
Improving the discovery and clustering of
three-dimensional protein patterns with OpenMP

Alejandro Valdés-Jiménez
Depto. Sistemas de Información

Universidad del Bı́o-Bı́o
Concepción, Chile

avaldes@ubiobio.cl

Miguel Reyes-Parada
CIBAP, Facultad de Ciencias Médicas

Universidad de Santiago de Chile
Santiago, Chile

miguel.reyes@usach.cl

Gabriel Nuñez-Vivanco
Dept. of Natural Sciences and Technology

University of Aysen
Aysén, Chile

gabriel.nunez@uaysen.cl

Fabio Durán-Verdugo
Depto. de Bioinfomática

Universidad de Talca
Talca, Chile

fduran@utalca.cl

Daniel Jiménez-González
Barcelona Supercomputing Center

Universitat Politecnica de Catalunya (UPC Barcelona Tech)
Barcelona, Spain

djimenez@ac.upc.edu

Abstract—The discovery of conserved three-dimensional (3D)
amino-acid patterns among a set of protein structures can be
useful, for instance, to predict the functions of unknown proteins
or for the rational design of multi-target drugs. There are several
applications that perform a three-dimensional search of patterns
in the structures of proteins. However, discovering conserved 3D
patterns in a set of proteins with no other baseline patterns
is a challenge. In this paper, we analyze and improve a state-
of-the-art algorithm, 3D-PP, that implements this discovery. In
this algorithm, the 3D patterns are detected and clustered using
the root mean square deviation value, measured among each
pair of 3D patterns (topological variability indicator). Even
when 3D-PP deals with this task, the simultaneous processing
of high amounts of proteins becomes a computational challenge
with the size and the number of proteins to be evaluated. In
this work, we present and analyze different shared memory
parallel strategies of 3D-PP, using OpenMP. Those strategies
improve the overall performance of the original implementation
by reducing parallel load unbalance among threads and overall
increasing parallelism. The results show significant performance
improvements compared to the original version, achieving up to
13x speedup for a small number of proteins and 17.7x for a
larger set.

Index Terms—OpenMP, performance optimization, three-
dimensional protein patterns, drug-design

I. INTRODUCTION

Polypharmacology, which refers to the ability of a molecule

to simultaneously interact with multiple target proteins, has

emerged as an alternative to the classical “one-drug-one-

target” drug discovery process paradigm [3], [4]. This is based

on the observation that robust pathological phenotypes, such

as those observed in psychiatric or cardiovascular diseases,

often result from a complex network of molecular events rather

than changes in the function of a single target. Therefore, it

is expected that acting on several nodes of these biological

networks should lead to compounds with better profiles re-

garding both efficacy and side effects as compared to more

selective drugs [5], [6]. One plausible approach to searching

for polypharmacological agents is to detect similar/conserved

binding sites in different proteins, where one drug might

bind [7] [8]. However, this is not an easy task, particularly

when the drugs are aimed to act at proteins with highly

diverse structures and functions. In this context, 3D-PP was

developed, an algorithm for the discovery and recognition of

all similar 3D amino acid patterns among a set of protein

structures [1]. This algorithm does not require any previous

structural knowledge about ligands and/or protein sequence

similarity. Thus, 3D-PP is a reliable and flexible tool to iden-

tify conserved structural motifs (3D-patterns) among a wide

range of different proteins, which could be relevant for the

discovery of novel polypharmacological drugs. In this work, a

parallel version of the 3D-PP algorithm is presented using the

OpenMP [2] parallel programming model for shared memory.

This version: i) significantly improves performance over the

original version; ii) is aware of the possible load imbalance, the

NUMA architecture of the system, and the possible overheads

of data sharing and synchronization between threads, and iii)

is open source (available at https://gitlab.com/amvaldesj/3d-

pp). In Section II, details about the 3D-PP are described and

an analysis of the sequential version profile is detailed. The

parallel algorithms are presented in Section III and finally, in

Section IV, the performance results of the presented parallel

version of 3D-PP are shown.

