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Abstract—A new microprocessor within a given processor architecture
may introduce performance-improving features that either can only be
accessed through novel instructions or require new code-generation
techniques to be beneficial. In response, compilers must be extend-
ed/improved to make use of these new instructions and to generate
better schedules for the new hardware. The compiler improvements
that enable these specializations can take significant time to develop,
thus applications compiled Ahead-Of-Time (AOT) will often not benefit
from code specialization without later recompilation. Furthermore, code
compiled for a specific hardware sub-target lacks performance portability,
thus, for better performance, there is a need to maintain multiple builds
for each processor architecture leading to significant development and
maintenance costs. This paper demonstrates that such challenges can be
overcome by applying code specialization only to a small percentage of
the code in a program. Moreover, it proposes DASS, a novel Dynamic
Adaptive Sub-Target Specialization technique to recompile selected parts
of a program at runtime. Empirical evidence indicates that selective
specialization can achieve up to 93% of whole-program specialization
speedup by statically specializing less than 1.5% of the application code.
Furthermore, DASS can dynamically achieve performance close to that of
static specialization, reaching up to 83% of statically attainable speedup
while performing recompilation and redirection during execution.

I. INTRODUCTION

Performance-improving features introduced as a processor archi-
tecture evolves over time, either can only be accessed through
new hardware instructions or require changes in code generation
to yield better performance [1]–[6]. For instance, most modern
CPUs and GPUs have specific instructions to exploit data parallelism
following the Single-Instruction Multiple-Data (SIMD) paradigm.
SIMD computations are executed in modern hardware via vector
instructions that operate on wide vector registers (e.g. 512 or 4096
bits) [7], [8]. Acceleration through specialization is not new but it is a
growing trend [9]–[11]. For instance, major companies have introduced
specialized units into their commodity processors, namely Advanced
Matrix eXtensions (AMX™) by Intel®, Scalable Matrix Extensions
(SME™) by Arm®, and Matrix Multiply-Assist (MMA™) by IBM®.
These units require new instructions that programmers/compilers need
to explicitly include in their code to benefit from the full potential of
these extensions.

Most performance-critical applications are distributed as Ahead-Of-
Time (AOT) compiled binaries by Independent Software Vendors
(ISVs) [12], [13]. An alternative to AOT compilation is Just-In-Time
(JIT) compilation that delays optimization and code generation until
application runtime (Section II-C). Application binaries compiled AOT
can execute immediately and an indefinite number of times, without
any compilation costs at runtime. Moreover, hardware architectures
are designed to be backward-compatible, meaning that all instructions
available on older architecture versions must execute on newer
architecture releases. Thus, AOT-compiled binaries that use a common
subset of Instruction Set Architecture (ISA) instructions can
execute without recompilation on different releases of the same
architecture. Nevertheless, AOT-compiled binaries cannot benefit from

the performance of specialized computing units in most commodity
processors without recompilation — the new instructions need to be
added/generated by programmers/compilers. Furthermore, compilers
can be modified to generate a schedule of existing instructions
that executes faster on new versions of an architecture [14]. Thus,
recompiling portions of AOT-compiled applications with the latest
version of a compiler may result in binaries produced with a better
code-generation strategy.

This paper presents results that indicate that the benefits of novel
hardware instructions and/or better code-generation strategies can be
achieved by specializing only parts of an application — henceforth
referred to as code segments or simply segments. In this work, code
segments are selected, based on their frequency of execution and
their contribution to the run time of the application, for specialization
either via code attributes — without any changes to existing AOT
compilers — or dynamically — through a novel JIT-enabled technique.
Experimental results with SPEC CPU® 2017 benchmarks [15] indicate
that dynamic specialization can enable ISVs to deliver close to
the fully-specialized performance. This paper makes the following
contributions:

• An in-depth performance evaluation of the SPEC CPU 2017
benchmarks, which shows that specializing only a small fraction
of the application code closely matches the performance of a fully
specialized program. For instance, specializing only 1.5% of the
Imagick benchmark leads to 93% of the performance attained by
whole-program specialization. For the LBM benchmark, whole-
program specialization can be matched with specialization of
only 19% of the application.

• Dynamic Adaptive Sub-Target Specialization (DASS), a compiler
system that enables segments of an AOT-compiled program to be
recompiled at runtime to take advantage of sub-target specializa-
tion and relevant improvements to the compiler since the program
was compiled. A proof-of-concept DASS implementation in
LLVM [16] enables close to AOT-specialized performance for
some benchmarks from the SPEC CPU 2017 suite.

The remainder of this paper is organized as follows. Section II
presents background concepts and terminology adopted throughout
the paper. Section III presents the main ideas behind DASS and
a description of the proof-of-concept implementation in LLVM.
Section IV describes the experimental setup and methodology used
to obtain preliminary results, and identifies instances where DASS
bridges the limitations of AOT compilation w.r.t. new hardware
and compiler versions, and where it falls short. Section V contrasts
related works with DASS. The conclusions of this study are discussed
in Section VI.

II. CONTRASTING SS WITH AOT AND JIT COMPILATION

This paper focuses on optimization benefits enabled by Sub-Target
Specialization (Section II-A), through which a program is optimized
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for a specific model of a CPU architecture (microarchitecture). Sub-
target specialization is a performance optimization frequently missed
in common software due to how it reduces program portability.
Independent Software Vendors (ISVs) leverage program portability
to decrease maintenance and distribution costs of projects with large
code bases (e.g. millions of lines of code). For performance-critical
software, ISVs utilize Ahead-Of-Time (AOT) compiled (Section II-B)
languages — e.g. C/C++, Fortran, and COBOL — high-level languages
that need to be compiled to the assembly of a given architecture before
execution. In comparison, Just-In-Time (JIT) compiled (Section II-C)
languages — e.g. Java, Python, and C# — can start execution
immediately, adapting to the currently executing microarchitecture,
and having some or all of the program (re)compiled at run-time.

