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Abstract—Frequent instruction cache (L1-I) misses pose
a significant performance bottleneck in modern processors,
especially for applications with large instruction footprints,
such as server applications. To address the L1-I misses, there
have been various proposals for L1-I prefetching over the
past two decades. The designers of L1-I prefetchers primarily
focused on enhancing performance while minimizing the area
overhead. However, they paid little attention to the resulting
increase in energy consumption due to incorporating an L1-I
prefetcher. Furthermore, prior works assume L1-I prefetcher’s
energy consumption is mainly due to its area overhead. In
this work, we demonstrate that a substantial proportion of the
energy consumption associated with using an L1-I prefetcher
is attributed to the increased L1-I accesses initiated by the
L1-I prefetcher. To compensate for the energy consumption of
more accesses to the L1-I, we propose an approach to decrease
energy per access to the L1-I by reducing its associativity. Our
experimental results demonstrate that reducing L1-I associativity
from 8 to 2 effectively reduces the energy consumption of L1-
I prefetchers. As a result, the energy saving achieved through
our approach (on average 113.7 nJ/ki) compensates for the
energy consumption overhead caused by the L1-I prefetcher on
the baseline system, with the average and the highest energy
overhead at 41.6 nJ/ki and 74.8 nJ/ki, respectively, while the
associated performance loss (0.8% on average) remains negligible.

Index Terms—energy consumption, instruction prefetching,
instruction cache, cache associativity

I. INTRODUCTION

Emerging server workloads are characterized by large
instruction working sets. These working sets can easily
overwhelm private instruction caches, leading to frequent
instruction cache (L1-I) misses. Therefore, the frequent L1-I
misses become a key source of performance degradation in
modern processors [2], [7], [10], [11]. In order to overcome
this problem, a number of L1-I prefetching techniques have
appeared in the past two decades [1]–[5], [7].

Prior research on L1-I prefetching techniques has pri-
marily focused on improving performance while minimizing
on-chip area overhead [1], [4], [5]. These techniques indirectly

contribute to lower energy consumption by reducing the stor-
age requirements of the L1-I prefetcher. However, reducing the
energy consumption of prefetchers has not been a main ob-
jective in prior work. Furthermore, in the light of dark silicon
constraints [15], on-chip components, including prefetchers,
must operate with high energy efficiency, and simply turning
off the prefetcher is not a viable option, particularly for
high-performance server workloads [16]. Therefore, reducing
the energy consumption of L1-I prefetchers has become an
important research area.

The energy consumption incurred by the system through
utilizing an L1-I prefetcher can be attributed to two sources:
(1) The energy consumed by the on-chip metadata storage
of an L1-I prefetching scheme and (2) The additional energy
consumption that is imposed on the L1-I and L2 caches as
a result of the increased accesses originating from the L1-I
prefetcher. In this work, we show that a substantial fraction of
the energy consumption imposed on the system in the presence
of an L1-I prefetcher is caused by the implicit pressure of the
L1-I prefetcher on the cache hierarchy, i.e., L1-I and L2, rather
than by the prefetcher’s metadata. In order to accomplish this
objective, we evaluate 4 different L1-I prefetchers RDIP [1],
FNL-MMA [4], MANA [5] and PIF [2] in terms of their
energy consumption and performance.

We propose a novel approach to tackle the issue of excessive
energy consumption overhead imposed on the cache hierarchy
while employing an L1-I prefetcher. Our approach involves
changing the configuration of the L1-I cache to reduce the
energy consumed per L1-I access. We study the energy per
access of L1-I with different associativities and sizes to
achieve an optimum configuration for the L1-I. Then, we
compare the energy consumption and performance of the
selected L1-I prefetching methods with our proposed L1-I
configuration against the baseline system, a system without
an L1-I prefetcher. Our observations indicate that using the
proposed L1-I configuration, specifically by changing the
associativity from 8 to 2, results in a substantial decrease
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in energy per access and total energy consumption overhead
of the L1-I cache (on average 113.7 nJ/ki), with minimal
impact on performance (up to 0.8% on average.) This energy
consumption reduction is enough to effectively mitigate the
energy consumption overhead caused by the L1-I prefetcher
in comparison to the baseline system, with the average and
the highest energy overhead at 41.6 nJ/ki and 74.8 nJ/ki,
respectively. This highlights the effectiveness of our proposed
approach in mitigating the excessive energy consumption
imposed on the cache hierarchy due to L1-I prefetchers.

