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Abstract—Stream processing plays a crucial role in various
information-oriented digital systems. Two popular frameworks
for real-time data processing, Flink and Storm, provide solutions
for effective parallel stream processing in Java. An option to
leverage Java’s mature ecosystem for distributed stream process-
ing involves porting legacy C++ applications to Java. However,
this raises considerations on the adequacy of the equivalent Java
mechanisms and potential degradation in throughput. Therefore,
our objective is to evaluate programmability and performance
when converting stream processing applications from C++ to Java
while also exploring the parallelization capabilities offered by
Flink and Storm. Furthermore, we aim to assess the throughput
of Flink and Storm on shared-memory manycore machines, a
hardware architecture commonly found in cloud environments.
To achieve this, we conduct experiments involving four different
stream processing applications. We highlight challenges encoun-
tered when porting C++ to Java and working with Flink and
Storm. Furthermore, we discuss throughput, latency, CPU, and
memory usage results.

I. INTRODUCTION

Stream processing is essential for information-driven digital
systems in healthcare, transportation, logistics, stock-market,
telephony, and many others [1]. It encompasses the gathering,
processing, filtering, and analyzing of high-volume, heteroge-
neous, continuous data streams. With a wide applicable range
in many science areas, the stream processing paradigm has
the core characteristic of continuously processing data as it
becomes available. Therefore, computer scientists must em-
ploy efficient processing techniques to meet the computational
demands of stream processing applications, often with real-
time constraints. To that end, coordinating parallel hardware
resources is essential.

Flink [2] and Storm [3] are open-source stream processing
frameworks for real-time data processing. They provide low la-
tency, high throughput, fault tolerance, scalability, and parallel
programming solutions. Each one presents an API that allows
the user to define a topological graph representing the stream
processing data flow; the frameworks handle the execution
via an independent controller process. Users of Flink and
Storm need not handle process management, communication,
synchronization, and other complex details. Although they
serve the same purpose and share many design goals, Flink
and Storm differ in their algorithmic solutions.

The C++ programming language is a prevalent alternative
for applications that require efficiency and low-level hardware
control. On the other hand, Java is a platform-independent

language with extensive support. Java applications can run on
any platform that supports a Java Virtual Machine, making
it a popular choice for developing enterprise-level readily
deployable applications [4], [5]. Therefore, porting legacy C++
applications to Java is an option to leverage Java’s mature
ecosystem for distributed stream processing domain [6]. How-
ever, porting parallel stream processing applications from C++
to Java raises considerations on the adequacy of the equivalent
mechanisms and potential degradation in performance [7].

Multiple nodes work together in a cluster to perform com-
putational tasks distributed among parallel machines. Beyond
the necessary distributed computing techniques, modern clus-
ters also count with many independent multicore computing
nodes. In this context, cloud computing allows users to deploy
their applications without maintaining their clusters [8]. When
utilizing the services of cloud computing providers, distributed
application processes may be allocated, partially or entirely,
on a shared-memory manycore machine [9], [8]. Further-
more, vertical shared-memory scaling has benefits over solely
using horizontal Cloud scaling [10]. Therefore, examining
the performance impacts of Java distributed frameworks in a
multicore environment is essential to gain insights into these
implications.

Our goals are threefold: assess the programmability and
qualitative aspects of porting parallel stream processing ap-
plications from C++ to Java, evaluate the performance impact
of the ported Java applications, and analyze the performance
implications of executing Java stream processing frameworks
solely on shared-memory multicore architectures. We also
summarize our two main scientific contributions: (1) descrip-
tion of steps, difficulties, and features required to convert C++
applications to Java and parallelize them with Flink and Storm;
(2) performance analysis of C++ and Java applications running
in shared-memory as well as a detailed explanation of the
outcomes.