II. 3D-PP ALGORITHM

In this section, the main functions of 3D-PP are briefly

described, as well as the results of the analysis of the

sequential baseline version. Algorithm 1 presents the main

structure of 3D-PP. Each pdb file is parsed getting all the

chains (all chains). Each of these chains is then processed,

generating a list of patterns (all patterns), each with its list

of sites found. This list of patterns is filtered, leaving only

those that meet the minimum coverage percentage. Finally, the

sites of each pattern are clustered and the results are saved.

The following parameters are received: i) Spacing Threshold:

This value is used to create the virtual grid of coordinates

and defines, how broad and rigorous will be the exploration

of 3D-patterns; ii) Radius Threshold: This term represents

the limits of the size of the 3D-patterns searched; iii) RMSD
Threshold: This value is used for clustering the 3D-patterns

detected and represents a measure of structural variability for

the sites composing each 3D-pattern; iv) Minimum Coverage:

This value allows displaying only 3D-patterns with a given

coverage; v) Displacement Threshold: This value is used to

expand the size and shape for the exploration of the 3D-

patterns; vi) Minimum number of residues: This value defines

the minimum number of residues that make up a site; vii) List
of pdb files: The list of the pdb files.

Algorithm 1 Main function.
1: function MAIN(params)
2: pdbs← load pdb ids(params)
3: all chains← parses pdbs(pdbs, params)
4: all patterns← process chains(params, all chains)
5: all patterns← filter patterns(params, all patterns)
6: all patterns← cluster sites(params, all patterns)
7: save parameters(params)
8: save results(params, all patterns)

A. Parsing the proteins

This function is responsible for parsing each of the protein

structures to obtain information about the chains contained

in them. Algorithm 2 shows this process. A set of protein

identifiers and parameters defined by the user are received

for the processing, returning a list of chains (all chains).

Assuming that N is the number of proteins to analyze, this

algorithm has a complexity of O(N).

Algorithm 2 Parse PDB files.
1: function PARSES PDBS(pdbs, params)
2: all chains← []
3: for pdb in pdbs do
4: chains← parse pdb(params, pdb)
5: all chains.add(chains)

6: return all chains

B. Processing the chains

Once the list of all the chains is obtained (all chains), each

one of them is processed identifying all the possible sites

(arrangements of structurally related amino acids). For each

chain the following actions are carried out: i) a kdtree [9]

structure is generated, used to search for neighboring atoms

in 3D space; ii) the geometric center of each amino acid

is calculated; iii) the coordinates of the limits x, y, z are

obtained (Figure 1A); iv) the grid of virtual coordinates is

generated (Figure 1B), the sites are searched from each virtual

coordinate, and their pattern is generated; v) the patterns in

the chain are merged, and vi) these patterns are merged with

the patterns found in the other chains. Finally, a list of the

patterns discovered (all patterns) with its sites is returned. If

N is the number of chains found in all proteins, this algorithm

has a complexity of O(N). Algorithm 3 shows this function.

Every valid site must contain at least four amino acids. A

list of amino acids is defined for each site. Then, the sites

are transformed into a representation of components through

a sorted alphabetical string which contains the one-letter code

of the amino acid and the number of occurrences of the

same amino acid (e.g., the site CYS15:CYS24:CYS30:HIS34
is transformed into the pattern 3C1H).

Algorithm 3 Process chains.
1: function PROCESS CHAINS(params, all chains)
2: all patterns← []
3: for chain in all chains do
4: chain.kdtree← create kdtree(chain)
5: calc geom center of residues(chain)
6: calc max min coordinates(chain)
7: find sites(chain, params)
8: merge patterns in chain(chain)
9: merge all patterns(chain.patterns, all patterns)

10: return all patterns

Fig. 1. A Grid of virtual Coordinates (GvC) is generated for each chain.
From each virtual coordinate, the sites are searched.