To further reduce the energy consumption overhead of using
an L1-I prefetcher, we examined the impact of altering the
front-end configuration of one of our selected prefetchers,
namely MANA, on both the system’s energy consumption and
overall performance. The energy-optimized front-end config-
urations demonstrate 25.6 nJ/ki lower energy consumption
for L1-I, L2, and L1-I prefetcher storage (including static and
dynamic overhead) compared to the performance-optimized
configurations, with less than 1% performance loss. Our
findings highlight the crucial role of front-end selection in
creating a more energy-efficient prefetcher solution.

The rest of the paper is organized as follows: Section
II presents our evaluation methodology and baseline system
as well as the four selected L1-I prefetchers; Section III
explores the results and evaluations while also elaborating on
the motivation behind considering modifications to the L1-I
configuration to compensate for energy conservation resulting
from the L1-I prefetcher; Section IV discusses the findings
of our study and delves into their consequential implications;
Section V discusses the background of our selected L1-I
prefetching methods. Finally, Section VI concludes this work.

II. METHODOLOGY

In this section, we describe the tools and methodologies that
we employed to conduct our research and evaluate each of the
selected prefetching methods. We also provide an overview of
the four prefetching methods we used in our performance and
energy consumption analysis.

A. Simulation Infrastructure

To analyze the performance and energy consumption of
the selected prefetchers, we use ChampSim [8] simulator and
CACTI-7 [14], respectively.

ChampSim [8] is a trace-driven simulator provided by
the 1st Instruction Prefetching Championship (IPC-1 [9]). We
use Champsim with the default IPC-1 configurations. We
launch all simulations with 50 public benchmarks provided
by IPC-1. To make results more accurate, we allocate 50
million instructions to warm up the system, including the
caches, the branch predictor, and prefetchers’ metadata. The
subsequent 50 million instructions are used to collect the
evaluation metrics, such as Instructions Per Cycle (IPC) and
access counters.

CACTI [14] is an integrated tool to calculate cache access
time, cycle time, area, leakage, and dynamic power model for

modern computer architectures. We use CACTI-7 to measure
the energy per access, dynamic energy, and static energy of
tables and structures exploited in our selected prefetchers.

B. Competing L1-I Prefetchers

In order to comprehensively understand the energy con-
sumption of different prefetching techniques, we choose four
representative L1-I prefetchers. We select two of the prefetch-
ers, MANA [5] and FNL-MMA [4], from methods proposed in
the Instruction Prefetching Championship (IPC-1 [9]). Due to
the storage constraints of the IPC-1, the designers of MANA
and FNL-MMA also implemented a storage-efficient version
of their methods. These storage-efficient versions minimize the
metadata size of the L1-I prefetcher, making them suitable for
systems with limited storage resources. The other two L1-I
prefetching methods, PIF [2] and RDIP [1], are widely rec-
ognized approaches that require significantly larger metadata.
PIF is known for its high-performance capabilities but requires
large metadata, i.e., 236 KB. On the other hand, RDIP exhibits
lower performance compared to PIF, but its metadata size is
relatively smaller. Further details about the four selected L1-
I prefetchers are outlined in section V. Below, we provide
additional information regarding the configurations of both the
selected prefetchers and our baseline system, which we use in
our evaluations.

baseline: Table I summarizes our baseline system con-
figuration, against which all performance gains and energy
consumption changes are compared. Notably, our baseline
system L1-I does not utilize any prefetcher.