A. Sub-Target Specialization (SS)

Most optimizing compilers, by default, generate code that is generic
to a given CPU architecture, or target, but specialization for a given
ISA version, or sub-target, can be enabled via compiler flags or
language attributes. CPU vendors develop new ISAs over successive
hardware releases as the hardware design changes to meet the needs
of modern software development [6]. Code that is not specialized to a
sub-target can execute on any CPU of the same target, as CPU vendors
maintain backward compatibility with previous releases by retaining,
or in some instances emulating, features from previous versions of the
ISA [17], [18]. However, this portability comes at the cost of code
with no sub-target specialization that might not take full advantage of
the new ISA or improvements in the compiler. ISVs usually avoid sub-
target specialization to decrease the costs of developing, maintaining,
and distributing software. Avoiding sub-target specialization creates a
gap between the potential performance attainable by a program on a
given hardware, and the actual performance achieved by a generic
build of the same program. For processor designers and manufacturers,
this gap is worrying because it reduces the performance advantage of
upgrading to new hardware.

The benefits of specialization are further influenced by the compiler
used to build a program. Some compilers may support more complex
specialization for a given sub-target (often the case with compiler
vendors that develop CPU architectures). Thus, the aforementioned
performance gap between specialized and generic code depends
heavily on the available compiler.

B. Ahead-Of-Time (AOT) Compilation

AOT compilation is the process of fully translating a program to
an executable binary format, prior to the execution of the program.
Many languages (C/C++, FORTRAN, COBOL, etc.) [19]–[22] were
designed for, and are mainly used through, AOT compilation. AOT
compilation enables the use of these languages for high-performance
computing because the full compilation allows for extensive and
complex optimizations to be performed without impacting execution
time. However, with optimization, the target hardware for the program
must be known ahead of time. The target architecture for code
generation can be set implicitly — the program is generated for
the hardware where the compilation is executed — or explicitly by
specifying either a generic target architecture or a specific sub-target.

The cost of AOT compilation is incurred before execution and
depends on the complexity of the source language as well as the size of
the source code [23]–[25]. There is zero execution-time overhead, for
compilation, because the entire program, including dependent libraries,
is assembled beforehand. Thus, AOT compilation is advantageous
for programs with many Lines of Code (LOC) because the high
compilation cost is separated from program execution. The AOT

cost is incurred only once and can be amortized over many program
executions. Thus, AOT compilation is appealing to performance-
focused ISVs whose clients need programs that run efficiently.

C. Just-In-Time (JIT) Compilation

JIT compilation consists of translating a part of a program (functions
or code blocks) into executable binary code during execution time [26].
Instead of the program being compiled before execution, code
is typically interpreted before specific sections are identified as
candidates for JITing. Delaying JIT compilation can speedup startup
times for the program, while only paying the AOT compilation cost
for small parts of the program [27]. Furthermore, the JIT process can
be offloaded to a separate thread of the program, allowing for parallel
execution and compilation. However, the compilation time can still
impact the overall execution time of the program, thus, identifying
suitable JIT candidates is key. In traditional JIT systems, this is guided
by mechanisms that identify frequently executed code (hot code) which
is then marked and compiled as the program executes [28]. Ideally, the
compilation overhead is offset by the speedup on future executions,
which payout if the JIT-compiled code re-executes often.

III. DYNAMIC SUB-TARGET SPECIALIZATION

The central idea of this paper is to introduce dynamic adaptive
sub-target specialization to AOT-compiled applications that could run
on processors with a common target but different sub-targets. At
runtime, DASS performs sub-target specialization on code segments
copied in a compiler intermediate representation (IR) form at compile
time. The IR of such code segments is stored alongside the code
in the program binary, similar to other fat binary approaches [29].
Aside from sub-target specialization, DASS also enables applications
to benefit from improvements in new releases of a compiler without
AOT recompilation. The remainder of this section presents DASS’s
core design (Section III-A) — from code segment cloning to dispatch
and execution of sub-target-specialized code at runtime — and a
proof-of-concept implementation in LLVM (Section III-B) used to
evaluate DASS in Section IV.

A. Core Design

DASS is a compiler system that compiles the application code and
produces an AOT-compiled binary that is optimized for a specific
target, as most optimizing compilers. However, DASS binaries are
augmented with the IR of selected code segments that could be further
specialized for a sub-target at runtime. Candidate segments may be
identified through profiling information, static analysis, and/or run-time
cost/benefit heuristics. The main steps to produce a DASS binary that
is enabled to benefit from sub-target specializations are: 1) Fat Binary
Creation: involves cloning and storing the IR of selected segments
alongside the generated code (Section III-A1); 2) Dynamic Redirection
Setup: generation of instructions to select, at runtime, if each selected
segment will execute the AOT-compiled code with target optimizations
or the JITed1 code with sub-target optimizations (Section III-A2);
3) Symbol Resolution: this step enables the JITed code to address
global variables and call functions in the AOT-compiled code or
in libraries (Section III-A3); 4) Dynamic Sub-target Specialization:
generation of sub-target-specialized code at run-time (Section III-A4).
Both Fat Binary Creation and Dynamic redirection setup happen
at compile-time, while Symbol Resolution and Dynamic Sub-Target
Specialization happen at run-time.

1JITed is a neologism for just-in-time compiled.
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1) Fat Binary Creation: Alongside the AOT-compiled application
code, DASS stores the following for each selected code segment:
1) SEG.ID: a unique identifier used by DASS to know which segment
to use and/or compile; 2) SEG.IR: the code segment’s IR; and
3) SEG.SYM_LIST: the list of symbols used in the IR (e.g. variables
and/or functions). SEG.IR is copied after common simplification
compiler transformations — e.g. dead-code elimination and control-
flow graph simplification — to reduce the IR prior to cloning but prior
to any sub-target transformation passes. Variables that are constant and
statically initialized are not added to SEG.SYM_LIST in order to not
obfuscate statically known constants and allow common optimizations
— e.g. constant folding or constant propagation — to happen during
dynamic specialization (Section III-A4).

2) Dynamic Code Redirection: After IR cloning, DASS generates
code that dynamically redirects execution to the AOT-compiled code
while the JITed code is not available. The JITed segment code
might not be available because SEG.IR is being compiled. SEG.IR
compilation can happen at any point during the execution of the
program. For example, the first time the execution reaches the entry
of the segment or the beginning of the program execution. JITed code
might also not be available because, based on a run-time cost/benefit
analysis, DASS decided to use the AOT-compiled code instead. Once
the JITed code is available, the redirection code inserted by DASS
can direct execution to use it.