C. Finding/discovering the sites

With the limit values in each dimension (minimum and max-

imum), the number of points to be generated in the virtual grid

(maxux, maxuy, and maxuz) is calculated. This calculation uses

the params.step parameter to indicate the distance between the

points. Next, the nearby residues (at params.radius distance)

are searched for each virtual coordinate. Each site must have a

minimum of residues (params.nres) and must not be repeated

(Algorithm 4). If MAXUX, MAXUY, and MAXUZ are the num-

ber of points on the x, y, and z axes, respectively, then this al-

gorithm has a complexity of O(MAXUX×MAXUY×MAXUZ).

Algorithm 4 Find sites.
1: function FIND SITES(chain, params)
2: maxux = (chain.xmax− chain.xmin)/params.step + 1
3: maxuy = (chain.ymax− chain.ymin)/params.step + 1
4: maxuz = (chain.zmax− chain.zmin)/params.step + 1
5: for (ux = 0;ux < maxux;ux + +) do
6: for (uy = 0;uy < maxuy;uy + +) do
7: for (uz = 0;uz < maxuz;uz + +) do
8: x← chain.xmin + params.step ∗ ux
9: y ← chain.ymin + params.step ∗ uy

10: x← chain.zmin + params.step ∗ uz
11: pt← {x, y, z}
12: list← search neighbors(chain.kdtree, pt, params.radius)
13: if (list.size() >= params.nres) then
14: new site← create site(list)
15: if (new site not in chain.sites) then
16: chain.sites.add(new site)

D. Clustering the sites

The last step is clustering the sites in each pattern. Before

proceeding with the clustering, it is necessary to filter the

list of all the patterns and leave only those that meet the

minimum percentage of coverage (percentage of proteins in

which a pattern appears). Depending on this parameter (Min-
imum Coverage), which is defined by the user, the number

of patterns to cluster can decrease considerably. Algorithm 5

shows how the clustering is done. The list of filtered patterns

(all patterns) with its sites is received and then each site of

each pattern is evaluated. In order to get identical results on

each run, the sites of each pattern are ordered by site-string,
chain, and protein id. For example, if you change the order

of the list of the same entered proteins, the results should not

be different. If the pattern does not have a cluster or any site

does not match a cluster, a cluster is created and added to

the pattern. A unique cluster name is generated and the site

is added to this cluster as a base site. However, if the pattern

has at least one cluster, then it is necessary to find which

cluster the site matches (the first match). To determine if a site

matches a cluster, the root-mean-square deviation (rmsd) [10]

between the site and the base site of the cluster is measured,

and if the value is less than or equal to the RMSD Threshold
(params.diffrmsd) parameter, the site is added to that cluster.

Finally, each pattern has its sites clustered. If N is the number

of patterns, M is the maximum number of sites in a pattern,

and P is the maximum number of cluster in a pattern, then

the complexity of this algorithm is O(N×M×P).

Algorithm 5 Cluster the sites.
1: function CLUSTER SITES(params, all patterns)
2: for pattern in all patterns do
3: sort(pattern.sites)
4: for site in pattern.sites do
5: matched← false
6: nclu← pattern.clusters.size()
7: for (c = 0; c < nclu and matched == false; c + +) do
8: site base← pattern.clusters[c].sites[0]
9: rmsd← rmsd(site, site base)

10: if rmsd <= params.diffrmsd then
11: pattern.clusters[c].sites.add(site)
12: matched← true
13: if matched == false then
14: cluster.name← concat(pattern.name, nclu + 1)
15: cluster.sites← []
16: cluster.sites.add(site)
17: pattern.clusters.add(cluster)

18: return all patterns

E. Protein data

The protein data set has 46 proteins [1]. Figure 2(a) shows

each protein and its number of chains. It is possible to see

that there is an irregular distribution of the chains among

the proteins, some proteins have only one chain but others

have more than forty chains. In addition, proteins can be

globular in shape, while others can be elongated (fibrous). The

same irregularity is observed in the number of sites found in

each chain of the protein set (Figure 2(b)). This is because

the number of amino acids that make up each chain is also

variable. If a chain has few amino acids, then the number of

virtual coordinates to generate (see Figure 1) for the search of

sites can be few too, however, if the number of amino acids

increases, then the number of virtual coordinates probably also

increases. If it is considered that the depth of the search can be

managed by the user through the Spacing Threshold parameter,

then the greater the number of virtual coordinates that are

generated, the greater the amount of time required to complete

the analysis. However, not only the number of amino acids

that make up the chain can influence the processing time, but

also the three-dimensional shape of the protein, they can be

globular or fibrous in shape. It is important then to consider

that an incorrect data distribution strategy could cause a load

imbalance and affect the performance of the parallel program.