TABLE I
BASELINE CHARACTERISTICS

Parameter Value
Core 14 nm, a single 4 GHz OoO core, 352-entry ROB,

128-entry Load Queue, 72-entry Store Queue

Fetch Unit 32 KB L1-I, 8-way, 64B block size, 4-cycle latency,
hashed-perceptron branch predictor [13], 2K entry
Branch Target Buffer, 8 MSHRs

L1-D
Cache

48 KB, 12-way, 64B block size, 5-cycle latency, 16
MSHRs, next-line prefetcher

L2 Cache 512 KB, 8-way, 10-cycle latency, Signature Path Pat-
tern (SPP) [12] prefetcher

Last Level
Cache

2 MB, 16-way, 20-cycle latency, 64 MSHRs

RDIP: We choose all the parameters based on the original
proposal of RDIP [1]. The Miss Table is a 4K entry, 4-way
set associative table, where each entry holds three trigger ad-
dresses and the associated footprint of the detected instruction
cache misses. This prefetcher imposes 83 KB storage on the
baseline design.

PIF: The history buffer of PIF can accommodate up to 32K
spatial regions. To find a record in the history buffer, PIF uses
an index table that holds pointers to the history buffer’s entries.
We model this index table with a 4-way set associative and
2K sets, as in the original proposal. PIF imposes over 236
KB of storage overhead to the baseline design. The temporal

61



0

200

400

600

800

1000

1200

L1
-I L2

H
is

to
ry

In
d

ex
Ta

b
le

L1
-I L2

M
is

sT
ab

le

L1
-I L2

Fn
l-

Fi
lt

er

Is
h

ad
o

w

M
is

sa
h

ea
d

To
u

ch
e

d

W
o

rt
h

p
f

L1
-I L2

Fn
l-

Fi
lt

er

Is
h

ad
o

w

M
is

sa
h

ea
d

To
u

ch
e

d

W
o

rt
h

p
f

L1
-I L2

M
an

aT
ab

le

H
O

B
P

T

L1
-I L2

M
an

aT
ab

le

H
O

B
P

T

M
an

aM
u

lt

L1
-I L2

PIF RDIP FNL-MMA 12 KB FNL-MMA 96 KB MANA 16 KB MANA 122 KB Baseline

A
cc

es
se

s 
Pe

r 
K

ilo
 In

st
ru

ct
io

n
s 

(P
K

I)

Fig. 1. Accesses per Kilo instructions for all the metadata used in the 4 selected prefetchers with a 32 KB and 8-way L1-I

compactor contains eighteen spatial regions, and the lookahead
is five, as in the original proposal. We also use four SABs
where each one tracks twelve consecutive spatial regions [2].

MANA: We select all the configuration parameters based on
the original proposal. MANA [5], [6] uses a 4K entry table
of 1K sets to store the spatial regions. Each MANA Table
record consists of 7 bits to indicate the index in High-Order-
Bits Patterns’ Table (HOBPT), a 2-bit partial tag, an 8-bit
footprint, and a 12-bit pointer to the successor spatial region.
Moreover, it uses a 128-entry, 8-way set associative HOBPT.
The overall storage budget of MANA in the storage-efficient
format is 15 KB. We also use the extended format of MANA
by just changing the size of MANA Table and HOBPT to
16K entry and 1024-entry, respectively, and adding a 4K entry
MANA-Multiple Table. Hence, the extended format of MANA
requires 122 KB storage.

FNL-MMA: The storage budget required for the extended
format of the FNL-MMA [4] is close to 96 KB: 408 bytes
for the I-Shadow cache (192 17-bit entries), 8 KB for the
Touched table (64K 1-bit entries), 16 KB for the WorthPF
table (64K 2-bit entries), 71 KB for the miss ahead prediction
table (8K 71-bit entries), 116 bytes for the MMA filter (16
58-bit addresses) and 136 bytes for the FNL filter (128
17-bit entries). In the storage-efficient format, the size of the
WorthPF, Touched, and miss ahead tables are divided by 8,
and hence the overall size, in this case, is about 12 KB.

C. Energy Consumption Calculation Methodology

The energy consumption of an L1-I prefetcher is derived
from two primary sources: (1) The energy consumption related
to the prefetcher’s metadata, and (2) The energy consump-
tion overhead imposed on the baseline system due to an
increased number of accesses to the cache hierarchy in the
presence of the L1-I prefetcher, including dynamic and static
energy consumption. In this section, we explain our evaluation
methodology for quantifying the energy consumption of the
four selected L1-I prefetchers.