3) Symbol Resolution: Any access to symbols in the AOT-compiled
code needs to be resolved to their addresses because SEG.IR is
compiled at runtime. SEG.SYM_LIST contains symbols used by each
code segment and, after the link stage, also contains the address to
each symbol. DASS resolves each symbol by associating the symbol
with their respective address in SEG.SYM_LIST after compiling
SEG.IR. This resolution ensures that the dynamic linker knows the
address of all symbols referenced by the JITed code. Similarly, DASS
resolves any function calls from JITed code to functions in the AOT-
compiled code to their addresses through the SEG.SYM_LIST. Calls
from the JITed code to library functions are handled by the dynamic
linker, as is commonly done for any AOT-compiled program.

4) Dynamic Sub-Target Specialization: DASS performs sub-target
specialization by setting the target and sub-target for compilation to
the detected host CPU executing the application at runtime. SEG.IR
compilation overhead can be amortized by spawning the compilation
on a worker thread to overlap it with the program execution.

B. Proof-Of-Concept Implementation in LLVM

The proof-of-concept (POC) implementation of DASS is realized
inside the LLVM project [16] with whole functions as the granularity
for sub-target specialization. LLVM is an umbrella project that hosts
sub-projects with tools, libraries, and infrastructure for, among many
other things, creating compilers, writing transformation passes, and
building JIT compilers. LLVM provides a production-grade Interme-
diate Representation called LLVM IR used for target-independent
code analysis and transformation.

This section describes 1) how DASS extends Clang for explicitly
marking functions to be JITed (Section III-B1); 2) an LLVM IR pass
that copies the IR and inserts dynamic-dispatch logic into marked
functions (Section III-B2); 3) a JIT runtime library built on top of
LLVM’s ORC JIT (Section III-B3); and 4) extensions to LLVM’s
linker (LLD) to create sections in the binary that store the IR of JIT
candidate functions and other DASS metadata (Section III-B4).

i n t foo ( i n t x ) a t t r i b u t e ( ( i j i t ) ) ;
Listing 1: Function annotated with the ijit attribute.

Fig. 1: Diagram of the JIT call trampoline.

1) Extensions to Clang: In the POC implementation functions
with the ijit function attribute (Listing 1) are marked for sub-
target specialization through JITing. As discussed in Section III-A,
candidate functions can be identified through profiling, static analysis,
or run-time cost/benefit analysis. In this POC implementation, no
automatic mechanism to select functions is implemented. Instead, a
simple criteria based on the frequency of execution and the fraction of
execution time attributed to a function guides manual application of
the attributes to the functions of an application. (See Section IV-C2).

2) IR Cloning and Dynamic-Dispatch Insertion Pass: This LLVM
IR pass copies function definitions that have the ijit attribute and
serializes their IR into constant strings. The IR strings are added to a
list of DASS metadata objects that contain: 1) the name of the copied
function; 2) its IR; and 3) a list of symbol names and their addresses
— the latter are filled in by the linker. These symbols are variables or
functions used by the copied function and their addresses are kept so
that the JIT runtime can bind them at runtime after the IR is JITed
(Section III-B3). All the information obtained by DASS’s IR pass is
kept under compiler-reserved variables2 that are stored in dedicated
binary sections (Section III-B4).

Once the marked functions are copied, the DASS’s IR pass inserts
a trampoline at the entry point of the copied functions’ body. The
trampoline mechanism is outlined in Figure 1. On function call, the
trampoline loads an address from a table and jumps to it. The table
entry can point to 1) the original entry point of the function, 2) a
path that calls DASS’s JIT runtime to dispatch asynchronous JITing
of the copied IR, or 3) a path that calls the JITed IR code. Initially,
the trampoline always takes the path to call DASS’s runtime. The
runtime dispatches an asynchronous thread to compile the IR string,
if one was not already dispatched, and atomically updates the JIT
table with the address of the statically compiled function body. Once
the IR string is compiled, then the table is atomically updated thus
future trampoline loads will jump to the JITed code.

In the POC implementation, functions are copied right after the
function simplification passes in LLVM, which is fairly early in
the optimization pipeline. The continuation of this research will
investigate alternative stages of the optimization pipeline in which
candidate functions should be copied. Optimization passes that do not
depend on sub-target-specific information should be executed before

2Not accessible by the application code.
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cloning so that the costs do not impact application execution time.
Nevertheless, the initial experimental results indicate that complete
optimization pipelines can be executed at runtime with reasonable cost
(Section IV). Therefore, not performing AOT compiler transformations
that depend on sub-target information is just a policy to avoid
premature specialization.

3) JIT Runtime: DASS’s runtime is built on top of On Request
Compilation (ORC) v2 API [30]. ORC is a library for building JIT
compilers. Languages such as Lua [31], C++ [32], and Swift [33]
make extensive use of ORC’s API to build their interpreters and
read-eval-print loop (REPL) tools. DASS employs ORC’s methods
to explicitly define symbol bindings — used to handle references
from JITed code to functions and variables in AOT-compiled code or
libraries — and compile IR strings upon request.

The JIT runtime’s entry function is called through the trampoline
inserted by DASS’s IR pass (Section III-B2). As arguments, the entry
function takes the name of the function to JIT compile, the trampoline
table entry associated with said function, the address to the entry of
the AOT compiled function, and the address to the block that calls the
JITed function via the trampoline. An asynchronous thread is created
to JIT the requested function and control is immediately returned to
the application code. While the JIT compiles the candidate function,
the AOT compiled code is executed. Once the JIT compilations
are complete, the trampoline table is atomically updated to direct
the application to the block that calls the JITed function’s code on
subsequent trampoline table loads.

ORC is built to allow JITed code to execute in multiple threads or
to spawn new threads. JITing concurrency is also available out of the
box. Thus, the only additional synchronization required by DASS is to
ensure that only one worker thread is compiling a particular function
at a time. This is guaranteed by an atomic update to the trampoline
entry used to indicate that a function 1) needs to be compiled; 2) is
being compiled by another worker thread; or 3) was already compiled.
In the two latter cases, the JIT runtime immediately returns the control
flow to the application code because the trampoline table is/will be
updated with the JITed code address by the worker thread JITing said
function. Any worker thread that successfully exchanges the table
entry from 0 to 1 acquires the task to JIT the function’s IR. The value
of 1 in the table entry causes the trampoline to direct control flow to
the AOT-compiled code.

