
WCSim: A Cloud Computing Simulator with
Support for Bag of Tasks Workflows

Maicon Ança dos Santos
PPGC/UFPel
Pelotas, Brazil

madsantos@inf.ufpel.edu.br

Gabriel J. A. Grabher
LIG/Université Grenoble-Alpes

Grenoble, France

gabriel.job-antunes-grabher@univ-grenoble-alpes.fr

Matheus F. Kovaleski
II/UFRGS

Porto Alegre, Brazil

mfkovaleski@inf.ufrgs.br

Cláudio F. R. Geyer
II/UFRGS

Porto Alegre, Brazil

geyer@inf.ufrgs.br

Gerson Geraldo H. Cavalheiro
PPGC/UFPel
Pelotas, Brazil

gerson.cavalheiro@inf.ufpel.edu.br

Abstract—In this paper, we present WCSim, Workflow Cloud
Simulator. Firstly, we argue that this cloud simulation tool offers
a high level of accessibility by allowing the description of various
components, such as users, infrastructures, and workload, of a
given scenario simply by providing parameters at launch time,
without requiring the extension of the simulator code. Then, we
explain how we conceived the components for the simulation
models and provide a detailed description of the implemented
software. Additionally, we compare the results of a small scenario
obtained from two other simulation tools with those provided
by WCSim. Finally, we present a case study that illustrates the
usage of WCSim. The paper also introduces the a abstraction to
model workflows as a Direct Acyclic Graph of Bag of Tasks.

Index Terms—Cloud Simulators, Simulation, Cloud Computing,
Programming Models, Performance Evaluation

I. Introduction

Simulators are computer programs developed to pro-

grammatically replicate the behavior of a real system. In

various fields of knowledge, simulators present themselves

as an attractive alternative for system evaluation due to the

level of accuracy they can offer, which depends on the level

of detail in the simulation model used and the abstractions of

reality considered. In the field of Computer Science, simulators

are widely popular, particularly for the study, design, and sizing

of computer network environments and distributed systems.

In this context, one of the oldest and perhaps the most well-

known simulator is NS [1], used for simulating protocols in

computer networks. In recent years, several simulators for

grid and cloud computing have also been proposed. Several

surveys in the literature, such as [2]–[5], evaluate, compare, and

discuss the limitations of such tools. Indeed, the identification

of challenges in cloud computing simulators represents a

significant motivation for their construction, as highlighted in

[6]. This aspect represents one of the key obstacles to overcome

in the field of modeling and simulation. Among these various

tools, two stand out for their popularity, as expressed by the

size of the community involved and the number of published

works, the SimGrid [7], and the CloudSim [8], [9]. These two

simulators are widely used to evaluate different scenarios in

grid and cloud computing.

In this paper, we present WCSim, the Workflow Cloud

Simulator, as an another grid/cloud simulator. WCSim was

conceived with the same goal as SimGrid and CloudSim, which

is simulating the execution of diverse workloads on various

infrastructure configurations, considering different scheduling

policies. Presented in this way, the space to be occupied by

WCSim may seem the same as that of these two tools, but its

implementation takes into account certain premises, positioning

itself with its own distinctive approach. Those main premises

are: provide an accessible simulation tool, and support naively

support both workflow and bag-of-tasks (BoT) programming

models. We believe we have fulfilled these prerequisites by

developing a simulation tool that enables the description of

study cases as parameters to the simulator, instead of requiring

programming as in other tools. Additionally, our tool provides

a model for application description in the form of a workflow

of BoTs. The current version of WCSim was built upon the

simulator presented in [10], where the concepts of separating

the description of the simulated scenario (infrastructure and

workload) from the simulation engine and the handling of BoT

applications were adopted. WCSim has provided valuable data

to support the thesis presented in [11].

The main contribution of this paper is introducing WCSim.

WCSim is designed and implemented with an object-oriented

style using C++, without delving into more complex aspects

of the language in order to enhance the accessibility of the

tool to a wider audience. The proof of concept is provided by

two case studies. In the first, we compare the results obtained

from WCSim to those provided by SimGrid and CloudSim.

In the second, we evaluate different scenarios in WCSim.

Furthermore, we offer comprehensive insights into the initial

assumptions made during the development of the simulation

tool, considering the knowledge documented in the literature on

the prerequisites for designing and implementing an alternative

solution [12]–[14] by other authors. Finally, we would like to

highlight the intriguing concept of representing applications as

a workflow of Bag of Tasks, which is a novel idea introduced in

this article. Nonetheless, we believe that this concept warrants

further exploration as a separate line of investigation.

The remaining part of this text is organized as follows.

Section II provides an overview of simulation tools in the

literature, with a focus on SimGrid and CloudSim. Section III

presents the main elements considered in the design of the

simulation model. Section IV describes the software structure,

and Section V provides details on how case studies are

submitted to the simulator and the generated outputs. Section

VI presents the two experiments conducted as proof of concepts.

Finally, Section VII concludes the paper.

II. Simulators in the literature

Various simulators for cloud computing have been

documented in the literature [2], [15]. These simulators serve as

vital tools for developing, configuring, and evaluating different

cloud architecture configurations and application behaviors.

However, studies show that none of them are complete or ideal

for all analyses. Among these simulators, this work considers

DISSECT-CF-WMS, SimGrid, and CloudSim.

DISSECT-CF1 [16] IaaS simulation framework was

implemented to offer easy extensibility for introducing models,

supporting energy evaluation of IaaS, and enabling rapid

assessment of various scheduling strategies. An extension to this

simulator, DISSECT-CF-WMS [17], where the authors evaluate

scenarios involving workflows under virtualized infrastructures.

SimGrid2 is a C-based tool for simulating distributed

environments available by a GNU-Linux package. Its interface

provides extensions to C++, Java, and Python. The scheduling

core is based on discrete events and [18] arguments that this

feature affects scalability as the simulation model complexity

increases. SimGrid offers the actors model to enable users

to define simulation behavior for tasks, communications, and

disk usage. The simulation core predicts execution time and

orchestrates actor activation. Although originally presented as a

generic simulation environment for distributed systems focusing

on evaluating parallel applications, particularly those developed

in MPI (e.g. [19], [20], [21], [22]), and even in OpenMP [23],

SimGrid is currently being used in a much wider range of

cloud applications, such as IaaS clouds, volunteer computing,

and fog computing. A functionality added to SimGrid through

an extension [24] is the ability to specify programatically a

directed acyclic graph (DAG) of tasks.

CloudSim was originally developed in Java, and in this work,

we consider the fork of the project called CloudSim Plus3

which brings several performance improvements compared

to the original version [9]. CloudSim itself was introduced

as a derivative project of GridSim [25]. The installation of

CloudSim Plus is available through a software repository and

requires manual installation, utilizing the provided source code

packages. The core simulation of CloudSim Plus extends the

functionalities of the SimJava package [26] and also employs

1https://github.com/kecskemeti/dissect-cf, Ago 14, 2023.
2https://simgrid.org, May 22, 2023.
3https://cloudsimplus.org, May 22, 2023.

a discrete simulation model. Being a newer project compared

to SimGrid, CloudSim focuses more on cloud concepts, likely

due to their wider acceptance in the community in last years.

Virtual machine and cloudlet concepts are explored. The

simulator is widely used for evaluating scheduling strategies

for clouds, including workload scheduling between virtual

machines and virtual machine placement on host machines

[27], [28], [29]. CloudSim has also been applied in other

computing models derived from Cloud Computing, such as

Fog Computing [30] and Edge Computing [31] and [32]. While

CloudSim does not provide a native abstraction for constructing

DAGs, achieving it programmatically is possible. WorkflowSim

[33], an extension of this tool, follows the Pegasus model for

describing workflows, offering this level of abstraction.

It is worth noting that both the SimGrid and CloudSim

projects have a large community and several derived projects.