First, we focus on the evaluation method to determine
energy consumption related to the L1-I prefetcher’s metadata.
As described in sections II-B and V, the metadata storage in
each L1-I prefetcher scheme consists of one or two primary,

large tables, as well as several smaller structures such as
queues and buffers. We assume that the majority of the energy
consumption in these methods belongs to the large tables.
Based upon this assumption, we count the number of demand
accesses to each of the large tables using ChampSim. Next, we
calculate the dynamic energy of each table by multiplying the
energy per access of each table entry obtained from CACTI-7
with the number of accesses obtained in the previous step.
We also calculate the static energy related to each table by
multiplying the leakage power (reported by CACTI-7) by the
simulation time. Finally, we sum the dynamic and static energy
numbers to obtain the total energy consumed by the tables of
the L1-I prefetcher.

We calculate the energy consumption overhead imposed on
the cache hierarchy (L1-I and L2) in the presence of an L1-I
prefetcher. To do so, we first compute the energy consumption
of L1-I and L2 in both the system with and without the
L1-I prefetcher. Then, we subtract the two obtained values to
calculate the additional energy consumption imposed on the
system due to the presence of the L1-I prefetcher. To compute
the dynamic energy consumption of L1-I and L2 caches, we
count the number of demand accesses to L1-I and L2 using
ChampSim. Then, we calculate the dynamic energy of L1-I
and L2 by multiplying the energy per access of L1-I and L2
obtained from CACTI-7 with the number of accesses obtained
in the previous step.

As mentioned before, we count the additional number of
accesses initiated from the L1-I prefetcher to its metadata as
well as L1-I and L2 throughout simulations using ChampSim.
To provide a normalized perspective, we divide the obtained
numbers by the total number of instructions (50 million) and
multiply the result by 1000. This normalization allows us
to present the data in a standardized format and facilitate
comparisons across different prefetchers. By multiplying the
attained normalized number of accesses by the energy per
access obtained from CACTI-7, we calculate the normalized
energy consumption (nJ/ki).

III. EVALUATION

In this section, we elaborate on our analysis of the 4 selected
L1-I prefetching methods, focusing on their performance and
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energy consumption. Then, we will explore the motivation
driving the adjustment of L1-I configurations, aiming to com-
pensate for energy consumption overhead introduced to the
baseline system by the L1-I prefetcher. In addition, we evaluate
our proposed approach by comparing it to the baseline system
in terms of both performance and energy consumption. Finally,
we discuss the impact of modifying the prefetcher’s front-
end configuration, specifically focusing on reducing energy
consumption without significant performance degradation. Our
baseline system in all experiments has a 32 KB 8-way set
associative instruction cache without an L1-I prefetcher. More
details about our evaluation methodology and the four L1-I
prefetchers we have chosen are provided in sections V and
II-B.

Figure 1 presents the number of accesses per Kilo in-
structions to the L1-I prefetcher tables, L1, and L2 for the
selected L1-I prefetchers. This figure reveals that FNL-MMA
experiences more access to its tables than other prefetchers.
Furthermore, the figure indicates a significant increase in
the number of accesses to the L1-I and L2 in the presence
of prefetchers, compared to the baseline system, with the
additional accesses to L1-I substantially far surpassing those
to L2. Therefore, to address the additional energy consumption
imposed on the system due to these increased accesses to L1-
I, we propose an approach to decrease the energy per access
in L1-I in the following section.
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Fig. 2. Energy per access for different L1-I configurations

A. Changing L1-I Configuration

As stated earlier, a large fraction of the energy consumption
induced by an L1-I prefetcher is due to the amplified number
of accesses to the L1-I, resulting in higher dynamic energy
consumption. One approach to mitigate the effect of enormous
additional accesses to the L1-I initiated by the L1-I prefetcher
is to decrease the energy per access of L1-I. In this section,
we aim to explore alternative configurations for the L1-I cache
that effectively decrease its energy per access.