DASS sets the sub-target for JITing with the host CPU information
detected by ORC, which is able to identify the CPU running the
application. In the current POC, every function is compiled with the
same optimization pipeline. However, the implementation is flexible
and easily adaptable to enable functions to be optimized with different
sets of passes.

4) Extensions to LLD: DASS requires very minimal changes
to LLVM’s linker, LLD. More specifically, LLD was extended to
concatenate the list of DASS metadata objects generated for each
compilation unit by DASS’s IR pass (Section III-B2) into a single
global hidden list. Additionally, the start and end symbols of DASS’s
JIT binary sections are generated by further extensions to LLD. Such
symbols are used: 1) to skip the JIT-runtime initialization if no function
was marked to be JITed; and 2) to enable the runtime to safely traverse
the entire JIT section.

C. Sources of Overhead in Current Implementation of DASS

DASS’s current implementation has inherent overheads due to
design decisions made during its development. The main sources
of overhead, observed in the experimental evaluation of DASS
(Section IV), are listed and discussed below.

1) Compilation Overhead: Because DASS moves sub-target spe-
cialization from compilation time to run time, an obvious source
of overhead is the cost of compiling the IR of selected segments.
Compilation cost is a non-trivial function of the size — measured
as the number of instructions – and features — e.g. presence of
loops, number of accesses to memory through global symbols or via
pointer arguments — of the copied IR. The size can determine the
workload of compiler transformation passes while features determine
which passes may execute and how often some passes may execute
during compilation. Moreover, different optimization pipelines (e.g.
-O2 and -O3 ) have different costs as they enable different passes,

or configure the same passes with different assumptions on the
desired trade-off between expected compilation time and expected
performance of the generated code. Even if the compilation is fully
overlapped with the execution of the application, longer compilation
times delay the use of the potentially more optimized JITed code and
thus indirectly add overhead. For the applications used in this paper’s
experimental evaluation (Section IV-E), compilation time was not a
significant source of overhead — up to 0.46% of an application’s
execution time (See Table III).

2) Initialization Overhead: This overhead comes from setting
up the JIT runtime as well as ORC and LLVM’s components for
JITing. The setup entails registering each selected segment’s IR and
their corresponding symbols, setting the sub-target, and selecting
the optimization pipeline. Initialization overhead cannot be easily
amortized because the IR compilation cannot happen before the
JIT runtime is fully started. However, as discussed in Section IV,
initialization cost is usually minimal — up to 0.006% of the
application execution time, with small variations based on the number
of symbols and the size of a segment’s IR.

3) Indirection Overhead: This overhead comes from the trampoline
structure used as a dynamic-dispatch mechanism (Section III-A2). The
cost of executing the table load and indirect branch is incurred every
time a selected function is called. For frequently called functions, this
indirection overhead can become significant (Section IV).

A less obvious source of indirection overhead is paid when accessing
variables or calling functions in the AOT-compiled binary. The address
of variables and functions defined in the AOT-compiled binary is
stored in a table, thus every access goes through a double indirection.
Some applications exhibited a high indirection overhead due to extra
memory operations to access data and calling functions in the AOT-
compiled binary (Section IV). This overhead can be eliminated by
using instructions that directly reference the address of such symbols,
which might not be possible with the code model used by the JIT
compiler.

4) Lower Code & Data Locality Overhead: This overhead comes
from the decreased data and instruction locality between the JITed
code and the AOT-compiled code. The JITed code is generated into a
shared library that is loaded at run-time by the dynamic linker. Thus,
if the JITed function is placed far away — e.g. different memory pages
— from the AOT-compiled code that calls it, then performance suffers
from instructions cache and iTLB misses. Similarly, as the JITed
code is no longer co-located with the AOT-compiled code, access to
variables in the AOT-compiled code might exhibit poor data-cache
locality. This source of overhead can be more significant if transitions
between JITed and AOT-compiled code are frequent (Section IV-E2).

IV. IS DASS A WORTHWHILE APPROACH TO SS?

The proof-of-concept implementation of DASS is used to evaluate
the feasibility of using dynamic sub-target specialization for C/C++
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code through a fat-binary JIT approach. In the following sections, the
evaluation aims to answer the following questions:
1 How the performance of sub-target-specialized code compares to

target-specialized code? (Section IV-C1)
2 Can the improvements of sub-target specialization be achieved

without recompiling the whole application? (Section IV-C2)
3 Can DASS achieve the improvements of static sub-target special-

ization? (Section IV-D)
4 What are the significant sources of overhead in the current

implementation of DASS? (Section IV-E)

A. Benchmarks, Hardware, Compiler, and DASS Variations

Our evaluation is performed on the C/C++ benchmarks from the
SPEC CPU 2017 suite. Benchmarks are compiled with the SPEC
base3 metric and run on the ref workload. The default -O3

and -Ofast pipelines are used to compile the intrate and
fprate benchmarks respectively. All benchmarks are compiled with
a development compiler built from LLVM 15.0.0, which includes
optimizations for the PowerPC architecture. Experiments are run on
a POWER10 machine with 24 processor cores, and 895 GB of RAM.

Three variations of DASS are evaluated: 1) D-Block: selected
functions are compiled on the first call and execution is blocked until
the compilation completes, at which point the application execution
resumes by calling the JITed code; 2) D-Async: selected functions are
also compiled on the first call but asynchronously on a separate thread,
thus the application execution continues executing the AOT-compiled
function. Once compilation completes, subsequent calls use the JITed
code; and 3) D-Start: all selected functions are compiled at once
before the main function is called. In this variant, compilation also
blocks the execution of application code.

B. Experimental Methodology

The experimental results presented are the average of three execu-
tions of a program (following the SPEC reportable runs recommended
minimum [34]). The variance between executions is very small, at
most 0.265% of execution time. The baseline P7 for most speedup
calculations is a benchmark specialized to POWER7. Performance
metrics are collected through hardware counters with the Linux Profiler,
perf. This section evaluates the performance of each benchmark
when sub-target specialization is applied 1) to the whole program;
and 2) to selected functions. Whole-program specialization is per-
formed via the -mcpu=<sub-target> , where <sub-target>
is set to pwr7 (POWER7), pwr8 (POWER8), pwr9 (POWER9), and
pwr10 (POWER10). Sub-target specialization of selected functions is
performed via the arch=<sub-target> function attribute and
setting -mcpu to pwr7.