According to [2], CloudSim is likely the most popular. It is

important to highlight that while both projects can simulate

cloud computing models, SimGrid primarily serves as a

simulator for grid computing, focusing on fine-grained task

applications [34]. In contrast, CloudSim is specifically designed

to simulate virtual machine abstraction and virtual machine

scheduling, which extends the capabilities of SimGrid [35].

Both SimGrid and CloudSim allow the construction of

task workflows. SimGrid provides this capability through an

extension called SimDAG [24], examples in [36], [37] and [38].

In CloudSim, workflows are created by adding actions to the

completion event of a cloudlet, generating subsequent cloudlets

or even expliting the WorkflowSim extension. These tools are

also used for evaluating scheduling strategies considering cloud

usage cost, examples in [39], [40] and [41]. Another aspect

observed in these tools, relevant in this work, is that neither of

them provides a native abstraction for a user entity with cloud

access. This entity is responsible for job submissions and has

ownership rights over virtual machines, as introduced in the

basic assumptions of the simulator.

SimGrid and CloudSim Plus are simulation tools that offer

various features for modeling case studies in cloud computing

and should remain as references in many usage contexts.

These tools have been selected for our case studies based

on their popularity and the active involvement of community

members in their development. However, we understand that

the advancement of cloud computing environments requires

greater dynamism in the evaluation processes of application

behavior over infrastructure projects. We still consider that the

study of application behavior described as a workflow of bag

of tasks4 is not adequately addressed in these tools.

III. Initial Assumptions

In cloud computing, a physical infrastructure supports the

execution of virtual machines provided by a virtualization layer.

Users own virtual machines and launch their applications in

the form of a workflow of bag of tasks. A two-level scheduling
mechanism distributes the workload of the applications across

4The concept of workflow of bag of tasks is introduced in Section III-D.

the user’s virtual machines and the processing load of the

virtual machines across the physical infrastructure, potentially

applying a load distribution policy. Finally, the utilization and
accounting of resources must be effectively monitored and

managed to provide information that can be considered by a

scheduling policy and ensure accurate billing.

All components of a cloud computing environment, in our

simulation model, are described by a set of attributes, except

for scheduling, which must be described by an algorithm. The

attributes are called static when they describe the immutable

physical characteristics of the component, or dynamic when

they record a value representing a specific state during the

simulation process. The number of cores in a processing server

is an example of a static attribute, while the current number of

virtual machines hosted on a processing server exemplifies a

dynamic attribute. In our model, time evolves discretely, second

by second. This time unit is convenient in our model since the

processing requirements (the length) of the tasks are given in

millions of instructions, the processing power of the cores is

given in MIPS, and the network bandwidth is given in Mbps.

A. The Physical Infrastructure

The physical infrastructure is composed by datacenters
(DC), each DC composed by a set of processing servers. A

two-layered network interconnects all of these elements, with

one layer connecting servers within a DC and another layer

connecting multiple DCs.

1) The processing server: A processing server (PS)

represents bare metal that provides processing resources such as

cores (CPUs), RAM, and storage, described by static attributes.

The processing power of a PS is given in terms of the number

of cores and MIPS (Million Instructions Per Second) per core,

while RAM and storage are measured in gigabytes (GB). Each

PS has a unique identifier and bootstrapping and shutting down

data. Optionally, a PS can host one or more GPUs. Also,

as a static attribute, each PS is instantiated with a cost per

MIPS, which corresponds to the cost of executing a million

instructions. The dynamic attributes of a given PS describes

its status during the simulation process, such as: isOnline,

nVM, nPinnedCores, and fRAM identify whether the PS is active,

the number of virtual machines hosted, the number of cores

requested by the hosted virtual machines, and the amount of

memory free for allocation. For the sake of utilization billing,

a set of cost attributes is associated with a PS: the cost of

executing a million instructions, the cost of a GB of RAM or

storage, and the cost of a GPU.

Derived from the static and dynamic attributes, it is possible

to obtain additional information about the PS. The utilization

rate, which represents the degree of performance degradation

of the PS is an example. The degradation of a PS is given in

terms of the decrease in the delivery of the nominal amount

of MIPS from its cores. This degradation occurs when the

demand for virtual machines exceeds the capacity of the cores

offered by the bare metal.

As dynamic attributes, a PS also has an invoice. This attribute

identifies how many resources, such as the number of executed

MIPS, RAM, storage, and GPU it provided to each hosted VM.

Additionally, the invoice attribute records the actual utilization

of the PS. The utilization is represented in terms of server

occupancy. There are 8 ranges considered, and the portion of

time, from the total simulation time, in which the PS remained

with processing load in the respective range, is accumulated.

The time recorded in the first range indicates the portion of

time that the server remained inactive. The time in the last

range indicates the portion of time that the server had an

occupancy higher than 200% of its nominal capacity. The

remaining ranges correspond to the occupancy intervals: (0, <
25%], (25%, 50%], (50%, 75%] . . . (175%, 200%].

2) The datacenter: A datacenter (DC) is composed by a

set of (heterogeneous or homogeneous) PSs. Each DC has

a unique identifier, a name5, and bootstrapping and shutting

down data, as static attributes. A local network connects the

PS belonging to a DC, and a wide area network connects

the DCs. The model doesn’t distinguish between federated

DCs and public DCs, but a hybrid cloud configuration can be

achieved by selecting the appropriate configurations (e.g., PS

configurations and network speeds). In this case, the private

part of this cloud is composed of a set of federated DCs, each

belonging to different institutions. The public part is a DC

hosted by a public provider, whose resources are provisioned

following a cloud bursting strategy [42].

3) The network: Bidirectional links allow all PS to

send/receive messages to/from all other PS. The current

implementation of the communication model assumes no

reduction of bandwidth due to contention and does not handle

network faults. The bandwidth of each link is individually

provided in Mbps as a static attribute. We model local and

wide area networks by assigning different values to connections

between PS belonging to the same or different DCs.

B. The Virtualization Layer

The virtualization layer provides virtual machines to the

users. A virtual machine (VM) is owned by a user and has

the same static attributes as a PS, including a unique identifier,

bootstrapping and shutting down data, number of virtual cores,

and size of virtual RAM. Each VM also has its owner’s unique

identification. In terms of dynamic attributes, a VM also keeps

information about the number of running tasks, the number of

virtual cores in use, and allocated virtual memory. However,

unlike PSs that can be online or offline, a VM can also be in

a suspended or migrating state. Another dynamic attribute is

billing, which records the amount of MIPS executed for each

PS for billing purposes.

C. The User

The user is an entity that submits computational demands

(or applications) to the cloud. Each user has, as static attributes,

a unique identifier, a login date, and a home, representing the

DC to which they have access in the cloud. The list of VMs

belonging to a user is also a static attribute, as well as its list

5We assign a name to the DCs to provide a user-friendly identification.

of jobs (cf. Section III-D). The group and priority attributes are

also static attributes for a user and can be used by scheduling

policies to make placement/mapping decisions. The attribute

group represents the different levels of user access to cloud

resources: group 0 indicates that the user’s VMs can only run

in their home DC, group 1 indicates that the VMs can migrate

between other DCs in the infrastructure, and group 2 indicates

that the user’s VMs can be selected for cloud bursting. The

priority indicates the execution priority of the user’s VMs over

the resources they have access to.

As dynamic attributes, a user has a wallet. The wallet

informs the credits (financial resources) the user has to consume

launching its application over the cloud.

D. The Applications

The literature presents BoT (bag of tasks) [43] and workflow

models [44] as the most common in application submissions

for grid and cloud computing. The fundamental difference

between these models lies in the dependency relationships

between tasks. BoT applications are characterized by a set of

independent tasks. According to [43], it is somewhat difficult

to identify a BoT in a grid trace. However, if a group of tasks

is submitted by the same user within a small time interval,

it can be assumed that they belong to a BoT [43]. Workflow

applications involve defining tasks and the dependencies of data

among them, typically represented by a Directed Acyclic Graph

(DAG). Upon closer examination of workflow applications, we

observe that the workflow tasks may represent Bags of Tasks.