Figure 2 shows the energy per access (including read, write,
and tag lookup operations) of L1-I for various associativities
(1, 2, 4, and 8-way) and sizes (32 and 16 KB.) By reducing the
associativity of a 32 KB L1-I from 8 to 2, the energy of read
and write access will decrease around 3× and 2×, respectively.
However, as can also be seen in the figure, changing the

L1-I size from 32 KB to 16 KB does not noticeably affect
the energy per access. Hence, reducing associativity from
8 to 2 is sufficient to significantly decrease the energy per
access, thereby effectively mitigating the additional energy
consumption resulting from the increased accesses from the
L1-I prefetcher to the L1-I cache.
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In addition, the main purpose of higher cache associativity
is to alleviate cache conflicts and prevent cache thrashing,
which arises when cache lines are frequently evicted and
reloaded due to limited associativity. However, it’s important
to note that in server workloads, the predominant issue is often
capacity misses rather than conflict misses. Given the proactive
role of the L1-I prefetcher in fetching a significant portion of
future demanded blocks to the L1-I cache, larger associativity
(i.e., 8-way) may not be essential anymore.

To evaluate the effectiveness of the L1-I prefetcher in
compensating for lower L1-I associativity, we assess our
proposed L1-I configuration (32 KB and 2-way) with and
without the utilization of L1-I prefetchers. Figure 3 presents
the performance drop of changing associativity of a 32 KB
L1-I cache from 8-way to 2-way across four selected L1-I
prefetchers. The figure displays the geomean and maximum
performance drop of the 50 workloads, alongside the baseline’s
maximum and average performance drop. By decreasing the
L1-I associativity from 8 to 2, the performance decreases about
1.2% on average and about 12% in the worst case in the
baseline system, which is a system without an L1-I prefetcher.
It can be inferred that by presenting an L1-I prefetcher to
the system, regardless of the specific prefetcher employed,
we observe a minimal decrease in average performance for
the proposed L1-I configuration. Therefore, we conclude that
decreasing the associativity of the L1-I will not affect the per-
formance significantly in the presence of the L1-I prefetchers.

In summary, our proposed L1-I configuration to reduce its
energy per access would be 32 KB and 2-way, and we assess
this configuration using the 4 selected prefetchers in the next
section.

B. Evaluation of the selected L1-I prefetchers

Figure 4 illustrates the average speedup achieved by em-
ploying each of the selected L1-I prefetchers alongside a 32
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Fig. 4. Average speedup of 4 selected prefetchers (32 KB, 8-way L1-I)

KB 8-way L1-I cache over the baseline system. For MANA
and FNL-MMA, we also measured the speedup obtained when
using their storage-efficient formats, namely 16 KB for MANA
and 12 KB for FNL-MMA. Based on figure 4, PIF, MANA
122 KB, and FNL-MMA 96 KB perform similarly in terms of
speedup, ranging from 27% to 29%. Furthermore, if we use
the storage-efficient format of MANA and FNL-MMA, the
performance degradation ranges from 2% to 5%. Additionally,
the performance improvement achieved by using the RDIP
prefetcher is not substantial (15%) compared to the other
prefetchers.
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Fig. 5. Energy overhead of 4 selected prefetchers (32 KB, 8-way L1-I)

Figure 5 presents the energy consumption overhead of
employing each of the selected L1-I prefetchers alongside
a 32 KB 8-way L1-I cache, as compared to the baseline
system. This overhead includes both the dynamic and static
energy consumption of the L1-I prefetcher, as well as the ad-
ditional energy consumption resulting from increased accesses
to L1-I and L2 caches initiated from the selected prefetchers.
Further details on the methodology used for calculating the
energy consumption of an L1-I prefetcher can be found in
section II. As shown in the Figure 5, MANA 16 KB exhibits
the lowest storage energy (dynamic + static) overhead (less
than 10 nJ/ki), which is mainly due to its significantly
smaller metadata size. Additionally, FNL-MMA 96 KB ex-
hibits the highest dynamic storage-related energy consumption

(60 nJ/ki), which is attributed to its frequent access to large
bit-wise structures during run time. In terms of static energy
consumption of L1-I prefetcher’s metadata, PIF, renowned for
its extensive metadata requirements, demonstrates the highest
level of static energy consumption (20 nJ/ki).