(a) Distribution of the number of chains.

(b) Distribution of the number of sites found in the 718 chains.

Fig. 2. Number of chains and sites found in the set of 46 proteins.

F. Baseline version profiling

The original version of 3D-PP was developed with the

Python programming language (version 2.7) using the thread-
ing module as a parallel strategy, which is well known to

use the GIL [17] that limits exploit parallelism for CPU-

bound programs. A new sequential version in C/C++ based

on the original program has been developed and is used

in this work as the baseline version. Table I shows the

profiling details (performed on the IBM Power9 cluster us-

ing the SLURM batch queuing system, see Section IV-A)

of the applications using a standard input data set. The

table shows the elapsed execution time of the main func-

tions and their percentage of the total execution time of

the application. For processing chain (process chains()), with

more than 99% of the execution time, the information of

their main called functions (find sites(), merge all patterns(),
and merge patterns in chain()) are included. It is possi-

ble to see that the find sites() function covers the high-

est percentage (≈90%) of the total elapsed time, next, the

merge all patterns() function covers ≈7.7%, and finally the

function merge patterns in chain() covers ≈1.2%. All these

functions are part of the process chains() function (Algorithm

3). If we add the percentages of time used for the functions

find sites(), create kdtree(), calc geom center of residues(),

calc max min coordinates(), merge patterns in chain(), and

merge all patterns(), we have approximately 99% of the total

elapsed time. In this algorithm, the processing of each chain

can be parallelized. Many of their operations are indepen-

dent, however, they share the all patterns variable where the

patterns found in each chain are consolidated, specifically in

the function merge all patterns(). Therefore, access to this

variable must also be synchronized. An important detail is the

time (≈7.7%) used to consolidate the patterns found, since

this percentage of time is not fully parallelizable, which cer-

tainly affects performance expectations. In addition, although

parses pdbs() function (Algorithm 2) is not relevant for the

profiling shown, it may be important to consider it for inputs

with a large number of proteins. Finally, clustering in each

pattern can be done completely independently and in parallel,

there is no data access restriction. In this way, in the event of

having to perform clustering on a large number of patterns,

the parallelization of this algorithm would improve the overall

performance.

TABLE I
BASELINE PROFILE. 46 PROTEINS EVALUATED. USER PARAMETERS:

Spacing Threshold=0.8Å, Radius Threshold=3Å, RMSD Threshold=5.0Å,
Min. Coverage=80%, Displacement Threshold=0, Min. # of residues=4.

functions elapsed time (seconds) % of the total time

main() 463.1 100

process chains() 460.2 99.2
find sites() 418.4 90.3

merge all patterns() 35.9 7.7

merge patterns in chain() 5.9 1.2

III. PARALLEL ALGORITHMS

In this section, we present different OpenMP parallelization

of the most time-consuming function, process chain(), but

also for those potential functions that may become a speedup

limitation for large data sets (parses pdbs()) or large number

of patterns to cluster or process (cluster sites()), once the

process chain is properly parallelized. Function find sites()
was not parallelized since the parallelization is done at

process chains() function level (caller), allowing good load

balance and reducing extra synchronization and scheduling

overheads due to very fine grain parallelism.