Section II presents the literature study for the remainder of
this document. Then, Section III describes in detail our bench-
mark implementation. Section IV presents our experiments’
details and the obtained results. We discuss programmability
aspects in Section V and, finally, Section VI concludes with
the final remarks.
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II. RELATED WORK

Sungho Lee [11] proposed a JNI program analysis tech-
nique. They employ a C analyzer to extract semantic sum-
maries of C functions and transform them into Java code
that is analyzed by another Java analyzer. The Java analyzer
constructs call graphs that help identify possible bugs in JNI
code. They found similar bugs to this work (as we discuss in
Section III), including challenges that our applications do not
evidence, such as exception handling. On the other hand, they
do not explore parallelism considerations. Afonso et al. [12]
proposed a framework for Java, C, and OpenCL integration,
emphasizing GPGPU parallelism, which brings different chal-
lenges than distributed computing. Their main goal is to make
GPU acceleration on Java more approachable by combining
their framework with JNI calls to C/C++ OpenCL code. They
took the opposite porting direction, focusing on converting
Java to C++ instead of C++ to Java as we do; the challenges
and shortcomings are different. They circumvent the porting
challenges by imposing a streamlined Java framework that
limits troublesome conversion issues. Regarding programma-
bility, they only measure source lines of code, whereas we
also estimate complexity with Halstead.

Voicu et al. [13] proposed a SPark-based framework for
integrating GPGPU and FPGA parallelism using automatically
generated JNI code. Their methodology allows seamless inte-
gration for the Java developer on the SPark big data distributed
processing framework. They use the Spark-JNI SPark plugin to
port Java code to C++ JNI code, but the authors must highlight
the conversion challenges. The results showed up to 12 times
faster than pure Java code. Venugopal et al. [14] developed a
distributed stream processing engine in C++. They compare
their client-to-client solution with traditional Flink and Spark
master-client implementation. Functionally, the main differ-
ence is that they do not support complex control mechanisms
such as fault tolerance or backpressure mechanisms like Flink
and Spark. They also do not support dataflow, opting for an in-
place directed acyclic graph execution model. However, they
consistently outperform Java solutions. Ultimately, we analyze
the opposite way we sacrifice C++ performance for Java’s
robust streaming systems management structures.

Yang et al. [10] estimate the viability of using existing
streaming engines for big data streaming applications like
Apache Storm, Apache Flink, and Spark Streaming. Similar
to this work, they evaluate Java stream processing solutions in
a multicore shared memory environment. Their experiments
revealed that the shared-memory version achieved 44 times
higher than the maximum Storm throughput, claiming that
vertical scaling has benefits over simply using Cloud horizon-
tal scaling. Ekanayake et al. [15] evaluated Spark, Flink, and
Java MPI scaling on nodes with manycore machines. They
compared Java solutions to C implementations of K-means
and Multidimensional Scaling algorithms for experiments. The
main factor that helps Java reach C-comparable performance
are optimizations to thread models, affinity patterns, and com-
munication mechanisms. Mencagli et al. [16] also compared a

C++ solution with Flink and Storm, where they achieved lower
latency and higher throughput. Windflow is a multicore shared
memory solution in which they come to the same conclusion
as we do in explaining the performance pitfalls of the Flink
and Storm model. However, their comparison is with entirely
different implementations between Java and C++ that do not
use the same base code with the JNI as ours.

SPar [17] is a C++ domain-specific language for parallel
stream processing. Its main goal is to provide a high-level
abstraction layer between the user and the low-level details
of parallelism. SPar uses C++’s source code annotations
containing five attributes representing common stream pro-
cessing computational features. Then, SPar’s compiler trans-
forms the code annotations into the proper parallel code
of a specific parallelism framework or runtime. Therefore,
SPar’s performance is dependent on the underlying runtime.
The source-to-source code transformations take place directly
in the C++ abstract syntax tree. Currently, SPar supports
transformations for FastFlow [17], [18], TBB (Intel Threading
Building Blocks) [19], OpenMP [20], distributed [21], and
GPGPU [22]. In this work, we use SPar to compare our Java
Flink and Storm versions with a C++ programming solution
that supports multiple backends. Since we consider shared-
memory multicore architectures, we use SPar versions that
generate FastFlow, TBB, and OpenMP code.

III. APPLICATIONS

This Section describes the steps, difficulties, and features
required to convert stream applications from C++ to Java.
We also discuss parallelization considerations for Flink and
Storm, comparing them to the original C++ strategy. There
are 3 applications: Face Recognizer, Bzip2, and Imgcmp.
Face Recognizer is a video stream processing application
that detects faces and recognizes them based on a set of
images. Bzip2 is a compression and decompression application
that uses the Burrows-Wheeler Transform algorithm. Imgcmp
searches a set of images for similar images.