In fact, [45], [46] identify that some workflows can describe

coarse grain tasks describing a set of independent finer tasks.

In such cases, the application models a workflow of Bags of

Tasks. This application style represents our application model,

and we refer to it as DoB, which stands for DAG of Bags of

Tasks. One advantage of DoB, as model of application, is to

mitigate the drawback of using a BoTs is that users need to

handle data dependencies between tasks before introducing a

new task to the bag [47]. Another one is to allow to describe

communication dependent tasks, such as in MPI programs.

In the context of the Pegasus project [48], applications

for grid and cloud computing are represented graphically

as workflows where tasks are represented as circles and

dependence among tasks as directed arrows. Figure 1a

reproduces the original representation [48] for LIGO workflow.

The different colors represent the different operations achieved

by the tasks. In Figure 1b the same application is presented as

a DoB. Large circles represent workflow tasks, while the small

ones still representing the same operations achieved by tasks in

the original representation. The DoB abstraction is represented

by two elements in the simulation model: job and task. A job
is a container of a computational demand (the larger circles).

A task describes a unit of work.

Both jobs and tasks are entities in the simulation model that

represent computational demands. A job is a container of tasks

and has a unique identifier, as well as the identification of its

owner. A job may or may not have dependencies. Also as static

attributes, a job has a list of jobs which depends on it, together

(a) LIGO as a workflow

100000 100000

100000

100000 100000

100000

100000

100000

100000

100000

100000

100000

100000

100000

100000

100000

100000 100000

100000

100000 100000

100000

100000 100000

100000 100000

100000

100000

100000

100000

100000

100000

100000 100000

100000

100000 100000

100000 100000

100000

(b) LIGO as a
DoB

Fig. 1: Contrast between the representation of the original

workflow of the LIGO application in the Pegasus project and

the proposed DoB form.

with the number and a list of tasks it holds. If a job doesn’t

have any dependencies, it has a static attribute that informs

its launch time. As dynamic attributes, each job has a status

that informs its execution state (waiting, finished, executing,

etc.) and the number of dependencies to be satisfied before

it can be executed. The static attributes of tasks describe the

computation itself. The static attributes of each task, in addition

to its unique identifier, are its length (in MIPS), memory and

storage requirements, and the identifier of the job to which

it belongs. The dynamic attributes record the status of tasks

during their life cycle (waiting, finished, executing, etc.), the

identifier of the VM on which the task is being executed, and

the number of instructions (MIPS) already completed.

E. The Scheduler

The scheduler is modeled in four layers. First, at the local

level of a PS, we observe the sharing of resources (e.g., cores)

provided by a PS among the VMs it hosts. Second, at the

internal level of a DC, the VMs are managed among the PSs

belonging to a DC. Third, at the global level of the federated

cloud, the load produced by VMs can be migrated between

PSs belonging to different DCs. Fourth, for cloud bursting to

a public provider, the load produced by VMs can be bursted

to a public provider. The basic scheduling operations involve

mapping processing requirements over computing resources and

sharing computing resources among processing requirements.

Additionally, the scheduling may support a load distribution

policy to optimize some performance index. It is also a

scheduling decision to launch or cancel the execution of a

task for a user whose credits have run out.

The scheduling in the simulation process is reactive to the

evolution of applications during execution and to activities

observed in the infrastructure. In these cases, the simulator

maps tasks onto virtual machines or maps virtual machines

onto processing servers. Scheduling is activated whenever: (i) a

DATE & EVENT & ID & RELATED & NOTE
...
1000 & 10 & 32 & 0 & PS bootstrapping
1000 & 10 & 33 & 1 & PS bootstrapping
...
1001 & 20 & 4 & 0 & User login
1001 & 20 & 5 & 1 & User login
...
1001 & 30 & 12 & 4 & DoB launching
1001 & 30 & 13 & 5 & DoB launching
1001 & 330 & 145 & 12 & Job ready
1001 & 330 & 146 & 12 & Job ready
1001 & 3330 & 809 & 145 & Task ready
1001 & 3330 & 810 & 145 & Task ready
1001 & 3331 & 809 & 145 & Task launch
1001 & 3331 & 810 & 145 & Task launch
...
1011 & 3332 & 809 & 145 & Task finish
1011 & 3332 & 810 & 145 & Task finish
1011 & 331 & 145 & 12 & Job finish
...

Fig. 2: Fragment of log file.

job becomes ready to execute, (ii) a task needs to be launched,

(iii) a task finishes, (iv) a new VM is spawned, (v) a new PS is

integrated into the cloud, or (vi) a PS becomes inactive. Each

time any of these situations occurs, the scheduler is triggered,

receiving the corresponding information as a parameter. For

example, it receives a job in situation (i), a task in situations

(ii) and (iii), and so on. Each scheduling intervention generates

a log of information. This log provides the output of the

simulation, enabling analysis of utilization and accounting.

F. Utilization and Accounting

Our user model includes the attribute wallet which tracks the

credits that users have for consuming cloud resources. Credits

are deducted when using resources at the PS level, such as

executing a million instructions and provisioning RAM, storage,

or GPU to a VM. As a user’s tasks are performed, their credits

are progressively consumed. In our model, costs are associated

with the bare metal infrastructure rather than the VMs. This

is because we have observed limitations in resource elasticity

within a federated cloud, and we cannot guarantee the consistent

performance of a VM family.

The utilization is recorded at each intervention of the

scheduler in a log (CSV type) file. Each log entry contains

five or six fields, depending on the kind of the event. Ordinary

events have five fields: the timestamp of the event; a class code

that identifies the event that generated the log; two identifiers:

one for the simulation component that triggered the log and

another for the component to which that component is related;

and a textual description of the event. Figure 2 shows a fragment

of a log file. In this fragment, we identify the bootstrapping of

two PS, PS:32 on DC:0 and PS:33 on DC:1, and the logon of

two users, User:4 and 5, on DC:0 and 1, respectively. At time

1001, each user launches a DoB: User:4 launches DoB:12, and

User:5 launches DoB:13. Additionally, two jobs and two tasks

become ready at time 1001: Job:145 and 146, both belonging

to DoB:12, and Task:809 and 810, both belonging to Job:145.

The combination of resource utilization information,

recorded by the invoice attribute in the PSs, with the accounting

of credits used by users, recorded in the "wallet" attributes,

enables the analysis of effective cloud utilization, evaluating

its performance in meeting the presented demands.

IV. General Simulator Structure

The scheduling mechanisms are presented in the form of

methods belonging to an abstract class called Scheduling. Each

method corresponds to each of the situations that trigger a

scheduling operation (cf. Section III-E). A default behavior for

scheduling is provided.

A. The Software Structure

Figure 3 presents the simplified class diagram of the

developed software structure. We highlight the Component
class, from which all event-driven simulation model elements

are specialized. This class provide the abstract method execute,

to promote the execution of an event. The Component
constructor is responsible for inserting a new event in the

event list and the destructor for generating log information.

The diagram also provides examples of events supported by

each component.

The cloud (class Cloud) is not a component because it does

not generate events by itself. It consists of a utility class that

holds the selected scheduling policy.

B. The Simulation Kernel

The simulation kernel handles a global clock and an event

queue. An event describes a simulation activity, representing

something that happens in the cloud and is associated with a

specific timestap. Events in the queue are sorted by timestamp.

If multiple events occur simultaneously, there is a defined

priority order among components: PS (higher priority), User,

VM, Job, and Task (lower priority). During its execution, an

event may schedule new events. Initially, the event queue

is populated with the events programmed in the input files

provided to the simulator. The scheduler kernel runs the

Algorithm 1.