A. Baseline Proposal

Algorithms 6, 7, and 8 show the parallelized versions

of the parses pdbs(), process chains(), and cluster sites()
algorithms, respectively. The parallel function parses pdbs()
(Algorithm 6) processes each protein in parallel and indepen-

dently. A shared chain thd array of size params.nthreads is

used to temporarily store a list of chains per thread, necessary

to avoid synchronization overhead on reducing chains over

a shared variable all chains in the parallel region. After

parallel processing is complete, all chains are reduced se-

quentially into the all chains array. A #pragma omp parallel
num threads(params.nthreads) directive is used to define the

parallel work team, and then, the pdb ids are distributed to this

team using the directive #pragma omp for schedule(runtime).
The number of threads to use and the specific scheduler are

defined at the runtime. The possibility of having a false sharing

in the chains thd array update is not significant since we un-

derstand that what will be updated are the lists associated with

each thread, which will not affect the consecutive positions of

the chains thd array, which could be in the same cache line.

Algorithm 6 Parallel parse of PDB files. Baseline version.
1: function PARSES PDBS(pdbs, params)
2: all chains← []
3: chains thd[params.nthreads]
4: #pragma omp parallel num threads(params.nthreads) private(id, i, tmp chains)

shared(chains thd)
5: id← omp get thread num()
6: #pragma omp for schedule(runtime)
7: for (i = 0; i < pdbs.size(); i + +) do
8: tmp chains← parse pdb(params, pdbs[i])
9: chains thd[id].add(tmp chains)

10: for (id = 0; id < params.nthreads; id + +) do � reduction.
11: all chains.add(chains thd[id])

12: return all chains

The parallel function process chain() (Algorithm 7) dis-

tributes the chains stored in the all chains array to different

threads to be executed independently. Each thread will work

on its own set of chains, temporarily storing its patterns

in the patterns thd array. After performing all operations

on the chains, all found patterns are reduced sequentially

to the all patterns array outside the parallel region, avoid-

ing synchronization overhead when updating that array. The

number of threads used and the specific scheduler are also

defined at runtime. Function cluster sites() is also paralleliz-

able (see Algorithm 8). Each pattern, with its sites, can be

clustered independently. Only the #pragma omp parallel for
num threads(params.nthreads) schedule(runtime) directive is

used to define the number of threads and the scheduler. Same

to the others algorithms, the number of threads to use and the

specific scheduler are defined at the runtime.

Algorithm 7 Parallel process of chains. Baseline version.
1: function PROCESS CHAINS(params, all chains)
2: all patterns← []
3: patterns thd[params.nthreads]
4: #pragma omp parallel num threads(params.nthreads) private(id, c)

shared(all chains)
5: id← omp get thread num()
6: #pragma omp for schedule(runtime)
7: for (c = 0; c < all chains.size(); c + +) do
8: all chains[c].kdtree← create kdtree(all chains[c])
9: calc geom center of residues(all chains[c]))

10: calc max min coordinates(all chains[c])
11: find sites(all chains[c], params)
12: merge patterns in chain(all chains[c], params)
13: patterns thd[id].add(all chains[c].patterns)

14: for (id = 0; id < params.nthreads; id + +) do � reduction.
15: merge all patterns(patterns thd[id], all patterns)

16: return all patterns

B. Overlapping Computational Unbalance With Final Reduc-
tion

Previous baseline parallel proposals of parses pdbs() and

process chains() presented important load balance problems

(later evaluated) when distributing chains and their processing.

Algorithm 8 Parallel cluster of sites. Baseline version.
1: function CLUSTER SITES(params, all patterns)
2: #pragma omp parallel for num threads(params.nthreads) schedule(runtime)

private(i, n sites, s, site, matched, nclu, c, site base, rmsd, cluster)
shared(all patterns)

3: for (i = 0; i < all patterns.size(); i + +) do
4: sort(all patterns[i].sites)
5: n sites← all patterns[i].sites.size()
6: for (s = 0; s < n sites; s + +) do
7: site← all patterns[i].sites[s]
8: matched← false
9: nclu← all patterns[i].clusters.size()

10: for (c = 0; c <= nclu and matched == false; c + +) do
11: site base← all patterns[i].clusters[c].sites[0]
12: rmsd← rmsd(site, site base)
13: if rmsd <= params.diffrmsd then
14: all patterns[i].clusters[c].sites.add(site)
15: matched← true
16: if matched == false then
17: cluster.name← concat(all patterns[i].name, nclu + 1)
18: cluster.sites← []
19: cluster.sites.add(site)
20: all patterns[i].clusters.add(cluster)

21: return all patterns

This means that the sequential reduction performed by the

master thread has to pay for all that balance before it starts

sequentially processing the results of the parallelized loop. For

this reason, it was decided that threads did not have to stop

at a global synchronization and perform a reduction in the

global variable after the loop ended. On the one hand, doing

it outside the loop is to avoid synchronization at each iteration,

and on the other hand, the threads that have been able to finish

their work will be able to make their contribution to the global

variable while there are others that are still doing calculations.