The first challenge is translating the program’s necessary
C/C++ struct to Java class using the JNI framework.
This is further aggravated by the fact that performing type-
checking in the boundary between the languages is impossible.
We summarize some of the main challenges: (1) certain
C concepts have no obvious Java equivalent (also noted
by [11]) such as circular compositions, void pointers, and
union; (2) converting C structs into Java classes in a
serialization-friendly manner demands converting every value
the struct’s pointers point to into their Java counterparts;
(3) increased contact surface between native C and Java codes
incurs in some extra overhead.

The parallel versions’ general processing strategy is a
pipeline with replicated middle stages. In this case, Reader
and Writer stages perform sequential I/O at the beginning and
end of the pipeline, respectively. The pipeline continuously
reads input data in frames, images or chunks of bytes sends
each data item to an independent worker, and then collects
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and writes the result back to the disk. Face Recognizer and
Bzip2 have one middle parallel stage while Imgcmp has three.

Implementing pipeline stream parallelism with Flink and
Storm is similar to each other. The parallelism strategy is
similar to C++, albeit with extra considerations. First, any non-
primitive data sent through the pipeline must be serialized/de-
serialized. That is because Flink and Storm communicate with
messages between different processes, even when running
locally on a single machine. Another difficulty in Flink and
Storm is re-ordering the output, which is necessary since the
non-deterministic nature of parallelism yields scrambled video
frames that lose their coherency. On Flink and Storm, we have
to implement a re-ordering algorithm manually [23].

Another challenge of Storm and Flink is that they are frame-
works that are not conceived to operate in shared memory
environments. Their internal workers communicate through
messages. Therefore, if the application relies on a mutable
global state, the only way to rewrite it in these frameworks
is by recreating and synchronizing the state in each parallel
process. From a programming point of view, one must look
into the application’s internal code, often needing more good,
extensive documentation; from an execution time performance
point of reference, this is computationally costly.

IV. EXPERIMENTS

In this Section, we evaluate the execution time performance
of the Flink and Storm Java versions compared to the original
C++ solutions. First, we present the experimental methodology
in Section IV-A, followed by a discussion of the experimental
results in Section IV-B.

A. Methodology

We executed the experiments in a multicore server that con-
tains two Intel(R) Xeon(R) Silver 4210 2.20GHz processors,
totalling 20 physical cores with 40 threads and 140 GB of
RAM. The operating system is Ubuntu 20.04.4 LTS (kernel
version 5.4.0-105-generic). We use Java version 11, Storm
version 2.2.0, Flink version 1.12.0, and G++ version 9.3.0.
Furthermore, we specified the target C++ standard version to
be 2014, as that is the most recent C++ version SPar supports,
and all C++ code uses the optimization flag -O3.

Regarding metrics, our experiments consider Latency in
seconds, throughput in items/second or MB/second, average
CPU usage in percentage, and total Memory usage in MB. We
collect CPU usage by sampling the execution. Memory usage
is the consumed RAM sampled every 1 ms, and Throughput is
the total volume of data or items processed from start to finish
of the application. Our CPU usage sums all logical CPU usage
and divides it by the total number of logical CPUs, resulting
in the average CPU usage of the entire multicore machine.
The CPU usage samples every 1 ms.

We measure latency from end to end by introducing time
stamps at the exit and the arrival of every message in the
pipeline; then, we measure latency as the difference between
the two timestamps. We finally sum up all stages’ latency,

yielding the end-to-end latency representing the total commu-
nication cost in seconds between the nodes in the pipeline. In
this document, we shortly refer to end-to-end latency simply
as latency. However, it is essential to note that this method
does not measure the network’s latency exclusively because
some tuples may be buffered.

In latency and throughput graphs, the X-axis represents the
total number of workers, and the standard deviation appears
as error bars. The number of workers does not necessarily
correspond to the number of active processes or threads in the
system. The number of workers represents how many parallel
processes or threads spawn. There are extra threads/processes
for Sink and Source operations, and Flink and Storm spawn
one or more processes to coordinate computation. Given that
w is the number of workers, and n is the number of parallel
stages, every application has at least (n ∗ w) + 2 process-
es/threads. Bzip2 and Face Recognition have one parallel
stage, while Imgcomp has three parallel stages.

The Face Recognizer experiments use a 15-second MPEG-
4 input video with 450 frames, a 640x360 resolution, and
10 150x150 training set images. For Bzip2, we take the
Canterbury Corpus lossless compression benchmark input and
concatenate it into an 800MB file. The decompression input is
a 180 MB bzip2 file, which is the compression output. The
input for Imgcmp is 114 J-PEG images (sampled from Ferret’s
native dataset) with 128x96 resolution totalling 684KB of data.