As shown in the Algorithm 1, the time evolves discretelly

adding INC time units to the global clock. The default INC value

is 1 (meaning one second). Increasing this value can speed up

the simulation, but it may lead to a loss of accuracy in the

results. At the end of each step, the scheduling operations are

Algorithm 1 Simulator kernel

INC ← 1; Reads input files;
Creates the cloud infrastructure;
Populates eventQueue;
GlobalClock ← 0;
while eventQueue.size() > 0 do

while eventQueue.first().date() <= GlobalClock do
event ← eventQueue.first();
eventQueue.removeFirst();
event.execute();

end
Cloud::localSchedule();
Cloud::datacenterSchedule();
Cloud::cloudSchedule();
Cloud::burstingSchedule();
GlobalClock ← GlobalClock + INC;

end
Generates outputs;

Kernel
1

GlobalClock
1

n

Extends

HostShutdownEv VMLaunchingEv UserLoginEv

PS VM User

1 1 1 1

1 1..n
Contains

Billing

Own
1

Hosts
0..n1

Wallet

1

Log Component1

n

FutureEventsList
1

JobReadyEv

Job

1

TasklReadyEv

Task

1

Cloud

Extends Extends Extends ExtendsExtends

Event

1 1..n
Launch

1

Sched

Scheduler

Scheduler_1 Scheduler_n

Scheduler_1_1

Extends

Extends

HostRisingEv

Fig. 3: Simplified UML class diagram for WCSim.

activated to advance the execution of tasks and, if taken into

account, promote load balancing.

C. Class Scheduler

The virtual class Scheduler offers those virtual methods:

• load_t getVMLoad(VM* vm): returns the load of a VM.

• load_t getPSLoad(PS* ps): returns the load of a PS.

• void placeTask(Task* t): task t belongs to a Job that

was launched by a User which own a set of VMs; t is

placed on one of the VMs owned by the User.

• void placeVM(VM* vm, DC* dc): places a VM in a PS

belonging to the datacenter dc.

• VM* selectVM2Migrate(PS* ps): returns a VM selected in

ps to migrate.

• void localSchedule(PS* ps): visits all PSs, simulating

the execution of INC × millions of instructions.

• void datacenterSchedule(DC* dc): promotes the load

balancing between PSs belogin to dc.

• void cloudSchedule(DC* dc): activates load balancing

between DCs from dc.

• void burstingSchedule(DC* dc): enables dc to achieve

cloud bursting.

The scheduler methods are invoked in a callback manner:

when a specific scheduling situation is required, the

corresponding method is called. A default behavior is provided

for all methods, however, the default for cloudSchedule,

datacenterSchedule, and burstingSchedule is to do nothing.

New scheduling strategies can be elaborated by extending the

Schedule class. For a given simulation, the chosen strategy

must be provided as a template to the Cloud class.

D. The components

A component is a representation in the simulation model

of a dynamic entity from the real model that evolves in the

domain of time [49]. During a simulation, each component

evolves its lifecycle, performing activities related to its purpose.

Components are reactive to events that occur during the

simulation process and, in turn, they can themselves cause

new events, which may trigger a reaction within themselves

or in other components.

E. The events

An event is an object that contains data to be triggered and

identifies the component that should undergo the action during

event processing. Events can be classified as exogenous or

endogenous. An exogenous event originates from an external

action in the simulation context. In our simulation model, these

events are provided as input when the simulator is launched.

Handling such events may lead to modifications in simulation

elements, potentially interfering with programmed actions.

Examples of exogenous events include booting a new PS and

submitting a new job without predecessors. An endogenous

event is generated during the simulation process as a result

of processing another event. Examples of endogenous events

include suspending or resuming the execution of a VM after

migration and changing the job status to ready to execute once

all dependencies are satisfied.

V. Input and Output Files

WCSim requires three files as inputs and provides four

files as outputs. The input files consist of a descriptions of

workflows to be submitted to the cloud, user identification,

and a description of the cloud infrastructure. These inputs are

provided as files with the extensions .dob (Figure 4a), .pas
(Figure 4b), and .inf (Figure 4c), respectively. In those files,

any content following the # character on a line is ignored.

The description of the workflows submitted to the cloud is

presented in terms of dependence between jobs, as in Figure 4a.

Each line represents the description of a job within the workflow.

The first column provides the job ID, and the second column

provides the ID of the user responsible for submitting it. The

thirty column inform how many other jobs must be completed

before be ready to execute (the number of predecessors). The

fourth column informs the timestamp (in time units) the job is

launched. Important to notice: if a job has predecessors, the

arrival date is unconsidered. The fifth column informs how

many tasks are contained in the job and the next two columns

identify the length (in millions of instructions) and the memory

requirement (in GB) of each task.

In the users description file (Figure 4b), we can observe, in

the first three columns, that each user has a name, a datacenter

as its home, and the identification of the group to which they

belong. Following that, each entry specifies how many VMs

will be launched when the user logs on, along with the VM
family, identifying the type for those instances. The line that

describes each user is taken as its ID.

An example of infrastructure is given in Figure 4c. In this

file, each line represents a PC belonging to a specific DC: there

are three DCs, each with four PCs. Also the number of lines

are taken as PS IDs. The second column indicates the booting

timestamp for each PC, while the third column specifies the

PC’s bare metal architecture. In this case, all PCs are active at

simulation time 0. UFPel and IFSul have a bare metal family

of 0, while UFRGS has a family of 1. The subsequent columns

provide information about the communication link speeds

between the PCs (Gbps). As the simulation model assumes

bidirectional channels with equal bandwidth in both directions,

the speeds are given in one direction only. The first speed

value corresponds to the link between the described server and

the next server in the list. The second speed corresponds to

the link between the described PC and the second PC in the

list, and so on. The last server in the list does not have an

explicitly stated communication speed as its links to the other

servers have already been mentioned in previous lines. In the

provided example, PCs within the same DC communicate at

10 Gbps, and between different DCs at 1 Gbps.

In addition to the log file (Figure 2), the simulator produces

the files performance, trace, wallet. The last column of

each line in performance file (Figure 5) indicates the timestamp

of the last task generated by each user. The users are identified

by their names and IDs. The trace file presents the accumulated

time (in time units) that each PS remained at a specific workload

level. There are a total of nine workload levels, including

the PS’s inactive state. The workload levels are presented in

intervals of 25% utilization. Finally, the billing file indicates the

number of millions of instructions each user received from their

respective PS. User identification is in the first two columns,

and the corresponding PS is in the second-to-last column.

VI. Case Studies

The proposed simulator is fully operational and publicly

available in a repository for community collaboration. The

experiments conducted for this article are also included in the

repository for reproducibility and as usage examples. These

case studies serve to demonstrate the availability and potential

of the tool. First we compare the results presented by WCSim,

SimGrid, and CloudSim Plus for a very simple cenario. Then,

we exemplify an evaluation of scheduling strategies, presenting

the results of an analysis on the economic impact of utilizing

cloud bursting in a federated cloud environment.

A. Comparative experiment

This section presents a case study comparing WCSim’s

results to those of SimGrid and CloudSim Plus. These results

relate to the simulation time of submitting a set of tasks to a

cloud environment. As additional information, the simulation

runtime is also provided. The objective of this case study is

not to compare the performance of the simulators based on

their response time, nor to identify the accuracy of these tools.

The goal is purely to position WCSim comparatively with

these two tools in qualitative terms by interpreting their model

abstractions and simulation results for a simple scenario. The

collected performance are shown in Table I.

The case study involves submitting three sets of workloads

to an infrastructure consisting of four processing servers, each

with four processors, interconnected by an unbounded network.

The workloads comprise 100, 1,000, and 10,000 identical tasks,

each requiring the execution of 1 billion instructions – 1,000

MI. All tasks are launched at simulation time 0 (zero) with

all PSs already booted and no task migration occurs. Only the

processing cost attributed to the instructions executed by the

tasks is taken into consideration, while other expenses such as

memory and storage are disregarded.

a) WCSim simulation model: At time 0, four PSs with

four 1,000 MIPS cores each are started in separate DCs. Also,

at this time, four users, one from each DC, log into the cloud

and launch a VM configured with four vcores, each offering

100 or 1,000 vMIPS according to the case evaluated. Each VM

is mapped to the PS belonging to the DC home of its owner.

