ants[0] ← select initial node()
2: visited list ← {routeants[0]}
3: j=0
4: while j < N-1 do
5: routeants[j+1] ← select next node(α, β,visited list)
6: Update visited list(visited list,routeants[j + 1])
7: j++
8: end while

The pheromones τi,j are updated using (2) and (3)

τi,j ← τi,j(1− ρ) +

M∑
n=1

Q∆τni,j , (2)

and

∆τni,j =


1
Ln

if ant n chooses edge (i,j),

0 otherwise,
(3)

where ρ is the evaporation rate, Q is a positive constant, ∆τni,j
is the pheromone deposited by ant n on i, j edge, and Ln is
the tour length for each ant. At each iteration,the algorithm
saves a best solution if some improvement was found by a
minimal route.

Since its most basic version, improvements have been
proposed for the algorithm to find better solutions, some of
these are proposed in [19]. The following two versions for
updating pheromones were selected: Strong Elitist (SE) and
Rank Based (RB) Ant Systems. These strategies profit from
the previous ant information on best routes by recording some
critical information and there are not been tested using the
classical local search and the new restricted search.

B. Strong Elitist strategy (SE)

Instead of using (2) update, it is only added the ant
pheromone passing through the best global solution (4),

τi,j ← τi,j(1− ρ) + e∆τ best sol
i,j , (4)

which must be saved as the algorithm is executed. e is the
number of elite ants and ∆τ best sol

i,j is the pheromone deposited
by ant n on edge i, j in the best route.

C. Rank Based strategy (RB)

Instead of selecting only one ant, a fixed number of ants
u = best ants are selected, sorted according to the length of
its tours, and add pheromone to the corresponding edges. In
addition, a weight is assigned to their pheromone according
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to a ranking of solutions in such a way that the ants with the
shortest tour add the greatest amount of pheromone (5)

τi,j ← τi,j(1− ρ) + u∆τglobal sol
i,j +

u−1∑
n=1

(u− n)∆τni,j (5)

D. 3-opt move

Link swap is one of the main techniques to improve best
routes [20]. In case of three links, the 3-opt algorithm takes
a tour and randomly divides it into 3 sub-tours that are
reconnected in 7 different ways. Then, it is evaluated if there
is a positive change in the sum of the distances. If there is a
positive change in any of the 7 cases, the route changes to the
smallest of these positive changes.

E. Parameters

The following table shows the most used parameters:

TABLE I
ACO PARAMETERS

Parameter Values

α pheromone factor [0,1]
β heuristic factor [1,5]
ρ evaporation rate [0,1]
cl list candidate list size 8,80
3opt iterations iterations for 3− opt 100
e elite ant number 10
best ants best ant number 10
Q amount of pheromone per ant 1
τ0 initial pheromone best ants

aux sol
min new edges minimum number of edges 8

for using the source solution

Parameters aux sol is selected from the greedy solution
choosing the nearest neighbor of each node to build a route.

III. ACCELERATION STRATEGIES

A. ACO algorithms and 3-opt

Rank Based and Strong Elitist variations of the ACO
algorithms were made together with the local search algorithm
3-opt. This search consists of taking the paths generated by
the ants and improving each of them by using 3-opt such that
the ants add the pheromones to the improved paths. In the Al-
gorithm 1, the 3-opt(routeants) step is added after step 5 and
step 7 is replaced by Update pheromone matrix(ρ,routeants)
by the new Update pheromone matrix RB/SE(ρ,routeants)
using (4) or (5) depending on the ACO version.

Algorithm 3 RB/SE3-opt
Require: α, β, ρ,N,M, I , tsp95libfile
Ensure: optimal route, optimal cost

1: BestSolution ← InitialSolution(tsp95libfile)
2: Initialize pheromones and heuristics(BestSolution)
3: while Iteration < I do
4: for ants<M do
5: Tour Construction(α, β, routeants,N)
6: 3-opt(routeants)
7: end for
8: Update pheromone matrix RB/SE(ρ,routeants)
9: Update the best solution(routeants)

10: end while

B. Restricted Rank Based/Strong Elitist + 3-opt strategies

The Restricted (R) strategies are based on the idea of a
source solution proposed in [23]. When choosing an edge
to construct ant tour, verify that if the chosen edge is in the
source route, then go to the next node. If the edge does not
belong to the source route, it is added as a new edge. In this
version, a maximum number of new edges is fixed. Once the
ant passes the limit of new edges, instead of deciding using
the probability to choose the next node, it will fill in with the
current edges in the source route. This modification controls
the number of new edges and decrease the time on each ant.
This source route is the best route for the iterations so far.
The algorithm is shown in Algorithm 4, where S S is the
source solution and succ() is the successor of the current node
in S S.