B. Discussion of Results

This Section discusses each application’s throughput, la-
tency, CPU, and memory usage results.

1) Face Recognizer: Figure 1 shows the average latency
(Y-axis) of all Face Recognizer versions. Except for TBB and
Flink, all versions increase latency with parallelism. To explain
the latency results of each interface, we must understand some
considerations about each interface. TBB’s task scheduler
only operates when the system can immediately continue
processing them. TBB only buffers stream tuples up to a
maximum number of user-defined tokens, which is ten times
the number of workers; therefore, the latency is lower (in our
experiments, close to 0) because fewer items are concurrently
buffered. FastFlow performs static data buffering (default is
512), which means multiple data items may be alive inside the
stream but not currently under processing. OpenMP also does
static buffering in the same manner as FastFlow, but the default
size of the internal queue buffering is 100 instead of 512.
Therefore, it has lower latency than FastFlow because fewer
items are alive in the stream awaiting processing resources.

Flink has very low latency due to its internal backpressure
mechanism. Even though Flink buffers data, the backpressure
mechanisms do not allow many stream tuples concurrently live
and halt the execution of non-bottleneck processes. Therefore,
the Source only creates stream items if Flinks understands
the system can process more stream tuples. Flink’s runtime
automatically controls the backpressure mechanism.

Storm’s backpressure relies on tokens-in-flight, which is
similar to TBB. Since we keep default values, Storm has
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Fig. 1: Face Recognizer latency

default 1000 tokens-in-flight, which is the highest buffering
rate of all parallel versions and explains why it has high aver-
age latency. Larger buffer sizes entail higher latency standard
deviation. Ultimately, buffering or chunking data is detrimental
to latency, a vital concern for real-time applications. Improve-
ments include performing backpressure or directly reducing
the number of buffered elements. One final consideration
regarding latency is that as the number of parallel workers
increases, the average latency also tends to reduce. Latency
decreases for all versions that keep many items buffered
because more parallel workers can process the buffered items
faster.

Figure 2 depicts the average Face Recognizer throughput.
Expectedly, Flink and Storm do not scale as well as the C++
versions in the shared-memory environment. That is because
Flink and Storm introduce a significant overhead with their
management systems and fault tolerance guarantees that the
C++ back-ends do not implement. Another factor detrimental
to performance is the Java garbage collector and the cost of
communicating between processes instead of threads. These
mechanisms could theoretically be disabled to increase per-
formance, but since we consider that they possibly execute
on distributed clusters containing manycore, this is likely, not
possible. Interestingly, the Java sequential execution yielded
10.57% more throughput than the C++ sequential version. The
Java compiler may have some runtime optimization for this
specific application that the C++ optimizations could not do.

One extra consideration from Figure 2 is that the FastFlow
version has a dip in performance after 19 or 39 workers; the
reason is due to a workload imbalance caused by FastFlow’s
behaviour of pinning threads to cores that end up pinned to
virtual cores. Flink does allow setting affinity – equivalent to
pinning – but we do not configure it; therefore, it continues
scaling on hyper-threading without a performance dip. Storm
does not allow pinning since the underlying resource manager
controls the resources.

Figure 3 shows the CPU and memory usage with 40 work-
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Fig. 2: Face Recognizer average throughput of 10 executions.

ers. Regarding CPU usage, Flink and Storm have a consider-
able initialization period, evidenced by the CPU working with
less than 20% capacity for 4 seconds in Flink and 8 seconds
in Storm. On the other hand, C++ versions achieve close to
100% CPU usage almost immediately after starting execution.
CPU usage also reveals that FastFlow’s low throughput is due
to it operating at 10% of the total CPU’s capacity at the end
of the stream, which depicts an imbalance in the workload for
the reasons mentioned earlier.

About memory usage in Figure 3, all SPar’s versions are
similar and less than 2000 MB. On the other hand, Flink and
Storm demand more memory, while Flink requires double that
of Storm. This behaviour remains consistent throughout all
applications we examine, so we do not show more memory
consumption graphs. Face Recognizer is the most favourable
memory consumption application for Java versions compared
to C++ versions. In summary, Flink consistently consumes
more memory than Storm in our applications, which consume
more than C++.
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Fig. 3: Face Recognizer CPU and memory usage with 40 workers.

2) Bzip2: We perform Bzip2’s experiments for compression
and decompression.