Then, each user triggers a job that represents 1/4 of the total

workload considered in the experiment.

TABLE I: Comparing performances and behaviors.

Simulator
100 Tasks 1,000 Tasks 10,000 Tasks

Sim Exec Sim Exec Sim Exec

PS: 1,000 MIPS/core, VM: 100 vMIPS/vcore

WCSim 61s <0.01s 621s 0.41s 6250s 34.6s
SimGrid 62.5s <0.02 625s 0.24s 6250s 3.3s
CloudSim Plus 65.1s 2.58s 650.1s 5.27s 6,500.1s 18.6s

PS: 1,000 MIPS/core, VM: 1,000 vMIPS/vcore

WCSim 7s <0.01s 63s <0.1s 625s 8.2s
SimGrid 6.3s <0.05s 62.7s <0.3s 626.9s 3.7s
CloudSim Plus 6.5s 2.5s 65.2s 5.1s 652.2s 15.1s

b) SimGrid simulation model: The environment platform

is defined in an XML file, identifying the number of available

servers, their computing speed (FLOPS), their number of cores,

and the network bandwidth between them. As performance is

given in FLOPS, we assume 5 instructions are executed per

floating-point operation. At the start of the simulation, 5 servers

are started with 4 cores, providing a processing speed of either

80 MFLOPS or 800 MFLOPS, depending on the experiment,

to represent the proposed scenario where each core provides

100 or 1,000 MIPS. Simultaneously, 4 worker and 1 scheduler

#Job owner nDep arrival ntasks MI RAM [id_dep] # Comments
0 0 0 0 4 216000 50 # Blast ...
1 0 1 0 1 432000 50 0 # SRNA
2 0 1 0 1 432000 50 1 # FFN_parse
3 0 1 0 3 216000 50 1 # Blast_candidate ...
4 0 1 0 1 432000 50 2 # Blast_syntese
5 0 3 0 1 216000 50 4 3 8 # SRNA_annotation
6 0 1 0 1 432000 50 5 # Sendemail
7 0 0 0 19 108000 60 # Patser
8 0 1 0 1 432000 50 7 # Patser_con
9 1 0 3600 4 216000 50 # Blast ...
10 1 1 3600 1 432000 50 9 # SRNA
11 1 1 3600 1 432000 50 10 # FFN_parse
12 1 1 3600 3 216000 50 10 # Blast_candidate ...
13 1 1 3600 1 432000 50 11 # Blast_syntese
...

#User DC Date Grp nVMs VMFam
user00 UFPel 0 0 4 0
user01 UFRGS 0 0 2 0
user02 IFSul 0 0 4 1
user03 UFPel 0 0 2 0
user04 UFRGS 0 0 1 0
user05 IFSul 2000 0 3 1
user06 UFPel 3000 0 2 0
user07 UFRGS 4000 0 4 0
user08 IFSul 1000000 0 4 1

#Datacenter Date PSFam CommCosts
UFPel 0 0 10 10 10 1 1 1 1 1 1 1 1
UFPel 0 0 10 10 1 1 1 1 1 1 1 1
UFPel 0 0 10 1 1 1 1 1 1 1 1
UFPel 0 0 1 1 1 1 1 1 1 1
UFRGS 0 1 10 10 10 1 1 1 1
UFRGS 0 1 10 10 1 1 1 1
UFRGS 0 1 10 1 1 1 1
UFRGS 0 1 1 1 1 1
IFSul 0 0 10 10 10
IFSul 0 0 10 10
IFSul 0 0 10
IFSul 0 0

(a) Workload file: sipht.dob (b) Login file: users.pas (c) Infrastructure file: thecloud.inf

Fig. 4: WCSim input files: parametrizing the simulation.

#User,UserId,ExecutionTime
user00,0,2594
user01,1,2593
user02,2,2593
user03,3,2593
user04,4,0
...

#Host,HostId,Idle,25%,50%,75%,100%,125%,150%,175%,>200%
...
UFPelH2,2,16336,1000,237,364,5210,506,6442,2517,54150
UFPelH3,3,7171,2000,0,0,182,0,1202,0,76207
UFRGSH4,4,39396,0,294,0,852,2311,2054,7445,34410
UFRGSH5,5,36497,4855,3481,1314,1581,3556,4253,5228,25997
...

#User,UserId,Host,HostId,nbInst
user00,0,UFPel,0,3079728
user00,0,UFPel,1,5726270
user00,0,UFPel,2,5022350
user00,0,UFPel,3,3998172
user01,1,UFRGS,4,4863310
user01,1,UFRGS,5,4105350
user01,1,UFRGS,6,3350820
user01,1,UFRGS,7,5508702
user02,2,UFPel,0,4428528
user02,2,UFPel,1,3349488
...

(a) Performance file:

performance.csv
(b) Trace file: trace.csv (c) Billing file: bill.csv

Fig. 5: WCSim output files: simulation performance results.

processes are started on 5 different PS, where each process

runs in one VM using all the resources of one of the servers –

in this sense, the VM has the same processing power than the

server. The scheduler then distributes 100, 1,000, and 10,000

tasks of 200 MFlops each in a circular manner between the

workers. The workers stay in a loop of receiving and executing

tasks until a finishing signal is sent by the scheduler, indicating

that the experiment is over.

c) CloudSim Plus simulation model: All elements

belonging to the simulation model are described as classes

extending the framework API. Tasks are described by cloudlets

of 1000 MI in size, which are executed by VMs. In this model,

a VM is launched on each processing server, and the cloudlets

(100, 1,000 or 10,000) are distributed in a circular manner, by

a broker, performing scheduling operations, among the VMs.

The processing servers run at 1,000 MIPS, while the VMs

were configured to run at 100 and 1,000 MIPS.

d) Analysis of the results: All models were first simulated

applying the default configurations of the tools than we promote

changes in these configurations to evaluate the results. The

best performance obtained are in Table I. In our case study,

the optimal execution times for 100, 1000, and 10000 tasks are

62.5, 625, and 6250 seconds and 6.25, 62.5, and 625 seconds

on 4 quadcore PSs at 100 and 1000 MIPS, respectively, in

a network without bandwidth limitation. The closest results

are those presented by SimGrid in this very simple scenario.

It is important to note that during the calibration of the

experiment, we set the constant MIN_TIME_BETWEEN_EVENTS

(related to the sensitivity to events) to 1ns in CloudSim. With

this parameter, CloudSim yielded the best results. Changes

in the default parameters of SimGrid, cpu-threshold and

maxmin in particular, didn’t affect significantly the results or the

execution time. We made changes in parameters. In WCSim,

all scheduling operations are triggered by events during the

simulation and the minimum time step is 1s. Therefore, as the

number of tasks being handled increases, more events occur,

leading to more precise results. Conversely, the granularity of

a 1s time step proved to be inappropriate for considering small

pieces of work. This is represented in the experiment by the

distribution of “6.25” tasks among the cores – in practice, since

tasks cannot be split, three cores of each PS handle 6 tasks

while one core handles 7. The results presented by WCSim

become more accurate as the number of tasks increases and

the size of the time step becomes less important.
e) Simulators performance: Table I presents the execution

time required by each simulator to process each scenario in

the same hardware. These results are shown to illustrate the

performance of the simulators themselves and do not represent

an exhaustive performance assessment. However, we observe

very similar performances, with the execution time increasing

as the number of tasks grows and decreasing as the processing

power of the virtual machine increases.
f) Overall analyses: All three simulators offer abstractions

to model the proposed scenario. WCSim differs from the others

by offering abstractions for users (who are responsible for

generating work demands). SimGrid abstraction of VMs seems

more limited when compared to the ones made available by

WCSim and CloudSim. WCSim, in other sense, provides low

sensibility due to apply a very large time step to evolve the

simulated model.