Algorithm 4 Tour Construction R
Require: α, β, routeants, N ,
Ensure: routeants

1: routeants[0] ← select initial node()
2: visited list ← {routeants[0]}
3: j=0
4: while j < N-1 do
5: routeants[j+1] ← select next node(α, β,visited list)
6: Update visited list(visited list,routeants[j + 1])
7: j++
8: if (routeants[j − 1], routeants[j]) ̸∈ S S then
9: num new edges++

10: end if
11: if num new edges≥ min new edges then
12: copy node=succ(S S,routeants[j])
13: while copy node ̸∈ routeants do
14: routeants[j + 1] ← copy node
15: copy node ← succ(S S,routeants[j + 1])
16: j++
17: end while
18: end if
19: end while
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C. Restricted Rank Based/Strong Elitist + 3-opt strategies
with Candidate List

The strategy Candidate List (CL) is based on limiting the
number of neighbors that each ant considers to select the
next node. In this case, it only scans for a fixed number of
nearest neighbors. In the case of none of the list is available,
it chooses the next available nearest node [24]. This modifies
the probabilities given in (1), where the set J changes to the
set of unvisited nearest neighbors.

D. GPUs and distributed work

In GPUs-accelerated applications, the sequential part of the
workload runs on the CPU, which is tuned for single-threaded
performance, while the computationally intensive part of the
application runs on thousands of GPUs cores. To improve the
execution time, the tour construction was parallelized. Each
ant is a thread using kernel configuration M

8 blocks and 2
threads. In the cost computation and local search, it used
the kernel configuration M

4 blocks and 1 thread. In updating
the pheromone, it used the kernel configuration N blocks
and 1 thread, where each ant updates N edges in parallel.
The random numbers were generated on the GPU using the
function cuda random uniform() from cuRAND library.

To evaporate the pheromone and compute the combination
between the pheromone matrix and the matrix of the inverse of
the distance, a special number of blocks and threads are used
in such a way that 32 threads are used. the smallest integer
greater than N2/32 is considered.

E. Distributed work in multi-GPU

To use large ant numbers without increasing the computa-
tional time, the construction of the ant tour, the ant cost, and
the local 3opt search is distributed in m GPUs with M

m ant
per GPU, as is shown in Fig 1 with m = 4. Each GPU uses
a local data structure for constructing ant tour, computing the
tour cost, and performing the local search. Next, all tours and
costs are collected in one common data structure to sort tours
and finally update the pheromone matrix.

GPU 1

Ant tour
construction

Tour cost

Local Search

GPU 2

Ant tour
construction

Tour cost

Local Search

GPU 3

Ant tour
construction

Tour cost

Local Search

GPU 3

Ant tour
construction

Tour cost

Local Search

GPU 1 GPU 2 GPU 3 GPU 4

GPU 1

GPU 1

Join
ant tour and cost

Sort cost
for Rank-Based

Evaporte and update
the pheromone

Fig. 1. GPU processes distribution diagram

Ant tour construction and local search are the processes
using more computation time. Then, these processes are per-
formed in parallel for each ant by a large number of ants
distributed on 4 GPUs. Fig. 1 shows how the workload is
distributed on 4 GPUs and how the routes and costs are
joined in the master GPU. Thanks to CUDA’s thrust library
and its sort by key() function, the sorting cost algorithm is
executed by a parallelized sorting algorithm on GPUs. Then,
the master GPU evaporates and updates the pheromone matrix
and this matrix is distributed throughout the 4 GPUs for the
next iteration. This process is repeated until the maximum
number of iterations is reached.

IV. RESULTS

A. Setup

All algorithms were executed in a 4-GPU architecture with
the following hardware: (i) CPU: Intel(R) Xeon(R) Silver
4310 CPU @ 2.10GHz RAM: 256GB, (ii) GPU: NVIDIA
RTX A4000 RAM:16,376MB. For programming on NVIDIA
GPUs, CUDA version 11.7 was used https://developer.nvidia.
com/cuda-zone

The following TSPLIB95 problems were used: eil51,
berlin52, gr120, ch150, kroA200, pcb442, pa561, d1291,
d1655, d2103, fl3795, fnl4461, where the numbers in the name
of each instance shows the node size N .