Concerning latency in Figure 4, Bzip2 follows the same
overall trend as Face Recognizer. The main difference is that
SPAR_FF delivers latencies much closer to the best versions
(Flink and TBB). In this case, the difference is that we
statically set all buffer sizes to 1, proving that reducing the
communication buffer sizes can improve latency. Every other
version remains with the same configurations and has the
equivalent results to Face Recognizer in latency.

Different from Face Recognizer, Figure 5 reveals that Flink
and Storm struggle to compare to the C++ frameworks in
throughput. In the worst case, the compression throughput is
half that of SPar versions and eight times lower for decom-
pression. The throughput difference between SPar_TBB and
Flink is 41.55% in Face Recognizer and 47.05% in Bzip2’s
compression. Furthermore, the scalability is relatively similar
between these two applications. Bzip2’s decompression scales
less than compression because it has less work to perform,
and the communication costs start to outweigh the parallelism
benefits. Figure 6b shows that the decompression CPU usage
is lower than compression.

Beyond what was explained in Face Recognizer, two
other reasons contribute to Flink and Storm achieving lower
throughput than C++. First, Storm and Flink’s versions have
a higher communication cost because serialization and pro-
cess communication is costlier than threads. Second, Storm
and Flink use considerably more memory than C++, which
increases the communication costs associated with a NUMA
architecture and makes Java’s garbage collector have to handle
larger memory allocation. Another relevant factor is that Bzip2
Java sequential compression throughput is 0.18% superior to
C++ sequential, which was mostly better for Java in the Face
Recognizer application.

The graphs from Figure 6 showcase Bzip2’s resource usage
with the maximum number of workers (40). These results
confirm that Flink and SPar_FF, the two versions with the
most unstable throughput measurements, struggle to maintain
consistently high CPU usage. We also see that Storm has close

to 100% CPU usage for a limited amount of time, which also
contributes to explaining its low scalability with a high number
of processors.

3) Imgcmp: The latency graph in Figure (7) shows the
Imgcmp latency. We highlight less latency scaling as Workers
increase and more standard deviation or erratic behaviour in
latency across all versions. This behaviour is because the
Imgcmp pipeline depth is higher than Bzip2, so there is more
communication. While Bzip2 or Face Recognizer have two
producer-consumer communication stages, Imgcmp has four.
Furthermore, the only versions of Imgcmp that keep scaling
are the C++ versions. That is because Flink and Storm do
not increase throughput as the number of workers increases,
as will be discussed later. Flink is the only version that
tends to increase latency as the number of Workers increases.
In conjunction with the reasons mentioned for the other
applications, as the total number of Workers increases, the
control and communication get more costly as more parallel
agents are involved.

Regarding throughput in Figure 8, the C++ versions con-
tinue scaling as the number of Workers grows, but the Java
versions do not. The C++ sequential execution yielded 18.35%
more throughput than the Java sequential version. Therefore,
scalability inefficiency is entirely associated with the Flink
and Storm parallelism runtimes. Imgcmp is an application that
has double the communication channels. Further, Imgcmp has
more complex serialization than all the other applications (see
Section III). Another factor is that Imgcmp behaviour severely
oversubscribes the system when there are many workers. At 13
workers, the application already oversubscribes the system’s
logical cores. Strictly at about 13 Workers is when Flink and
Storm scalability halts. Flink and Storm operate with processes
instead of threads like C++. From the Operational System
perspective, switching the context between threads is cheaper
than processes, so the over-subscription of cores has benefits
in C++ threads but not in Java processes.

Figures 9 offer more insight since it shows that Flink and
Storm cannot fully utilize the processor’s capacity. The graph
shows that the Java frameworks struggle to maintain almost
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Fig. 5: Bzip2’s Compression Throughput.

80% of CPU usage, unlike the SPar versions. Furthermore, it
displays an oscillation pattern, whereby Flink and Storm go
from around 75% to around 45% CPU usage. This further
corroborates that latency (and therefore communication costs)
plays a significant role in Flink and Storm’s reduced through-
put. The frameworks do some processing and then halt during
communication. The cost of oversubscribing processes and
the higher communication costs, evidenced by higher latency,
showcase challenges for Flink and Storm in a shared-memory
multicore environment.