B. Evaluating a scenario

This case study involves the assessment of the impact of

adopting cloud bursting [42] for provisioning processing in a

federated cloud environment by a public provider. We consider

three levels of workload (low, average, and high) and four

bare metal families (thin, medium, large, and huge). Memory

and storage requirements are not taken into consideration.

The federated cloud consists of three datacenters (DCs), each

equipped with four processing servers (PSs). The federated

cloud is homogeneous, with a communication bandwidth of

10 Gbps within each DC and 1 Gbps between PSs belonging to

different DCs. We are evaluating two scenarios: in one scenario,

only the three federated DCs provide processing resources,

while in the other a public cloud provides processing resources

when the federated cloud is detected as overloaded. Huge bare

metals are provided only by the public cloud – the bandwidth

between a PS in the federated cloud and any PS in the public

cloud is 1 Gbps. Our case study limits the number of PSs

provisioned at a time to four.

Three users, one on each DC, launch four virtual machines

(VMs), each one with four virtual cores, and 1/3 of the entire

workload at simulation time 0 (zero). The workload is described

by DoBs reproducing the behavior of three Pegasus [48]

applications: Spith, LIGO, and Galactic. Each user launch four

applications, resulting in 12 DoBs submissions. The average

level of workload is represented by each user launching 16

applications per DC (48 total), and the high level by the

launching of 64 applications per DC (192 total). The families

of bare metal differs among them according to the number

of cores: 4, 12, 24, and 48, respectively. In all cases, the

nominal speed of each core is 100,000 MIPS. There is a cost

associated with core usage, which is $0.03, $0.07, $0.08, and

$0.03, respectively thin to huge, per core.

Regarding the scheduling we consider two strategies.

SchBasic: At launch time, each user’s VMs are distributed in

a circular manner among the PSs belonging to their home DC.

As the jobs become ready to execute, their tasks are randomly

distributed among the user’s VMs. During execution, if a PS

becomes overloaded, a VM hosted on it is (randomly) selected

for migration (sender initiated policy) and a PS, belonging or

not to the same DC, is (also randomly) selected to receive

the VM. The VM migration is achieved over the network.

SchBurst: This scheduling strategy has the same behavior as

the previous scheduling, but it provides cloud bursting. The

scheduler decides to burst a VM to a public provider when

the PS receiving a migrating VM is also overloaded. The VM

to be bursted is (randomly) selected among the VMs hosted

by the receiving PS, including the migrated one.

We performs the simulation of both scenarios, with and

without support of a public provider. The Table II presents

the average execution time for each workflow (4, 16, and 64

of each one, depending on the processing demand) and also

the costs of executing over the federated processing resources

and the cost of executing in a public provider. The total cost

is the sum of both. This cost considers only the consumed

instructions, as identified in the performance file (Figure 5b

presents a fragment of the actual file).

Table II shows that when the computational demand is

low, the total execution time of the applications significantly

decreases when the thin PSs are replaced by medium PSs,

roughly by 50%, even though the cost is approximately

3.5 times higher. On the other hand, maintaining a thin

infrastructure and adopting cloud bursting as support for

processing peaks also reduces the average execution times

of workflows, although at a lower rate compared to simply

switching bare metal families, but with a marginal increase

in operational costs. A possible conclusion is: it may be

recommended to provision extra resources on-demand in a

public cloud instead of investing in upgrades of PSs in the

federated cloud. When the processing demand is classified

as average, Table II shows that increasing the processing

power of the PSs and/or adopting cloud bursting promotes

performance improvement. In this situation, a thin architecture

may not be interesting due to the lower performance it

provides, while a large architecture may not be profitable if

the processing demand is not constant in the cloud. In the last

case, when the processing demand is high, we notice that cloud

bursting significantly increases the performance, considering

both the use of medium or large PSs. In this case, a possible

conclusion is that the use of medium configurations for the

PSs provides acceptable performance levels when provisioned,

during processing peaks, by a public provider.

TABLE II: Average execution times of workflows and their

costs. BM: Bare Metal; FC: Federated Cloud cost; PP: Public

Provider cost; time in seconds; cost in $.

BM Sched. Sipht LIGO Galactic FC PP Total Cost

Low computational demand

Thin SchBasic 73386 51772 15437 34.70 - 34.70
Medium SchBasic 39102 25622 9906 126.93 - 126.93
Thin SchBurst 34222 32042 12384 15.20 26.75 41.95

Average computational demand

Thin SchBasic 1610784 1096387 385192 746.67 - 746.67
Medium SchBasic 128353 102779 44195 461.09 - 461.09
Thin SchBurst 165145 149767 54769 102.31 341.39 433.70
Medium SchBurst 66547 36619 14103 265.05 133.00 398.04
Large SchBasic 40487 31099 13152 342.52 - 342.52

High computational demand

Medium SchBasic 1954715 2072887 740944 6,160.07 - 6,160.07
Medium SchBurst 988912 648929 78300 4,031.96 2,142.64 6,164.60
Large SchBasic 1310498 1031711 379766 12,159.96 - 12,159.96
Large SchBurst 712883 361170 41562 7,493.27 1,640.18 9,133.45

The Table III complements the analysis by providing more

information to a cloud designer to specify an infrastructure and

the necessity of provisioning resources in a public cloud. In

Table II, the performance corresponds to the execution of the

total workload just once. The Table III presents an estimation of

cloud usage, assuming that the workload will remain constant

throughout a year. That is, once the workload is completed,

an equal amount of work is launched again. In this table,

TAT corresponds to the time (in hours) required to execute

an entire workload and Total represents the cost of executing

this workload continuously throughout a year. Total is the sum

AFC, representing the cost of the consumed resources in the

federated cloud, and APP, the cost of resources provisioned

by a public provider (which are limited to four PSs at a time).

All costs correspond to the effective utilization of the cores,

as shown in the fragment of the trace file output presented in

Figure 5b. The column AFC available indicates the cost of

TABLE III: Annual cost estimation for accommodating different

demand projections. AFC max: Annual Federated Cloud maximum cost;

TAT: Turn Around Time (hours); AFC: Annual Federated Cloud cost; APP:

Annual Public Provider cost; Total=AFC+APP; Diff.=Total-AFC; Costs in $.

Bare metal AFC max Sched. TAT AFC APP Total Diff.

Low computational demand

Thin 12,614.40 SchBasic 24.66 12,324.30 - 12,324.30 290.10

Medium 88,300.80 SchBasic 12.59 88,316.66 - 88,316.66 -15.86

Thin 12,614.40 SchBurst 10.56 12,609.09 22,193.84 34,803.74 5.31

Average computational demand

Thin 12,614.60 SchBasic 518.52 12,614.42 - 12,614.42 0.08

Medium 88,300.80 SchBasic 45.74 88,306.70 - 88,306.70 -5.90

Thin 12,614.60 SchBurst 71.05 12,614.15 42,091.81 54,705.96 0.25

Medium 88,300.80 SchBurst 26.29 88,316.30 44,308.98 132,625.28 -6.30

Large 201,830.30 SchBasic 14.87 201,780.44 - 201,829.46 49.86

High computational demand

Medium 88,300.80 SchBasic 611.12 88,300.52 - 88,300.52 0.28

Large 201,830.30 SchBasic 527.78 201,828.88 - 201,828.88 1.41

Medium 88,300.80 SchBurst 400.00 88,299.92 46,924.30 135,224.22 0.88

Large 201,830.30 SchBurst 325.23 201.829.61 44,178.05 246,007.66 0.67

the federated infrastructure if all cores are active, processing

instructions, 100% of the time.