The relative error metric (6)

ER% =
100(xBKS − x̄)

xBKS
(6)

was used to compare the performance of the algorithms for
different problems, where xBKS is the current best known
solution and x̄ is the solution of the algorithm.

B. Preliminary analysis of RB3-opt and RB3-optR

A preliminary analysis was performed to analyze the effect
of the strategy of restricting exploration through the source
solution. It was compared the algorithms RB3-opt and RB3-
optR, both RB versions with α = 1 and β = 5, with the
PACO3 in [22]. This algorithm was tested in several datasets
giving the possibility to compare our versions with it. This
comparison considered the average solution, which results are
shown in Table II. Best solutions are highlighted in bold face.
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TABLE II
AVERAGE SOLUTION FOR THE ALGORITHMS USING 3,000 ITERATIONS

FOR RB3-OPT AND 1,200 ITERATIONS FOR RB3-OPTR

Instance BKS PACO-3-opt [22] RB3-opt RB3-optR

eil51 426 426.35 426.45 426.80
berlin52 7542 7542.00 7542.00 7542.00
st70 675 677.85 678.80 680.70
eil76 538 538.85 539.00 538.00
rat99 1211 1217.10 1213.00 1212.30
kroA100 21282 21326.80 21336.75 21322.30
eil101 629 630.55 635.20 629.60
gr120 6942 - 7049.10 6970.20
ch150 6528 6563.95 6566.40 6565.60
kroA200 29368 29644.50 29571.95 29475.50
pcb442 50778 - 51405.70 51422.10
pa561 2763 - 2816.35 2825.60

Table II shows that RB3-optR is the algorithm that obtains
most of the solutions closest to the Best Known Solution
(BKS). In the cases in which some of the other algorithms
obtain better solutions, RB3-optR obtains solutions close to
them.

Fig. 2 shows that RB3-optR approaches the optimum faster
than compared to RB3-opt requiring a lower iteration number.
In this case RB3-optR required 758 (the green star in Fig. 2)
iterations while RB3-opt 2,893 iterations.

Fig. 2. Iterations of RB3-opt and RB3-optR for the pcb442 instance.

It was observed that when restricting the exploration to the
source solution, it improved the execution time as shown in
Table III including the number of required iterations and the
quality of the solutions.

TABLE III
EXECUTION TIMES IN SECONDS, WITH 3,000 ITERATIONS FOR RB3-OPT

AND WITH 1,200 ITERATIONS FOR RB3-OPTR

Instance RB3-opt RB3-optR

eil51 2.871 1.11
berlin52 2.676 1.05
gr120 4.400 1.90
ch150 7.698 2.63
kroA200 10.734 4.05
pcb442 42.930 8.31
pa561 71.940 12.37

C. α and β value effect in performance

Experiments were carried out for different levels of α and
β using 1,200 iterations and running 10 times per instance to
obtain the average iteration time and average solution. These
experiments were performed for both instances pcb442 shown
in Figure 3 and 4, and pa561 shown in Figure 5 and 6.

Fig. 3. α and β effect in SE3-optR Average cost in the pcb442, with M =
4, 096 and ρ = 0.01.

Fig. 4. α and β effect in SE3-optR iteration time, with M = 4, 096 and
ρ = 0.01.

In both versions of the ACO algorithms, it was found that
as α approaches to 1 the iteration time increases, while the
solutions get worse as α approaches to 0. It is observed that the
best solutions are obtained for α ≥ 0.3. In Figure 3, it is shown
that β = 5 gets the best performance. The same behavior was
observed for the candidate list algorithms as shown in Figure 7
and 8. To keep a good solution quality and low iteration time,
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α = 0.3 and β = 5 were chosen as the optimal parameters for
both versions.

Fig. 5. α and β effect in RB3-optR Average cost in the pa561 with M =
4, 096 and ρ = 0.01.

Fig. 6. α and β effect in RB3-optR iteration time in the pa561 with M =
4, 096 and ρ = 0.01.

Fig. 7. α and β effect in RB3-optRCl Average cost in the pa561 with M =
4, 096 and ρ = 0.01.

Fig. 8. α and β effect in RB3-optRCl iteration time in the pa561 with
M = 4, 096 and ρ = 0.01.

D. Ant number effect
A larger ant number should improved the solutions by

searching a large search space. For this purpose, the algorithm
was run for M = 2k+8, k = 1, 2, 3, 4, 5 spread over the 4
GPUs, where each GPU has M

4 ants. Results for RB3-optR
in pa561 instance are shown in Figure 9 and 10 using the
average of 10 repetitions with ρ = 0.01, α = 0.3, and β = 5.