V. PROGRAMMING PRODUCTIVITY ANALYSIS

Programming productivity is a crucial factor in comparing
different parallel programming interfaces. However, this is
a complex task since it involves many personal considera-
tions individual to each programmer. Therefore, one option is
to use established code metrics to approximate productivity
evaluation [24]. While helpful, code size and complexity
evaluations cannot predict the effort required to develop a
parallel application. Evaluations that estimate development
efforts are more helpful but still have limitations. This work
uses SLOC (significant lines of code) and Halstead complexity

estimation. SLOC does not count blank or commented lines.
Halstead metrics quantify software complexity by measuring
program length, vocabulary size, volume, and difficulty in
development estimation. For the measurements, we strip the
code of any logic irrelevant to the application or parallelism
(i.e., we strip latency measurement logic).

Table I shows the difference in SLOC between the parallel
and sequential versions of all applications. Overall, a tendency
is that Java parallel versions require much more lines of
code than C++ parallel versions using SPar. This difference
is due to all the extra code that Flink’s or Storm’s framework
requires. Flink and Storm require creating a class that im-
plements interfaces or inherits from the correct parent for
every parallel stage and implementing the required functions.
Furthermore, for Imgcmp in particular, a whole new utility
class is required to deal with the serialization of OpenCV’s
Mat structs. Ultimately, the extra code required by the JNI
framework explained the significant SLOC differences ranging
from 46.88% up to 2470% between Java and C++.

Table I show the programmability metrics. Code tokens rep-
resent the sum of elementary units such as operators, operands,
keywords, identifiers, literals, and punctuation marks. Halstead
estimates development time in hours based on the number
of tokens. SPar uses fewer tokens because the other Java
versions encourage a style of programming where one declares
many classes to do specific things. Fewer tokens reflect in the
development time, where the SPar’s versions are estimated to
take up to 281.25% fewer development hours.

Bzip2 is a different situation, where Storm is estimated to
take 5.96% fewer hours to develop than SPar. Bzip2 is an ap-
plication committed to portability and backward compatibility;
there are many constructs with #ifdefs and other conditional
compilation features that end up increasing the amount of
work necessary to parallelize it, even if most of it is trivial
(i.e., changing a header file or a function call). Therefore,
for C++ SPar, the results are explained by many preprocessor
conditional directives. Java also has the equivalent code, but
the verbosity of Bzip2 in C++ gets similar to Java.

Comparing Storm with Flink, Face recognizer Storm takes
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Fig. 6: Bzip2 CPU usage with 40 workers.
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TABLE I: Programmability metrics.

SPar (C++) Flink (Java) Storm (Java)
SLOC Tokens Hours SLOC Tokens Hours SLOC Tokens Hours

Face Recognizer 10 1226 13 196 3281 45 257 3660 32
Bzip2 96 8879 253 141 10744 360 231 11556 237

Imgcmp 32 1441 16 214 3503 61 196 4406 52

31.12% more SLOC, Bzip2 63.83%, while 8.41% less SLOC
on Imgcomp. Overall, Storm requires more verbose code to
implement its interface when compared to Flink. However, the
Storm interface code is simpler because it has fewer unique
operands and operators. The complexity estimation shows
that, compared to Flink, Storm takes 28.89% less estimated
development hours on Face Recognizer, 34.17% on Bzip2,
and 14.75% on Imgcomp.

VI. CONCLUSION

This paper assessed the challenges and implications of
porting stream parallelism applications from C++ to Java. We
discussed the qualitative aspects and challenges of porting
applications for face recognition, compression, and other im-

age similarity search applications. Furthermore, we explained
the parallelization strategy using Flink and Storm. Beyond
merely translating the code, Java native interface introduces
challenges when handling pointers, dealing with non-existing
type checking, and circumventing non-direct C++ and Java
equivalents. We also explained that implementing Flink and
Storm parallelization is direct but requires serializing data. For
the experimental side, we discussed the performance pitfalls
of Flink and Storm running in shared-memory multicore
machines, which are present in many cluster architectures.
We compared Flink and Storm with three C++ parallelism
alternatives while explaining latency, throughput, and CPU
and memory usage results. We evaluated Halstead software
complexity estimation, where C++ versions were estimated to
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Fig. 9: Imgcmp CPU usage with 40 Workers.

take up to 281% fewer development hours, and Storm takes
up to 34% fewer estimated development hours than Flink. We
highlight that different applications achieved varied results.
The main limitation of our work is that we are limited to
the set of characteristics of the four applications we evaluate.
Therefore, the main future work involves developing and
analyzing applications when porting C++ to Java.
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