A function f is selected for both static and dynamic sub-target
specialization based on a sub-target specialization importance criteria,
measured on a POWER10 machine: 1) the number of perf samples
that hit f represents at least XX% of total samples in the code
compiled for POWER10; and 2) the number of samples that hit
f decreases by Y Y% between the profiles obtained by applying
whole-program specialization for the POWER7 and the POWER10
sub-targets. This selection criteria is indicated as EXX-SYY. For
example E02-S05 selects functions with 2% of total sample count
and that have 5% fewer samples when specialized for POWER10
than for POWER7. The first condition establishes that f makes a
contribution to the total execution time while the second establishes

3All benchmark modules are compiled with the same set of compiler flags
passed in the same order.

that specializing the compilation affects the contribution of the f to
the total execution time.

C. Static Specialization Speedup

This section examines the program speedup from static specializa-
tion by comparing the execution time of benchmarks compiled for
newer sub-targets, up to POWER10, with respect to P7.

1) Whole-Program Specialization: Figure 2 presents the speedup
achieved with whole-program sub-target specialization. The variation
from a 218% speedup in x264 to a slowdown in mcf indicates that
the advantage of sub-target specialization depends on the features of
the program; on how the compiler generates code; and on hardware
design. For instance, the significant improvement in x264 comes
from increased support for loop vectorization starting with POWER8.
The addition of several vector instructions to the POWER ISA
enables the compiler to vectorize the benchmark’s loops, adding
the POWER9 instruction vabsdub to optimize many computations.
With POWER10 further optimization is applied to functions like
x264_pixel_var_16x16 where the execution time is reduced by
6× by introducing vectorization intrinsics. namd also sees substantial
improvements, especially on POWER9, where the compiler uses
instructions such as extswsli to improve execution time performance.

The use of a compiler version that is still in development where
some of the profitability analyses are still being deployed explains
the results where POWER10 specialization does not produce the best
speedup (e.g. mcf , namd , lbm). For instance, in lbm an aggressive
SLPVectorizer pass on POWER10 introduces unnecessary vector-
ization. Upon removing this pass, the speedup between POWER9
and POWER10 becomes equal. The slowdown in mcf emerges from
a 75% increase in the execution time of sqec_qsort because
of a mix of less aggressive loop unrolling and changes to the
LoopStrengthReduce pass.

The results in this section indicate that sub-target-specialized
code achieves significantly higher speedups than target-specialized
code, providing an answer to 1 . However, speedup varies based
on the hardware needs of the program. In applications where new
hardware can be utilized (x264 ), specialization is very effective, while
applications like xalancbmk show negligible speedup. These results
encourage limiting the scope of optimization to code that might
produce significant speedup, ignoring functions that do not benefit
from specialization.

2) Selective Function Specialization: To measure the effectiveness
of reducing the specialization scope to individual functions, this
Section evaluates the performance attained if only selected functions,
as per the selection criteria in Section IV-B, are specialized for
POWER10. Three different criteria selections were evaluated (E10-S10,
E05-S05, E02-S02), these values were chosen as they progressively
select a larger portion of the benchmark code for specialization and
thus allow for a better understanding of how effective more selective
specialization can be. Table I shows, for each selection criteria, the
percentage of IR instructions and function execution time relative
to the whole program. Table II lists the functions selected for each
benchmark with the E05-S05 criteria. Template functions were not
considered for specialization because template specialization for each
template type would need to be manually written. If selection is done
in a compilation pass, then template functions pose no challenges for
dynamic specialization.

Figure 3 compares the speedup from only specializing functions
selected by each criteria to POWER10, with the non-selected functions
compiled for POWER7, compared to whole-program specialization
for POWER10. The effectiveness of selective specialization can be
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Fig. 3: Speedup percentage attained by different function specialization criteria for POWER10 relative to P7.

TABLE I: Percentage of benchmark code (IR instructions) and
execution time corresponding to functions selected by each criteria.
“N/A” indicates that no function met a criteria. “-” indicates that the
same functions were selected as the criteria to the left.

Benchmark E10-S10 E05-S05 E02-S02

IR Time IR Time IR Time

perlbench N/A N/A 0.26% 7.81% 0.93% 18.5%
namd 2.10% 29.0% 10.0% 72.7% 16.5% 99.5%

povray 0.09% 14.4% 0.26% 49.4% 0.81% 62.3%
lbm 19.1% 99.5% - - - -
x264 0.24% 39.6% 0.27% 46.2% 2.58% 69.1%

deepsjeng N/A N/A 10.1% 13.9% 25.1% 38.1%
imagick 1.48% 87.2% - - - -

leela N/A N/A 0.69% 21.0% 1.82% 33.8%
nab 0.29% 11.5% 4.38% 76.7% 5.32% 86.5%

better understood by comparing the execution time percentage for
the selected functions in Table I with the difference between the
selective specialization speedup and that achieved by specializing
all functions. As an example, the results for nab are positive as
the E05-S05 selection covers 76.7% of execution time, while the
specialization speedup is close to equal with specializing all functions.
Answering 2 , reducing the scope of specialization to selected
functions can realize a significant portion of specialization speedup,
provided that the selected functions are hot and improve with new
sub-target compilation. The function selected by the criteria in lbm ,
LBM_performStreamCollideTRT accounts for > 99% of the
total samples in the profile. Thus, specializing this single function
realizes almost all the improvements of whole-program sub-target
specialization. In comparison, x264 sees lower speedup because its
specialization gains are spread across the program and some functions

TABLE II: Functions selected for the POWER10 E05-S05 criteria.