The forth column in the table indicates that the low

computational demand requires approximately 24.66 hours

(TAT) to be computed by a federated cloud equipped with the

weakest bare metal option. This means that, approximately, an

entire workload is completed within a day over the course of

a year. The cost of nearly 355 submissions, estimated during a

year of execution, is $12,324.30 (AFC). As the total available

processing corresponds to $12,614.40 (AFC max), there is

$290.10 (Diff.) in change left over – or 9,670 hours of usage

from one core, or yet 11 days of processing from the entire

federated infrastructure. Upgrading the federated infrastructure

to a medium bare metal will reduce the turnaround time by

50%, but it will cost slightly over $88K per year to compute,

which is very close to the annual nominal capacity. On the other

hand, by maintaining the thin infrastructure and provisioning

the federated cloud bursting VMs, the investment of $22K

(APP) is lower than what is required to compensate for the

previous alternative (upgrade to medium bare metal), which

amounts to nearly $78K ($88.3K - $12.6K).

Considering the scenario where the load is greater,

representing an average computational demand, we observe

poor performance provided by the thin bare metal. While the

thin architecture allows completing 17 workload submissions,

the medium completes 192 executions in a year. Large

PSs provide even better performance, achieving 590 runs.

Considering this demand level, a possible conclusion is that

adopting cloud bursting instead of upgrading the infrastructure

(from thin to medium or medium to large) results in significant

improvement with lower investment.

Finally, the data obtained from simulating a high

computational demand in the proposed cloud configuration

allow us to conclude that a significant change in our cloud

infrastructure must be considered. The architecture achieving

the best performance completes 27 executions per year,

requiring an investment of $246K ($201K in the federated

cloud and $44K for a public provider).

VII. Conclusion

This paper presents WCSim (Workflow Cloud Simulator)

tool for simulating scenarios in cloud computing. In contrast to

the popular cloud simulation tools, SimGrid and CloudSim, its

high accessibility potential was argued as a positive aspect. By

allowing different scenarios to be described as input parameters

to the simulator, users are relieved from the need to develop

code to represent the elements of the simulated model. However,

scheduling strategies still require intervention in the code to

be described. Nevertheless, the fact that they are implemented

as methods invoked in a callback approach simplifies the

introduction of new scheduling strategies. As a proof of concept

for the simulator’s usage, two case studies were presented.

One compared the results of WCSim with those presented by

SimGrid and CloudSim Plus for a simple simulation scenario,

while the other discussed the interest in adopting cloud bursting

within a federated network.

Although fully functional and being an extension of an

existing simulator [10], there are still some functionalities that

need improvement. High level abstractions for file handling

(storage and migration) are not yet available, and we understand

that they are essential for a comprehensive performance

analysis of workflow applications. Another aspect that needs

improvement is the inclusion of a more realistic communication

network model, as well as the introduction of an adaptive time

step to enhance simulation sensitivity. Nevertheless, we believe

that the capability to depicting entities like Users, Virtual

Machines, and the concept of a workflow consisting of BoTs,

seamlessly integrated into the developed simulation model,

holds significant value for the community engaged in assessing

diverse scenarios within a network environment.

The concept of DoB (Direct Acyclic Graph of Bag of Tasks)

representing the workflow of BoTs associated to a simulator

framework, is another important contribution introduced in this

work. We have conceived a workflow structure as a program

model for cloud computing, where units of work, called jobs,

have precedence relationships among themselves and internally

define a set of independent tasks, described as a bag of tasks.

Refining this model and extending it to accommodate dependent

tasks, thus allowing the simulation of MPI-like programs, will

be the subject of future work.

As immediate extensions of the current work, we will

propose more complex scenarios for comparing the results

of WCSim with those presented by SimGrid and CloudSim

Plus. Also it is projected to evaluate different scenarios of

applications, infrastructures, and scheduling strategies in the

context of cloud computing in order to help cloud designers to

quantify the wastage of resources in specific use cases, such

as HPC [50] or to specify platforms to support workflows

conceived in the context of the Pegasus project [48].

Acknowledgment

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil

(CAPES) – Finance Code 001.

References

[1] K. Fall and K. Varadhan, The NS Manual, 2nd ed., UC Berkeley: The
VINT Project, 2011.

[2] N. Mansouri, R. Ghafari, and B. M. H. Zade, “Cloud computing
simulators: A comprehensive review,” Simulation Modelling Practice
and Theory, vol. 104, p. 102144, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X20300836

[3] A. Ahmed and A. S. Sabyasachi, “Cloud computing simulators: A
detailed survey and future direction,” in 2014 IEEE international advance
computing conference (IACC). IEEE, 2014, pp. 866–872.

[4] K. Gupta, R. Beri, V. Behal, K. Gupta, R. Beri, and V. Behal, “Cloud
computing: a survey on cloud simulation tools,” International Journal
for Innovative Research in Science & Technology (IJIRST), vol. 2, no. 11,
2016.

[5] O. O. Oladimeji, D. Oyeyiola, O. Oladimeji, and P. Oyeyiola, “A
comprehensive survey on cloud computing simulators,” Scientific journal
of informatics, vol. 8, no. 1, pp. 51–59, 2021.

[6] S. J. E. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, and
J. Zander, “Grand challenges on the theory of modeling and simulation,”
in Proceedings of the Symposium on Theory of Modeling and Simulation
- DEVS Integrative M&S Symposium, ser. DEVS 13. San Diego, CA,
USA: Society for Computer Simulation International, 2013.

[7] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available: http:
//hal.inria.fr/hal-01017319

[8] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, “Cloudsim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” CoRR, vol. abs/0903.2525, 2009. [Online].
Available: http://arxiv.org/abs/0903.2525

[9] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio,
and M. M. Freire, “Cloudsim plus: A cloud computing simulation
framework pursuing software engineering principles for improved
modularity, extensibility and correctness,” in 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). Lisbon, Portugal:
IEEE, 2017, pp. 400–406.

[10] N. Nononono, “Nonononono nono no nonon n oonon non nonon,” in
9999 Nonononono nono no nonon n oonon non nonon. Nono nono:
Nononono, 9999, p. 99.

[11] ——, “Non nononono nono nnonon noonon non nonon,” in XIXI Non
Nononono Nono Nnonon Noonon Non Nonon. Nono nono: Nononono,
XIXI, p. 99.

[12] B. S. Onggo, S. Taylor, and A. Tulegenov, “The need for cloud-
based simulation from the perspective of simulation practitioners,” in
Proceedings of the Operational Research Society simulation workshop,
2014, pp. 103–112.

[13] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, J. Carretero, and I. M.
Llorente, “Design of a new cloud computing simulation platform,” in
Computational Science and Its Applications-ICCSA 2011: International
Conference, Santander, Spain, June 20-23, 2011. Proceedings, Part III
11. Springer, 2011, pp. 582–593.

[14] J. J. Padilla, S. Y. Diallo, A. Barraco, C. J. Lynch, and H. Kavak,
“Cloud-based simulators: Making simulations accessible to non-experts
and experts alike,” in Proceedings of the Winter Simulation Conference
2014. IEEE, 2014, pp. 3630–3639.

[15] S. E. Chafi, Y. Balboul, S. Mazer, M. Fattah, M. E. Bekkali, and
B. Bernoussi, “Cloud computing services, models and simulation tools,”
International Journal of Cloud Computing, vol. 10, no. 5-6, pp. 533–547,
2021.

[16] G. Kecskemeti, “Dissect-cf: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and
Theory, vol. 58P2, pp. 188–218, 11 2015.

[17] G. K. A. Al-Haboobi, “Developing a workflow management system
simulation for capturing internal iaas behavioural knowledge,” Journal
of Grid Computing, vol. 21, no. 2, 2023.

[18] W. Depoorter, N. De Moor, K. Vanmechelen, and J. Broeckhove,
“Scalability of grid simulators: An evaluation,” in Euro-Par 2008 –
Parallel Processing, E. Luque, T. Margalef, and D. Benítez, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 544–553.