Regarding the energy consumption overhead imposed on
the cache hierarchy, as depicted in Figure 5, the L2 energy
consumption overhead is 9.5 nJ/ki for FNL-MMA 12 KB and
2.5 nJ/ki for MANA 16 KB. This additional energy overhead
on L2 for the storage-efficient format of FNL-MMA and
MANA signifies that reducing the size of metadata in the L1-I
prefetcher leads to increased pressure on the L2 due to addi-
tional accesses to L2 required to bring the demanded blocks by
the prefetcher. Furthermore, L2 energy consumption overhead
is negative for PIF, RDIP, FNL-MMA 96 KB, and MANA
122 KB. This suggests that employing L1-I prefetchers can
reduce the number of accesses to L2, resulting in decreased
(negative in the figure) energy consumption compared to the
baseline system. However, the energy consumption overhead
of L1-I is substantially high (28.8 nJ/ki on average) across
all the selected L1-I prefetchers. This observation motivates us
to adopt our proposed approach, aiming to reduce the energy
per access and, hence, the overall energy consumption of L1-I
in the presence of L1-I prefetchers.
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Fig. 6. Average speedup of 4 selected prefetchers (32 KB, 2-way L1-I)

C. Evaluation of the Selected L1-I Configuration

In order to mitigate the energy consumption overhead due
to the presence of the L1-I prefetchers, we use our proposed
configuration (i.e., 32 KB and 2-way) for the L1-I and repeat
the experiments in the previous section. Figure 6 demonstrates
the average speedup achieved by employing each of the
four selected prefetchers in a system with our proposed L1-I
configuration, compared to the baseline system. As compared
to the 32 KB 8-way, decreasing the L1-I associativity will
not necessarily lead to considerable performance loss, with an
average of 0.8 % and the worst-case scenario of 1.5 %.

Figure 7 showcases the energy consumption overhead of
employing each of the selected L1-I prefetchers in a system
with our proposed L1-I configuration in comparison to the
baseline system. As shown in the figure, there is a substantial
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Fig. 7. Energy overhead of 4 selected prefetchers (32 KB, 2-way L1-I)

decrease in L1-I energy consumption (−84.9 nJ/ki on aver-
age) among all of the selected L1-I prefetchers compared to
the baseline system. This amount of energy reduction leads
to saving a significant amount of energy (28.8 − (−84.9) =
113.7 nJ/ki on average), in comparison to the 32 KB 8-way
configuration results (which is demonstrated in the previous
section.) Therefore, the energy savings from reducing the
associativity of the L1-I cache are sufficient to offset the
energy consumption overhead of the L1-I prefetcher (including
L1-I prefetcher energy and L2 energy overhead.), with the
average and the highest overhead observed at 41.6 nJ/ki and
74.8 nJ/ki, respectively. Moreover, there is a modest increase
in L2 energy overhead (5.9 nJ/ki on average) compared to the
32 KB 8-way configuration. This implies that there is slightly
more pressure on L2 as a result of the lower associativity in
L1-I. However, the amount of increase in L2 energy overhead
is negligible compared to the amount of the reduction in L1-I
energy consumption.

TABLE II
MANA FRONTENDS

L
oo

ka
he

ad

SA
B

co
un

t

SA
B

si
ze

SR
Q

si
ze

Aggressive 5 3 12 18

Semi-conservative 3 3 12 18

Conservative 3 1 5 8

D. L1-I Prefetcher Front-end Sensitivity Analysis

To address the energy overhead of using the L1-I prefetcher,
there are two potential approaches. First, we can consider
modifying the L1-I configuration, as discussed in the previous
sections. Secondly, adjusting the configurations of the L1-
I prefetcher can also help mitigate the impact of energy
overhead on the baseline system. In this section, we investigate
the effects of changing the front-end configuration of one of
the selected prefetchers (MANA [5]) on both performance and
energy consumption. To do so, we conduct a detailed analysis
of the front-end components of MANA, which includes the
SAB (Sequential Access Buffer), SAB count, SRQ (Sequential
Request Queue), and lookahead. We propose three distinct

configurations for the MANA front-end: Aggressive, Semi-
conservative, and Conservative. Each of these configurations
are defined in Table II for clarity and reference.
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Fig. 8. Average speedup sensitivity analysis for MANA prefetcher

It can be inferred from the table that by transitioning from
the Aggressive configuration to the Conservative configuration,
the decrease in the lookahead and size of the prefetch-
ing buffers signifies a shift from a performance-optimized
configuration to an energy-optimized configuration. In this
experiment, our focus is to analyze the speedup and energy
consumption overhead achieved by employing various front-
end configurations of MANA. We compare the results obtained
from both MANA 16 KB and MANA 122 KB configurations,
in combination with L1-I caches of 32 KB and 2-way as well
as 32 KB and 8-way. Figures 8 and 9 present the speedup
and energy consumption overhead achieved by the different
front-end configurations compared to the baseline system.