The reduction operation is performed with a critical section

to avoid data race conditions. These new versions of the

parses pdbs() and process chain() functions (Algorithms 9

and 10, respectively) uses the critical section to try to reduce

the time of its sequential parts, specifically in the reduction

of the chains and the patterns. The nowait clause has been

used in the loop to avoid synchronization between threads.

This way, if one thread finishes its work before the others,

it can continue to reduce its data. The parallel cluster sites()
function remained the same (Algorithm 8).

Algorithm 9 Parallel parse of PDB files. Overlapping Com-

putational Unbalance.
1: function PARSES PDBS(pdbs, params)
2: all chains← []
3: chains thd[params.nthreads]
4: #pragma omp parallel num threads(params.nthreads) private(id, i, tmp chains)

shared(chains thd, all chains)
5: id← omp get thread num()
6: #pragma omp for nowait schedule(runtime)
7: for (i = 0; i < pdbs.size(); i + +) do
8: tmp chains← parse pdb(params, pdbs[i])
9: chains thd[id].add(tmp chains)

10: #pragma omp critical � reduction.
11: all chains.add(chains thd[id].get chains)
12: return all chains

IV. PERFORMANCE EVALUATION

This section presents the experimental setup, the perfor-

mance of the new parallel versions of 3D-PP, and details

Algorithm 10 Parallel process of chains. Overlapping Com-

putational Unbalance.
1: function PROCESS CHAINS(params, all chains)
2: all patterns← []
3: patterns thd[params.nthreads]
4: #pragma omp parallel num threads(params.nthreads) private(id, c)

shared(all chains, patterns thd, all patterns)
5: id← omp get thread num()
6: #pragma omp for nowait schedule(runtime)
7: for (c = 0; c < all chains.size(); c + +) do
8: all chains[c].kdtree← create kdtree(all chains[c])
9: calc geom center of residues(all chains[c]))

10: calc max min coordinates(all chains[c])
11: find sites(all chains[c], params)
12: merge patterns in chain(all chains[c], params)
13: patterns thd[id].add(all chains[c].patterns)

14: #pragma omp critical � reduction.
15: merge all patterns(patterns thd[id], all patterns)
16: return all patterns

of the different loop schedulers tested (static, static,1, and
dynamic,1).

A. Experimental Setup

The experiments have been carried out on one node of the

IBM Power9 cluster [16] available at the BSC (Barcelona

Supercomputing Center). One compute node is a NUMA

system with 2 x IBM Power9 8335-GTH @2.4GHz with

20 cores in each socket and total main memory of 512GB,

with 32KB of L1 cache, 512 KB of L2 cache, and 10

MB of L3 cache that is shared by each pair of cores. For

local storage, it has 2 x 1.9TB SSDs and uses the GPFS

cluster file system via one fiber link 10 GBit to distribute

and manage data across multiple nodes. Our application has

been implemented in C++11 and has been compiled with

gcc++ 10.1.0 version, with the full support of OpenMP 5.0

parallel programming model. The compilation includes the -
O3 -mcpu=power9 -mtune=power9 flags optimization options,

allowing maximum optimization and automatic vectorization,

and -fopenmp flag. Using the -fopt-info-loop-optimized and -
fopt-info-vec-optimized developer options [15] it was possible