Fig. 9. Effect of M on the solutions, with β = 5 and ρ = 0.01 for RB3-optR
in pa561.

Fig. 10. Effect of M on the iteration time in ms, with β = 5 and ρ = 0.01
for RB3-optR in pa561.

It is observed that as the number of ants increases, the
solution approaches to the optimum and the iteration time
increases. To keep the iteration times low and best solutions,
M = 4, 096 was selected.
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TABLE IV
ANT TOUR CONSTRUCTION EXECUTION TIME IN MS

FOR RB3-OPTR WITH PCB442.

Ant number

GPU number 1024 2048 4096 8192

0 121.27 233.03 492.35 1007.18
1 4.10 5.54 9.00 16.07
2 3.78 4.44 6.07 9.83
4 3.68 4.04 4.92 7.01

TABLE V
ANT TOUR CONSTRUCTION EXECUTION TIME IN MS

FOR RB3-OPTR WITH PA561.

Ant number

GPU number 1024 2048 4096 8192

0 125.95 252.30 497.93 1023.40
1 6.06 8.28 13.69 23.74
2 5.59 6.80 9.35 14.94
4 5.58 6.52 7.60 10.25

To study scalability, the CPU time (0 GPU), 1,2, and
4 GPUs are compared in Table IV and Table V. The two
largest test examples were considered (pcb442 and pa561).
By using GPUs, the speedups are 26x and 19x. In addition,
the importance of more GPUs for large ant number compared
with the small ant number is clear.

E. Evaporation rate effect

The evaporation rate regulates the relevance of the previ-
ous iterations for the current iteration. An evaporation rate
ρ = 1 implies that the previously deposited pheromone
has no relevance, while ρ = 0 implies that the previously
deposited pheromone has the same relevance as the one
deposited in the current iteration. Repeating 20 times each
run, it is obtained the results of the restricted algorithms
with candidate list (RB/SE3-optRCl) in Table VI and without
candidate list (RB/SE3-optR) in Table VII with different levels
of evaporation rate. To determine ρ giving the best solutions,
the selected values α = 0.3, β = 5, and M = 4, 096 were
used.

TABLE VI
EVAPORATION RATE EFFECT IN AVERAGE SOLUTION AND LAST

IMPROVEMENT ITERATION FOR PA561 INSTANCE AND RB3-OPTRCL

ρ Avg Cost Avg LII

0.50 2831.75 159.15
0.10 2814.25 312.80
0.05 2806.15 503.25
0.01 2802.30 954.35

It was noticed that as the evaporation rate decreased, the
solutions improved, but require more iterations, as shown
by the Last Iteration Improved (LII). To keep the number
of iterations at 1, 200 for problems below 561 nodes, the
evaporation rate was set to ρ = 0.01.

TABLE VII
EVAPORATION RATE EFFECT IN AVERAGE SOLUTION AND LAST

IMPROVEMENT ITERATION FOR PCB442 INSTANCE AND RB3-OPTR

ρ Avg Cost Avg LII

0.50 51597.25 194.30
0.10 51343.25 668.45
0.05 51382.60 705.20
0.01 51208.00 961.60

F. Performance of the acceleration strategies

A performance comparison of the Restricted (RB/SE3-optR)
and Restricted with candidate list (RB/SE3-optRCl) algorithms
was done for instances with less than 1,000. These algorithms
were run 20 times.

TABLE VIII
RELATIVE ERROR OF THE SOLUTIONS

Instance RB3-optR RB3-optRCl SE3-optR SE3-optRCl

eil51 0.19% 0.11% 0.20% 0.16%
berlin52 0.00% 0.00% 0.00% 0.00%
st70 0.65% 0.29% 0.73% 0.38%
eil76 0.00% 0.00% 0.00% 0.00%
rat99 0.00% 0.00% 0.00% 0.00%
kroA100 0.04% 0.00% 0.15% 0.00%
eil101 0.02% 0.06% 0.10% 0.04%
gr120 0.49% 0.30% 0.40% 0.48%
ch150 0.51% 0.49% 0.58% 0.53%
kroA200 0.21% 0.22% 0.28% 0.20%
pcb442 1.08% 0.88% 1.27% 1.24%
pa561 1.39% 1.49% 1.60% 1.64%