Benchmark Function File Line

perlbench Perl leave scope scope.c 759

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352
namd calc pair energy merge fullelect ComputeNonbondedUtil.h 354
namd calc pair fullelect ComputeNonbondedUtil.h 351
namd calc pair merge fullelect ComputeNonbondedUtil.h 353
namd calc pair ComputeNonbondedUtil.h 349
namd calc self energy ComputeNonbondedUtil.h 359
namd calc self energy fullelect ComputeNonbondedUtil.h 361

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122
povray Inside Plane planes.cpp 226
povray All CSG Intersect Intersections csg.cpp 235

lbm LBM performStreamCollideTRT lbm.c 262

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232
x264 mc chroma common/mc.c 263

deepsjeng feval neval.cpp 1043
deepsjeng see see.cpp 19

imagick MeanShiftImage magick/feature.c 2108
imagick MorphologyApply magick/morphology.c 3827
imagick SetPixelCacheNexusPixels magick/cache.c 4732

leela kill or connect FastBoard.cpp 1214
leela is eye FastBoard.cpp 805
leela get pattern fast augment FastBoard.cpp 1356

nab mme34 eff.c 3203
nab heapsort pairs nblist.c 114
nab searchkdtree nblist.c 667
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Fig. 4: POWER10 speedup percentage for static specialization and
DASS variations with the E05-S05 selection criteria.

with low execution time experience far greater speedup than the
criteria selected functions. Furthermore, the relative importance of
functions varies in the three workloads for x264 , which is an indication
that profile-guided optimization of the benchmark must take these
variations into account.

In general, increasing the number of functions selected for special-
ization also decreases the performance gap relative to whole-program
specialization. povray is the only exception where the performance
decreases from E05-S05 to E02-S02. Code inspection revealed that
the code produced for whole-program specialization has fewer nop
instructions than the code produced with selective specialization.
nop instructions are added to guarantee alignment of the target
of branches or to avoid pipeline hazards. It is not clear why the
nop instructions were added/left by the compiler. Nonetheless, the
difference in code alignment produced significant differences in the
instruction-cache performance: E02-S02 execution reports 15% more
L1-icache-load-misses when specializing functions that added nop.
Removing the specialization attribute from two of these functions —
Intersect Light Tree and DNoise — resulted in E02-S02 speedup of
2.10%, compared to the E05-S05 speedup of 1.95%.

D. DASS Specialization Speedup

The results in Section IV-C indicate that there is significant
optimization that can be achieved by specializing individual functions.
To answer 3 , this section contrasts the specialization of selected
functions statically (Section IV-C2) to the dynamic specialization
of the same functions in the DASS prototype implementation. Only
functions in E05-S05 are used for specialization because this criteria
presents a middle ground between specialization speedup and the
number of targeted functions. Two benchmarks — namd and nab —
are excluded from this comparison because limitations in the DASS
prototype prevent it from specializing functions for those programs.

The results in Figure 4 show that D-Block and D-Start perform
equally for all evaluated benchmarks. Blocking can improve over
startup by avoiding extraneous compilations of functions that are not
executed for certain benchmark workloads. However, for the analyzed
benchmarks all selected functions are called on each workload,
minimizing the difference between the two approaches. Asynchronous
compilation has a noticeable slowdown when performed on x264
and imagick . Two factors contribute to slowdown. First, while the
functions are being compiled the non-sub-target-specialized AOT-
compiled code is used and the difference between target and sub-target-
specialized code can be significant (Section IV-C). This difference is

TABLE III: Percent of total benchmark time for initializing the DASS
runtime and JIT compiling the E05-S05 criteria selected functions.

Benchmark DASS Initialization JIT Compilation

perlbench 0.0011% 0.088%
deepsjeng 0.0018% 0.054%

leela 0.000051% 0.0067%
povray 0.000055% 0.0074%
imagick 0.0058% 0.46%

lbm 0.002% 0.035%
x264 0.0026% 0.18%

the cause for imagick , where one selected function executes a single
call over the entire workload, and as such never executes specialized
code when compiled asynchronously. The second factor is that, if two
threads — an application thread and a JIT runtime thread — access
the JIT table, synchronization is required to ensure coherent access.
Instructions required for synchronization, such as memory fences,
incur overhead.

For the benchmarks used in this evaluation, the advantage of
asynchronous compilation is limited because their compilation time is
not significant. The percentage of total program time to set up the JIT
(register IR & Symbols) and perform compilation during execution
is shown in Table III. When the compilation time of the function is
low, it is beneficial to wait for the compilation to complete.

Although the results in Figure 4 indicate an affirmative answer to
3 , if we consider the best-performing variant D-Block, the figure

shows mixed results in contrast to static specialization speedups. There
are instances where DASS is close or equal to static speedup (lbm ,
x264 ), instances with substantial degradation in speedup (imagick )
and multiple instances where DASS performs worse than if no
specialization was applied (perlbench , deepsjeng , leela and povray).
These results could be attributed to differences in code generation or
missed optimizations, which arise from compiling the functions in
isolation from their original context in the application code. However,
an inspection of the code generated by DASS and by the AOT compiler
pointed to other differences. Thus, in the spirit of always measuring
one level deeper [35], the following section presents an in-depth study
of the sources of overhead in DASS.

E. A Study of DASS Overheads

As discussed in Section III-C, there are four main sources of
overhead in the current DASS implementation: 1) Compilation over-
head (Section III-C1): the cost of performing sub-target specialization
at run-time; 2) JIT runtime initialization overhead (Section III-C2):
the cost of setting up the ORC and LLVM’s components for JITing;
3) Indirection Overhead (Section III-C3): introduced by the trampoline
structure used as a dynamic-dispatch mechanism that enables the AOT-
compiled code to call JITed functions; and 4) Lower Code & Data
Locality Overhead (Section III-C4): caused by the placement of JITed
functions potentially far and separate in memory from the function’s
original context (surrounding functions and variables). Although the
access to symbols defined in the AOT-compiled code also undergoes
indirection, its effects are mostly observable as poor locality. For the
evaluated applications, as Table III shows, both the compilation and
initialization overheads are low, thus they are not the main sources
of overhead that contribute to the significant slowdown observed in
some applications (e.g. deepsjeng and povray).

1) Indirection Overhead: To understand the impact of the JIT
trampoline indirection, two modified versions of DASS are contrasted
with the static specialized code (Static) and D-Block: 1) Indirect:
there is no run-time compilation; use the JIT trampoline to call
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TABLE IV: Benchmark metrics comparing Static and D-Block specialization for E05-S05. Normalized metrics where D-Block differs from
Static by more than 10% are identified with Green if less than, or Red if greater than. DERAT is a small buffer that caches effective to real
address translations from the dTLB.