Figure 8 demonstrates that by transitioning MANA front-
end from conservative to aggressive and increasing the L1-
I associativity as well as the L1-I prefetcher’s metadata
size, there is a continuous increase in performance. More-
over, the performance gap between the aggressive and semi-
conservative approaches remains negligible, averaging at only
0.4%. In addition, figure 9 illustrates that switching MANA
front-end from conservative to aggressive leads to a consid-
erable increase in the L2 energy consumption, averaging at
5.9 nJ/ki. The primary reason for the increase in L2 energy
consumption is the higher number of accesses to L2 caused
by the larger lookahead of the prefetcher in the aggressive
configuration. Additionally, it is evident that increasing the
metadata size results in a higher energy consumption overhead
for the L1-I prefetcher, including both static and dynamic
energy consumption.

Among the three evaluated configurations of MANA,
the semi-conservative configuration exhibits an average of
25.6 nJ/ki less overall energy consumption overhead com-
pared to the other two configurations. The overall energy
consumption overhead encompasses the energy consumption
of L1-I, L2, and L1-I prefetcher, including both static and dy-
namic energy consumption. Therefore, the semi-conservative
configuration of MANA front-end appears to effectively ad-
dress the energy consumption overhead caused by the L1-I
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Fig. 9. Energy consumption sensitivity analysis for MANA prefetcher

prefetcher over the baseline system. Finally, it can be con-
cluded from figure 9 that by combining the semi-conservative
configuration with lower associativity in L1-I (2-way), we can
achieve even greater energy savings.

IV. DISCUSSION

This section delves into two aspects of our study’s findings
and their implications, focusing on the key topics raised during
our evaluation.

Compatibility with Virtual Memory (VIPT): Changing
the associativity of a 32 KB L1-I cache from 8-way to 2-
way leads to a 4× expansion in set size. This adjustment
mandates the increase in page size from 4 KB to 16 KB
to maintain the existing virtual address translation speed
while employing a Virtually Indexed Physically Tagged Cache
(VIPT), incorporating extra tag bits to cover the expanded sets.
Moreover, it’s common to employ larger page sizes, such as
16 KB, in modern operating systems like Apple’s M-series
[18]. However, it’s important to note that employing larger
page sizes can potentially increase vulnerability to internal
fragmentation in some workloads [20] [17]. As another ap-
proach to address this issue, we noted that a 2-way L1-I cache
experiences lower access latency than its 8-way counterpart,
potentially reducing the necessity of relying solely on VIPT
to maintain virtual address translation speed.

Comparing the Energy Savings of Our Approach vs. the
Way-Prediction Technique [19]: Both methodologies aim to
minimize way probes during cache set lookups to enhance
energy efficiency. First, we observed that the 2-way L1-I
cache incurs considerably less area overhead than the 8-way
cache. While the 2-way L1-I cache consumes considerably
less area overhead than the 8-way cache, implementing a
way-prediction technique introduces additional overhead. Ad-
ditionally, our approach involves lowering energy consumption
by reducing associativity and leveraging a strong prefetcher.
In contrast, the way-prediction technique anticipates future
access ways, leading to fewer way probes in a set. The way-
prediction technique achieves, on average, 70% reduction in
ED (average energy consumption per cache access × average
energy consumption per cache access), whereas our approach

ensures at least a twofold decrease in energy per access for L1-
I cache. Notably, the way-prediction method achieves 90% hit
rate in specific scenarios, indicating that its prediction accuracy
falls short in 10% of lookups [19]. In conclusion, these two
approaches share a common goal and can complement each
other to achieve enhanced performance and energy savings.

V. BACKGROUND

In this section, we review four instruction prefetching meth-
ods for servers proposed in the last decade, which we selected
for our evaluations.