[19] C. E. Ramamonjisoa, L. Z. Khodja, D. Laiymani, A. Giersch, and
R. Couturier, “Simulation of asynchronous iterative algorithms using
simgrid,” in 2014 IEEE Intl Conf on High Performance Computing and

Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and
Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC, CSS, ICESS), IEEE. Paris, France: IEEE, 2014, pp. 890–895.

[20] A. Pham, T. Jéron, and M. Quinson, “Verifying mpi applications with
simgridmc,” in Proceedings of the First International Workshop on
Software Correctness for HPC Applications. Denver, CO, USA:
Association for Computing Machinery, 2017, pp. 28–33.

[21] A. B. M. Fanfakh, “Predicting the performance of mpi applications over
different grid architectures,” Journal of University of Babylon for Pure
and Applied Sciences, vol. 27, no. 1, pp. 468–477, 2019.

[22] H. Casanova, A. Legrand, M. Quinson, and F. Suter, “Smpi courseware:
Teaching distributed-memory computing with mpi in simulation,” in 2018
IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC), IEEE. Dallas, USA: IEEE, 2018, pp. 21–30.

[23] I. Daoudi, P. Virouleau, T. Gautier, S. Thibault, and O. Aumage,
“somp: Simulating openmp task-based applications with numa effects,”
in International Workshop on OpenMP. Lyon, France: INRIA, 09 2020,
pp. 197–211.

[24] A. Mohammed, A. Eleliemy, and F. M. Ciorba, “Towards the reproduction
of selected dynamic loop scheduling experiments using simgrid-simdag,”
in 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). Bangkok, Thailand: IEEE, 2017, pp.
623–626.

[25] R. Buyya and M. M. Murshed, “Gridsim: a toolkit for the modeling
and simulation of distributed resource management and scheduling for
grid computing,” Concurr. Comput. Pract. Exp., vol. 14, no. 13-15, pp.
1175–1220, 2002. [Online]. Available: https://doi.org/10.1002/cpe.710

[26] F. Howell and R. McNab, “Simjava: A discrete event simulation library
for java,” Simulation Series, vol. 30, pp. 51–56, 1998.

[27] M. Bendechache, S. Svorobej, P. T. Endo, M. N. Mario, M. E. Ares,
J. Byrne, and T. Lynn, “Modelling and simulation of elasticsearch
using cloudsim,” in 2019 IEEE/ACM 23rd International Symposium
on Distributed Simulation and Real Time Applications (DS-RT), IEEE.
Cosenza, Italy: IEEE, 2019, pp. 1–8.

[28] S. Narang, P. Goswami, and A. Jain, “Statistical analysis of cloud
based scheduling heuristics,” in International Conference on Information,
Communication and Computing Technology, Springer. Singapore:
Springer Singapore, 2019, pp. 98–112.

[29] ——, “A comprehensive review of load balancing techniques in cloud
computing and their simulation with cloudsim plus,” Recent Advances
in Computer Science and Communications (Formerly: Recent Patents on
Computer Science), vol. 14, no. 6, pp. 1684–1694, 2021.

[30] D. I. Hatti and A. V. Sutagundar, “Resource provisioning in fog-based iot,”
in Inventive Computation and Information Technologies. Coimbatore,
India: Springer, 2022, pp. 433–447.

[31] D. Li, C. Asikaburu, B. Dong, H. Zhou, and S. Azizi, “Towards
optimal system deployment for edge computing: a preliminary study,” in
2020 29th International Conference on Computer Communications and
Networks (ICCCN), IEEE. Honolulu, HI, USA: IEEE, 2020, pp. 1–6.

[32] D. Li, C. Asikaburu, J. Shang, and N. Wang, “Numerical and simulation
verification for optimal server allocation in edge computing,” in 2021
IEEE International IOT, Electronics and Mechatronics Conference
(IEMTRONICS), IEEE. Toronto, ON, Canada: IEEE, 2021, pp. 1–7.

[33] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in 2012 IEEE 8th
International Conference on E-Science, 2012, pp. 1–8.

[34] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch,
E. van Eyk, L. Versluis, V. van Beek, and A. Iosup, “Opendc 2.0:
Convenient modeling and simulation of emerging technologies in cloud
datacenters,” in 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). Melbourne, Australia: IEEE,
2021, pp. 455–464.

[35] T. Hirofuchi, A. lèbre, and L. Pouilloux, “Simgrid vm: Virtual machine
support for a simulation framework of distributed systems,” IEEE
Transactions on Cloud Computing, vol. PP, 01 2016.

[36] J. Arabnejad H., Barbosa, “A budget constrained scheduling algorithm
for workflow applications,” J Grid Computing, vol. 12, p. 665–679, 2014.

[37] R. Buyya, M. M. Murshed, D. Abramson, and S. Venugopal, “Scheduling
parameter sweep applications on global grids: a deadline and budget
constrained cost–time optimization algorithm,” Software: Practice and
Experience, vol. 35, 2005.

[38] H. Mehta, P. Kanungo, and M. Chandwani, “Ecogrid: a dynamically
configurable object oriented simulation environment for economy-based
grid scheduling algorithms,” in Proceedings of the Fourth Annual ACM
Bangalore Conference. Bangalore, India: Association for Computing
Machinery, 2011, pp. 1–8.

[39] V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget and deadline aware
e-science workflow scheduling in clouds,” IEEE Transactions on Parallel
and Distributed systems, vol. 30, no. 1, pp. 29–44, 2018.

[40] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, and A. El-Sayed, “Cost-
effective algorithm for workflow scheduling in cloud computing under
deadline constraint,” Arabian Journal for Science and Engineering,
vol. 44, no. 4, pp. 3765–3780, 2019.

[41] S. Gupta, R. S. Singh, U. D. Vasant, and V. Saxena, “User defined weight
based budget and deadline constrained workflow scheduling in cloud,”
Concurrency and Computation: Practice and Experience, vol. 33, no. 24,
p. e6454, 2021.

[42] M. Mattess, C. Vecchiola, S. K. Garg, and R. Buyya, “Cloud bursting:
Managing peak loads by leasing public cloud services,” Cloud Computing:
Methodology, Systems, and Applications, pp. 343–367, 2011.

[43] A. Iosup and D. Epema, “Grid Computing Workloads,” IEEE Internet
Computing, vol. 15, no. 2, pp. 19–26, Mar. 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5620891/

[44] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, Mar. 2013.

[45] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for
grid computing,” SIGMOD Rec., vol. 34, no. 3, p. 44–49, sep 2005.
[Online]. Available: https://doi.org/10.1145/1084805.1084814

[46] A. Wijewickrama, R. Wijayawardana, K. Ranasinghe, D. N. Ranasinghe,
K. P. M. K. Silva, and K. Karunanayaka, “Sciflow: A composable
framework for developing scientific workflows on hpc clusters,” in 2020
International Conference on Advanced Computer Science and Information
Systems (ICACSIS), 2020, pp. 275–284.

[47] C. Ramon-Cortes, P. Alvarez, F. Lordan, J. Alvarez, J. Ejarque,
and R. M. Badia, “A survey on the distributed computing stack,”
Computer Science Review, vol. 42, p. 100422, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000629

[48] Pegasus, “Pegasus WMS – Automate, recover and debug scientific
computations,” <https://pegasus.isi.edu/>. Access in 22 May, 2023.,
2022.

[49] G. Wainer and P. Mosterman, Discrete-Event Modeling and Simulation:
Theory and Applications, ser. Computational Analysis, Synthesis, and
Design of Dynamic Systems. CRC Press, 2018. [Online]. Available:
https://books.google.com.br/books?id=WQvzk7ZnwHkC

[50] W. F. C. Tavares, M. Roberto Miranda Assis, and E. Borin, “Quantifying
and detecting hpc resource wastage in cloud environments,” in
2021 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), 2021, pp. 41–46.