to see some loop vectorizations. The operating system is

Red Hat Enterprise Linux Server 7.5 alternative. For each

experiment, at least 3 runs have been performed and the

mean time is used. Executions have been done using a batch

SLURM queue system version 21.08.8-2, with OMP PLACES

equal to cores and OMP PROC BIND equal to spread to

allow maximum performance in the NUMA system. The

results of parallel versions have been compared with the

sequential baseline C/C++ version implemented. Two sets

of proteins have been used: 46 structures [1] containing the

PROSITE Zinc finger C3H1-type motif [11] and a subset of

8,344 from FDA-approved human drugs [12]. With the user

parameters: Spacing Threshold=0.8Å, Radius Threshold=3Å,

RMSD Threshold=5.0Å, Displacement Threshold=0, Min. # of
residues=4, Min. Coverage=80% for the set of 46 proteins, and

Min. Coverage=70% for the set of 8,344 proteins.

B. Results

The parallel version has been validated and obtains the

same results in terms of 3D patterns found, clusters, and

sequence alignments. Up to 40 threads were used (one for each

physical core) since the efficiency, and even the performance,

worsened if we increased the number of threads per core.

Figures 3(a) and 3(b) show the performances obtained for

both sets of proteins, by both versions and using the static,

static,1, and dynamic,1 schedule policies. Solid lines represent

elapsed times and dashed lines represent speedups. We can

see that the second parallel approach (reduction-*) shows

much better performance on both sets of proteins and on all

three schedulers. The dynamic,1 scheduler always shows better

performance than the static variants, although, in the smaller

set of proteins, the difference was much more significant. In

general, the performances of the static variants are similar.

Table II shows the general results using only 40 threads. It

is possible to see, for the small set of proteins (46), how

the second parallel approach using the dynamic,1 scheduler is

≈2.0 times faster than the first parallel approach, going from

6.7x to 13.0x speedup. With this acceleration, it was possible

to reduce the sequential time from 402.4 to 30.9 seconds. For

the larger set of proteins (8,344), the difference in speedup

using the dynamic,1 scheduler was more significant, it was ≈4

times faster, going from 4.2x to 17.7x speedup. The sequential

version elapsed time was reduced from 10,094.2 to 571.3

seconds. Furthermore, it can be seen how the performance

of both parallel versions using the static scheduling variants

is very similar. For the purpose of completing the results,

we also show results using guided,1. Although in some cases

it performs better than static-* versions, dynamic,1 schedule

policies show better load balance and performance.

(a) 46 proteins.

(b) 8,344 proteins.

Fig. 3. Performances of both versions for the two sets of proteins. Up to
40 threads are used. Elapsed times and speedups are displayed for the static,
static,1, and dynamic,1 schedulers.

TABLE II
GLOBAL RESULTS USING 40 THREADS AND DIFFERENT SCHEDULERS.

Set of proteins 46 8,344

Sequential baseline C/C++ time 402.4 secs 10,094.2 secs

Versions secs acc secs acc

Baseline Proposal (static) 66.5 6.0x 2,542.2 4.0x

Baseline Proposal (static,1) 68.8 5.8x 2,455.3 4.1x

Baseline Proposal (dynamic,1) 59.6 6.7x 2,422.0 4.2x
Baseline Proposal (guided,1) 65.3 6.1x 2,706.7 3.7x

Overlapping Computational Unbalance
With Final Reduction (static)

37.0 10.9x 647.8 15.6x

Overlapping Computational Unbalance
With Final Reduction (static,1)

36.2 11.1x 617.9 16.3x

Overlapping Computational Unbalance
With Final Reduction (dynamic,1)

30.9 13.0x 571.3 17.7x

Overlapping Computational Unbalance
With Final Reduction (guided,1)

33.7 11.9x 753.4 13.3x

C. Load Balance Analysis

To understand why the dynamic,1 scheduler showed better

performance than the static schedulers, software instrumen-

tation was performed using the different schedulers. Forty

threads and the set of 46 proteins were used. Extrae [13] 4.0

and Paraver [14] 4.10 tools are used to obtain traces and then

analyze them. Figures 4(a) and 4(b) show the captured traces

of the two parallel versions. The images show a timeline for

each running thread (each horizontal line represents a thread).