Proactive Instruction Fetch (PIF) [2], a temporal in-
struction access-based prefetcher, provides a more substantial
enhancement, compared to its predecessors [7]. Temporal
prefetchers are based on repetitive behavior in the sequences
of instruction cache accesses or misses. By recording and re-
playing the sequence of prior cache accesses [2] or misses [7],
temporal prefetchers succeed in eliminating future instruction
cache misses. PIF records the sequence of spatial regions in
a circular history buffer. Although PIF effectively minimizes
cache misses, it imposes substantial storage overhead on the
processor, i.e., 236 KB per core.

RAS Directed Instruction Prefetcher (RDIP) [1] attempts
to offer a significantly lower storage cost compared to PIF
without sacrificing performance. The designers of RDIP note
that the current state of the return-address-stack (RAS) can
provide a distinct and precise representation of the program’s
state. To exploit this observation, RDIP XORs the four top
entries of the RAS and calls it a signature. Then it assigns
the observed instruction cache misses to the corresponding
signature and stores them in a set associative table. Using the
unique signature, RDIP retrieves miss patterns from the table.
RDIP achieves a significant reduction in per-core storage,
lowering it to over 60% of the storage required by PIF. While
RDIP requires considerably lower storage as compared to PIF,
its required storage budget is still considerable.

Microarchitecting an Instruction Prefetcher (MANA) [6]
is another L1-I prefetching technique that leverages temporal
correlation to achieve its benefits. By exploiting the tempo-
ral correlation, this prefetcher offers a smaller number of
distinct records as well as compact metadata records in the
prefetching-related tables. Moreover, MANA stores high-order
bits of tag in a set associative table named high-order-bits
patterns’ table (HOBPT). In addition, to provide a space-
efficient method and take advantage of temporal correlation
among spatial records, MANA proposed the idea of chaining
spatial metadata records, which yields a robust and timely
prefetching method.

FNL+MMA [4] is another instruction cache prefetcher that
monitors only demand misses and stores them in a small
tag-only cache named I-Shadow. This method uses a simple
next-line prefetcher to predict the near future accesses. To
prevent the main issue of next-line prefetching, i.e., over-
fetching and subsequent cache pollution, the FNL+MMA
method exploits the Footprint Next-line prefetcher (FNL).
The FNL incorporates a filtering mechanism to anticipate
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”imminent” future accesses, the data accesses that will be
required in the immediate or near future.

MANA and FNL-MMA further enhance their proposed
methods with a storage-efficient format that minimizes the size
of the prefetcher’s metadata while maintaining a high level of
performance.

VI. CONCLUSION

A significant performance bottleneck in modern server
working sets is frequent L1-I cache misses. Over the past
two decades, researchers presented numerous L1-I prefetching
techniques to tackle the issue of L1-I cache misses. While
previous works focused on performance enhancement and
minimizing area overhead of L1-I prefetchers, researchers gave
little attention to the resulting increase in energy consumption
from incorporating an L1-I prefetcher. In this work, we pro-
posed a survey on the energy consumption and performance
of four selected prefetchers. Moreover, we showed that a
significant portion of the energy consumption associated with
L1-I prefetchers is due to the increased L1-I accesses initiated
by the prefetcher. To mitigate this energy consumption, we
proposed an approach to reduce the energy per access by
decreasing the L1-I associativity. Our observations showed
that reducing the L1-I associativity from 8 to 2 effectively
mitigates energy consumption, on average 113.7 nJ/ki. The
achieved energy savings compensate for the energy consump-
tion overhead imposed by the L1-I prefetcher over the baseline
system, with the average and the highest energy overhead
at 41.6 nJ/ki and 74.8 nJ/ki, respectively. Additionally,
the associated performance loss remains negligible, with an
average of 0.8%. We also investigated the impact of altering
the front-end configuration of an L1-I prefetcher on perfor-
mance and energy consumption. Our results demonstrated
that using the energy-optimized front-end for MANA yields
a substantial reduction of 25.6 nJ/ki in energy consumption
(including L1-I, L2, and L1-I prefetcher storage), with a
minimal performance loss of less than 1%.
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