TABLE IX
AVG SOLUTION

Instance BKS RB3-optR RB3-optRCl SE3-optR SE3-optRCl

eil51 426 426.80 426.45 426.85 426.70
berlin52 7542 7542.00 7542.00 7542.00 7542.00
st70 675 679.40 676.95 679.95 677.55
eil76 538 538.00 538.00 538.00 538.00
rat99 1211 1211.00 1211.00 1211.00 1211.00
kroA100 21282 21291.10 21282.00 21314.85 21282.00
eil101 629 629.15 629.40 629.60 629.25
gr120 6942 6975.75 6963.05 6970.00 6975.25
ch150 6528 6561.45 6559.70 6565.75 6562.90
kroA200 29368 29429.60 29434.05 29449.35 29425.35
pcb442 50778 51323.90 51225.10 51424.90 51405.95
pa561 2763 2801.30 2804.30 2807.10 2808.20

There is no clear winner in terms of relative errors, but there
is a difference between problems with less than 200 nodes
and with more than 200 nodes. Since all 4 algorithms obtain
a relative error of less than 1%, while for problems with more
than 200 nodes (pcb442 and pa561) there is an increase in
errors of more than 1% for the algorithms. These results of
relative error and average solution are shown in Table VIII
and Table IX, respectively. In terms of iteration time, there is
also a difference between less than 200 nodes and more than
200 nodes. For less than 200 nodes, the Restricted algorithms
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(RB/SE3-opt) have smaller iteration times, while above 200
nodes the Restricted versions with candidate lists (RB/SE3-
optCl) are the ones with smallest iteration times. These results
are shown in Table X. The effect of the node number in the
iteration time is observed, which is clearly slow for cases
pcb442 and pa561. The time trend is linear for large problems.

TABLE X
ITERATION TIME IN MS

Instance RB3-optR RB3-optRCl SE3-optR SE3-optRCl

eil51 0.923 1.705 0.893 1.703
berlin52 0.880 1.721 0.856 1.704
st70 1.068 1.868 1.082 1.843
eil76 1.201 1.897 1.258 1.927
rat99 1.565 2.424 1.511 2.566
kroA100 1.400 2.509 1.436 2.451
eil101 1.507 2.511 1.536 2.524
gr120 1.587 2.709 1.663 2.769
ch150 2.196 3.511 2.406 3.282
kroA200 3.379 3.989 3.356 4.036
pcb442 6.927 5.915 7.835 6.660
pa561 10.310 7.090 10.785 7.054

The standard deviation of the solutions is shown in Table
XI.

TABLE XI
STANDARD DEVIATION OF THE SOLUTIONS

Instance RB3-optR RB3-optRCl SE3-optR SE3-optRCl

eil51 0.40 0.50 0.36 0.46
berlin52 0.00 0.00 0.00 0.00
st70 2.78 2.67 2.89 2.84
eil76 0.00 0.00 0.00 0.00
rat99 0.00 0.00 0.00 0.00
kroA100 27.30 0.00 118.76 0.00
eil101 0.36 0.92 1.59 0.89
gr120 22.34 21.35 23.38 25.99
ch150 8.24 3.84 12.03 11.46
kroA200 40.48 42.23 36.69 42.88
pcb442 312.72 235.58 332.35 316.71
pa561 9.77 8.14 12.09 10.80

For the medium scale instances with problems d1291,
d1655, d2103, fl3796 and fnl4461, the algorithms with the
lowest iteration times for larger instances were used with
3, 000 iterations, in this case the RB/SE3-optRCl algorithms.
These algorithms were run 20 times and the results are shown
in Table XII and Table XIII.

TABLE XII
RELATIVE ERROR AND STANDARD DEVIATON FOR MEDIUM-SCALE
INSTANCES FOR THE TWO VERSIONS WITH BEST ITERATION TIME

Instances RB3-optRCl RB3-optRCl STD SE3-optRCl SE3-optRCl STD

d1291 3.00% 292.95 2.79% 406.41
d1655 2.33% 183.73 2.32% 180.76
d2103 1.15% 69.42 1.25% 61.59
fl3796 1.19% 63.64 1.36% 50.33
fnl4461 2.02% 257.25 2.65% 264.08

The Strong Elitist (SE3-optRCl) version is the one with
best solutions for the d1291 and d1655 instances. As the
instance size increases above 2, 103 nodes, the Rank Based
(RB3-optRCl) version shows the best solutions.