Metric perlbench deepsjeng leela povray imagick lbm x264
D-Block / Static 1.041x 1.197x 1.076x 1.383x 1.125x 1.000x 1.050x

Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block
Instructions 3814B 1.06x 2170B 1.10x 2873B 1.14x 4714B 1.32x 3201B 1.15x 1055B 1.00x 2756B 1.08x

Cycles 1626B 1.04x 1178B 1.12x 1879B 1.08x 2338B 1.37x 1085B 1.11x 638B 0.99x 1575B 1.04x
Instruction Count Normalized Metrics (X / Instructions)

Branch Miss 5.4e−4 5.2e−4 2.4e−3 2.2e−3 5.3e−3 4.6e−3 8.6e−4 7.6e−4 3.9e−4 3.5e−4 2.5e−5 2.5e−5 4.2e−4 3.8e−4

Branch Load Miss 2.8e−4 2.8e−4 7.4e−4 7.4e−4 1.6e−3 1.4e−3 3.8e−4 5.1e−4 1.2e−4 1.1e−4 8.3e−6 8.5e−6 1.6e−4 1.5e−4

iCache Miss 1.6e−3 1.7e−3 7.3e−5 4.7e−4 4.4e−5 3.9e−5 7.0e−4 1.9e−3 3.7e−7 1.2e−5 2.1e−6 4.6e−6 5.6e−4 6.0e−4

dTLB Miss 1.7e−8 1.7e−8 1.0e−4 9.2e−5 4.1e−7 3.8e−7 2.5e−10 2.5e−10 6.8e−9 7.0e−9 7.2e−6 7.2e−6 4.5e−8 3.1e−8

iTLB Miss 6.3e−6 4.8e−7 4.4e−7 9.9e−5 3.1e−7 1.3e−7 1.2e−6 2.7e−6 8.2e−10 2.7e−8 4.9e−9 1.5e−8 5.3e−8 4.8e−8

Cycle Count Normalized Metrics (X / Cycles)
L1 Miss Stalls 0.031 0.030 0.017 0.018 0.012 0.012 0.039 0.033 1.6e−3 2.0e−3 5.1e−5 6.9e−5 8.4e−3 8.3e−3

FE Stall 0.019 0.020 0.022 0.023 0.042 0.040 0.013 0.018 5.7e−3 7.3e−3 0.028 0.027 5.4e−3 6.3e−3

BE Stall 0.535 0.553 0.594 0.571 0.538 0.541 0.732 0.670 0.717 0.718 0.746 0.745 0.698 0.685
DERAT Miss Stall 1.3e−4 1.3e−4 2.5e−6 2.8e−6 4.4e−6 7.0e−6 4.6e−8 1.6e−6 1.1e−6 2.4e−6 1.7e−5 1.5e−5 2.3e−6 5.0e−6

DERAT Miss 9.8e−4 1.0e−3 3.6e−4 3.4e−4 7.4e−5 8.9e−5 1.1e−6 6.6e−5 1.1e−5 1.9e−5 4.1e−5 4.2e−5 6.2e−5 1.0e−4

dTLB Miss Stall 1.4e−6 1.4e−6 1.2e−5 7.3e−5 1.6e−5 1.3e−5 1.1e−7 9.6e−8 1.0e−6 9.3e−7 1.1e−4 1.0e−4 5.1e−6 5.4e−6
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Fig. 5: Contrasting speedup for E05-S05 of static specialization
(Static), dynamic specialization (D-Block), and two modifications of
DASS: Indirect, that uses the JIT trampoline to call AOT-compiled
code; and Indirect+Compile, that also calls AOT-compiled code but
still compiles the function at runtime.

the AOT-compiled function code instead of the JITed code; and
2) Indirect+Compile: perform compilation on the first invocation
of the selected functions, but then use the trampoline to call the
AOT-compiled function code. In both versions, the AOT-compiled
code is sub-target-specialized via the same function attribute used
in Static. Results in Figure 5 indicate that trampoline indirection
varies on whether it is a significant overhead. While Table IV shows
the trampoline overhead mostly comes from extra instructions. Both
Indirect and Indirect+Compile are significantly faster than DASS
for deepsjeng and povray , instances where the AOT-specialized code
is faster than the JITed code. In comparison, the equal slowdown for
Indirect+Compile and D-Block with imagick and x264 , indicates
that for those benchmarks the trampoline mechanism is the main
overhead. This is supported by function profiles, wherein both
benchmarks frequently call their target functions, at an average rate
of a call per roughly 11 and 25 cycles of the selected functions.

2) Lower Code & Data Locality Overhead: The sources of poor
locality in DASS prototype are multi-faceted. When a JITed function

is loaded at run-time, it might be placed far in memory — e.g. on
different pages — relative to the AOT-compiled code that calls it. Code
located on different pages requires multiple entries in the iTLB and
may exhibit poor instruction-cache locality. The results in Table IV
indicate that this is the case for povray, deepsjeng , and imagick
because these applications experience significantly more instruction
cache and iTLB misses with D-Block than with Static. Moreover,
placing the JIT function in a different memory location may have an
effect on the prediction of existing branches — e.g. it may introduce
branch aliasing. Such effects could explain the 34% increase in branch
load misses in povray .

JITed code can also be impacted by lower locality when accessing
data because the JIT runtime cannot make assumptions on where
in memory the JITed code will be loaded, it must be conservative
and not use memory instructions that encode small relative offsets
— e.g. 32 bits in the medium code model or 16 bits in the small
code model. Instead, the JITed code accesses symbols in the AOT-
compiled program through a table — generated by the JIT runtime
(Section III-B3). Thus, every access to AOT-compiled code symbols
in the JITed code goes through an indirection. The indirection adds
overhead in terms of more instructions per access. More importantly,
because the table is placed on separate memory pages from both
the JITed and AOT-compiled code, the indirection may add more
overhead in terms of address translation. A comparison of D-Block
with Static in Table IV indicates that: 1) there are more stalls due
to DERAT4 misses ranging from 12% in deepsjeng up to 34.8×
in povray; 2) DERAT misses are 81% higher in imagick and 60×
higher in povray; 3) deepsjeng exhibits 6× more dTLB misses.