TABLE XIII
ITERATION TIME IN MS FOR MEDIUM SCALE INSTANCES

Instances RB3-optRCl SE3-optRCl PD

d1291 16.379 18.800 12.88%
d1655 20.513 23.787 13.75%
d2103 27.386 36.433 24.83%
fl3796 50.560 52.035 2.83%
fnl4461 86.168 96.061 10.30%

In terms of iteration times, it was observed that the RB ver-
sion (RB3-optRCl) is the winner for larger instances. Although
for instances of less than 1, 000 nodes the iteration times did
not differ greatly for each strategy (with candidate list and
without candidate list) as is shown in Table X, for problems
of more than 1, 000 nodes the difference in iteration times is
in the range of 2.83% and 24.83% percentage difference (PD).

CONCLUSIONS AND FUTURE IMPROVEMENTS

Using multi-GPUs architectures, new ACO algorithms are
developed to solve TSP improving the possibilities to test pa-
rameters and speedup strategies. Rank Based and Strong Elitist
pheromone updating decreases the computational operations
and decreases the time without sacrificing optimal search.
To speed up optimal search, 3-opt strategy improves local
searches. Moreover, restricting source solutions and using a
candidate list, four quick algorithms were presented and tested
on problems from 51 to 4, 461 nodes. The algorithms can
be ported to other GPU programming languages since the
main libraries are the random generator and sort libraries.
For example, in the case of random generator, the GPU pro-
gramming languages have libraries like RandomCL(OpenCL),
rocRAND(HIP), and SYCL-PRNG.

First, it is noticed that the restricted version was 3x faster,
locating most of the best optimal solutions for problems
between 51 and 561 nodes. Next, the best choice for α = 0.3
and β = 5 keeping the best solutions for the SE3-optR and
RB3-optR is selected, which behave similarly. Notice that
as α increases, it also increases the computational time. On
the opposite, β has no main influence in computing time.
Next, the ant number was increased to get better solutions,
where M = 4, 096 was chosen. The evaporation rate was
studied for two different setups: RB3-optR with pa561 and
RB-3optR with pcb442 showing that the best rate is ρ = 0.01
since better solutions are found. Finally, the best algorithm
was RB3-optRCl, which shows low relative error and best
average solutions, followed by SE3-optRCl. The standard
deviation shows that ACO algorithms are similar and the
behavior depends on the search space given by some kind
of distance distribution of each problem. Finally, for problems
between 1,291 and 4,461 nodes, the best algorithms show good
performance.
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Since GPUs are RAM-limited, large problems cannot be
solved by using them. To solve large TSPLIB95 datasets
(above 4461), multicore architectures are required. Currently,
the authors are studying parallelization of C codes in shared-
memory systems with large RAM allowing to test over
100,000 nodes as in [23].
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Aedo and Andrés I. Ávila thanks Dirección de Cooperación
International at Universidad de La Frontera.

REFERENCES

[1] A. Brodtkorb, T. R. Hagen, C. Schulz, and G. Hasle, ”GPU computing
in discrete optimization. Part I: Introduction to the GPU”, EURO journal
on transportation and logistics, vol.2, pp. 129-157, May 2013.

[2] C. Schulz, G. Hasle, A. R. Brodtkorb, and T. R. Hagen, ”GPU computing
in discrete optimization. Part II: Survey focused on routing problems”,
EURO journal on transportation and logistics, vol. 2, pp. 159-186, May
2013.

[3] G. D. Guerrero, J. M. Cecilia, A. Llanes, J. M. Garcı́a, M. Amos, and M.
Ujaldón, ”Comparative evaluation of platforms for parallel Ant Colony
Optimization”, The Journal of Supercomputing, vol. 69, pp. 318-329,
March 2014.

[4] B. A. Menezes, H. Kuchen, H. A. A. Neto, and F. B. de Lima
Neto, ”Parallelization strategies for GPU-based ant colony optimization
solving the traveling salesman problem”. In 2019 IEEE Congress on
Evolutionary Computation (CEC) (pp. 3094-3101). IEEE.

[5] K. Saleem, and I. Ahmad, ”Ant Colony Optimization ACO Based
Autonomous Secure Routing Protocol for Mobile Surveillance Systems”,
Drones, vol. 6(11), pp. 6110351, November 2022.

[6] Y. Li, H. Soleimani, and M. Zohal, ”An improved ant colony optimiza-
tion algorithm for the multi-depot green vehicle routing problem with
multiple objectives”, Journal of cleaner production, vol. 227, pp. 1161-
1172, August 2019.
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