3) Addressing the Overhead in the DASS Prototype: The results
from Section IV-E2 answer 4 , indicating that the observed overhead
is caused by a mix of indirection and lower code & data locality
introduced by the placement of JITed code relative to AOT-compiled
code. For indirection, simplifying the calls to JITed code, by rewriting
call sites instead of executing the trampoline structure, can reduce
overhead, however, this is not feasible for many developers. While
instruction locality is hard to improve, changes can improve the

4A small buffer that caches effective-to-real address translations from the
dTLB.
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locality of data. In particular, the indirection to access data can be
avoided by passing the addresses of symbols as arguments to the
JITed function. However, this solution is dependent on the Application
Binary Interface and would only work for functions that access a
small number of symbols, otherwise the arguments would be passed
through the stack and cause a similar locality issue. Moreover, passing
addresses to functions may affect the results of escape analysis and
reference analysis with detrimental effects on performance. Another
possibility is to employ an inspector/executor approach that would
observe the address range where the JITed code was loaded and,
if the distance to accessed symbols permits, replace indirect loads
with (direct) offset-based loads. The efficacy and trade-offs of such
solutions are left for future investigation.

V. RELATED WORKS

Whole program AOT specialization is often avoided in exchange for
more generically compiled binaries which can execute on the various
sub-targets of a given CPU architecture. However, work has been done
to reduce the build-time cost of AOT specialization by decreasing its
scope. Multi-versioning, like that implemented in GCC [36], allows
for applying explicit specialization to target functions. Managed by
a dynamic check this method avoids issues of JIT compilation and
the locality of JITed code. However, unlike DASS, it requires saving
each version of the function code to the binary and is limited to the
sub-targets explicitly defined in the source code.

Dynamic code compilation for static languages has been a persistent
point of interest in prior research. Dynamic compilation has two major
approaches: holistic and selective. A holistic approach targets the
entire program for recompilation during execution, while a selective
approach narrows the scope to “high value” segments of the code.

The choice of which segments to target for specialization influences
the possible optimizations that dynamic compilation can perform and
the corresponding cost. DyC [37] focuses on individual variables,
recompiling the code blocks where these variables appear to generate
binaries that can treat the variables as run-time constants. ADAPT [38]
identifies loop nests that lack function calls or I/O, creating multiple
experimental versions of the code and picking the best performing
version. Azure [39] targets Single-Entry-Single-Exit regions of binary
code that demonstrate sufficient parallelism, producing modified
binaries that take advantage of new hardware constructs. Castanos
et al.’s work [29] and ExanaDBT [40] focus on recompiling entire
functions, allowing for easier insertion of recompiled code into the
host program through call modification or through a trampoline to a
dynamic library. DASS employs function-level specialization and thus
is not limited to optimizations that target specific variable usage or
loops as DyC and ADAPT. Instead of raising binary code to an IR-form
like in Azure and ExanaDBT, DASS saves the IR of selected segments
into the binary, thus it preserves more static information. Castanos
et al.’s work [29] is the most similar work to DASS. However, the
system proposed by Castanos et al. is designed to use JIT technology
while the DASS implementation used a JIT compiler as a convenient
way to produce a prototype, as DASS can be realized without a JIT.

Identification of recompilation targets requires balance between the
amount of information required for the decision, and the overhead of
retrieving that information and making the decision. DyC [37] and Tick
C [41] makes use of a manually applied annotation attached to each
code line that identifies it for dynamic compilation. Forgoing manual
identification, Calpa [25] extends DyC by applying the system’s
annotations automatically, requiring a profile of the program to built
in a previous run of the program to inform its decisions. Unlike DyC
and Tick C, DASS can specialize segments at the level of functions,

thus the selection can be done manually via function attributes or
automatically by the compiler. In addition, the runtime component
of DASS can be extended to only apply sub-target specialization to
candidates that pass a set of run-time cost/benefit criteria.

Other methods also focus on improving performance through a
combination of architectural and program behavior information, but
they forgo a selective approach to the recompilation targets. BOLT [42]
optimizes code for data-center applications by collecting offline
profiles to inform dynamic recompilation that is performed over
the entire program to improve cache efficiency through binary layout
reordering. PROPELLER [43] distributes a compilation process similar
to BOLT’s, but it also reduces the, potentially significant, overhead
incurred by profiling. Lightning BOLT [44] develops a similar process
to reduce compilation costs by enabling parallelism within the most
costly optimization. It transforms the approach into a selective one by
performing analysis on the respective reduced cost and retained value
of only compiling certain functions. Different than BOLT, DASS does
not require profiling data as candidates for dynamic specialization can
be identified via other mechanisms, e.g. static analysis or run-time
cost/benefit heuristics. Moreover, the goals of BOLT are orthogonal
to DASS’s, thus they can be employed together.

VI. CONCLUSION

This work evaluated the feasibility of a compiler-based system to
apply dynamic adaptive sub-target specialization (DASS). Results from
an in-depth evaluation indicate that there is significant performance
gains that can be achieved through static sub-target specialization.
The results further indicate that it possible to attain similar results by
applying dynamic specialization at run-time. Furthermore, empirical
evidence indicates that it is sufficient to specialize only a fraction
of the application code in order to achieve the majority of the
whole-application specialization gains. A detailed analysis of the
overheads observed in a prototype implementation of DASS in LLVM
reveals that, although effective, a JIT-enabled approach requires careful
consideration of what functions should be selected for sub-target
specialization. Moreover, the detailed overhead analysis identified
sources of overhead that are inherent to a JIT-enabled approach.

Further improvements to DASS can be made. Automatic selection
of functions can improve the usability of the system. This selection can
be informed both by static analysis at compile time, wherein the fat-
binary size is decided, and dynamic analysis during execution, wherein
compilation of less frequently executed functions, for a given workload,
can be avoided. Other areas of improvement include refinement of the
JIT compilers optimization pipeline. Currently the default compiler
pipeline is used, however this includes passes with no impact on sub-
target specialization, which can be performed safely on fat-binary IR
prior to serialization. Adding optimization passes that take advantage
of the execution time information available to DASS is another future
consideration. These can be used to further optimize segments by
taking advantage of the executing hardware’s capabilities (e.g. shared-
memory parallelism). Finally, the aforementioned techniques to reduce
data locality overhead for JITed code can improve DASS performance
relative to static specialization.
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