The different colors show the states of the threads (Figure

4(c) shows the color map). A thread can be executing some

function or remain idle. It is possible to see the different func-

tions (parser pdbs(), find sites(), merge patterns in chains(),
and merge all patterns()) running in the threads. Also, when

worker threads join the master thread (OMP worksharing join).

The timelines show the same scale (≈64 seconds), from the be-

ginning to the end of the process, to appreciate the differences

between both approaches. The workload distribution is better

than in other schedule policies, but there are a few threads that

still have a larger workload than others, reducing the overall

speedup. There are some exceptions due to the fact that some

chains are very large and therefore the find sites() function

requires more time. This situation affects significantly the per-

formance of the first parallel version because the final sequen-

tial reduction of the patterns (merge all patterns() function)

does not start until all threads finish their work (find sites()
function). This is clearly reflected in Figure 5(a), where a

large amount of synchronization (red bars) is performed. The

second parallel version addresses this problem by parallelizing

the final reduction (merge all patterns() function) across all

threads. Figure 5(b) shows how the synchronization times have

been reduced considerably (red bars). However, even though

the execution time is reduced, the characteristics of the chains,

size, and shape (see Section II-E), still have a negative effect

on performance.

V. CONCLUSION AND FUTURE WORK

3D-PP, unlike other applications, is an algorithm that allows

discovering and clustering three-dimensional patterns of amino

acids in a set of proteins, without the need to define a known

(a) base-dynamic,1

(b) reduction-dynamic,1

(c) legend

Fig. 4. Traces of both version using the dynamic,1 scheduler. Forty threads
are used. Main functions are shown.

(a) base-dynamic,1

(b) reduction-dynamic,1

Fig. 5. Traces of both version using the dynamic,1 scheduler. Forty threads
are used. The running state (blue bars) and synchronization state (red bars)
are shown.

search pattern. Thus, 3D-PP is a flexible tool to identify

conserved structural motifs among a wide range of different

proteins, which could be relevant for the discovery of new

polypharmacological drugs. Several algorithms that make up

3D-PP have great potential for parallelism, in some cases,

it is embarrassing parallelism. However, the workload per

iteration can vary greatly, and that means that the imbalance

can significantly affect the final speedup. To avoid this, we

have analyzed different types of schedules to favor different

granularities that allow both statically and dynamically to

improve the imbalance. On the other hand, having to perform a

global reduction of results, different reduction strategies have

been explored together with the possibility of avoiding global

synchronizations in parallelized loops. All this has led to

obtaining, for a small number of proteins (46) an acceleration

of 13x and for a larger set (8,344) of proteins an acceleration

of 17.7x. In this work, we have focused on the performance

in a node with shared memory, as a baseline work of the

distributed and hybrid memory version that is currently being

designed and developed.

ACKNOWLEDGMENT

This research was funded by DICYT-USACH

grant 5392102RP-AC and the Fondo Nacional de

Desarrollo Cientı́fico y Tecnológico (FONDECYT)

grants 1191133, Proyecto Fondecyt (Chile) 1220656

(MR-P), and by the Spanish Government (Grants

PCI2021-121964 - TEXTAROSSA, PID2019-107255GB-

C21/AEI/10.13039/501100011033, PID2019-107255GB-C22

- UPC-COMPUTACION DE ALTAS PRESTACIONES VIII

and CEX2021-001148-S), and by Generalitat de Catalunya

(2021 SGR 01007). Additional tests were performed in the

cluster obtained with the grant CONICYT-FONDEQUIP-

EQM160063.

REFERENCES

[1] A. Valdés-Jiménez, J.-L. Larriba-Pey, G. Núñez-Vivanco, and M. Reyes-
Parada, “3D-PP: A Tool for Discovering Conserved Three-Dimensional
Protein Patterns,” International Journal of Molecular Sciences, vol. 20,
no. 13, p. 3174, Jun. 2019, doi: 10.3390/ijms20133174

[2] L. Dagum and R. Menon, “OpenMP: an industry standard API
for shared-memory programming,” in IEEE Computational Science
and Engineering, vol. 5, no. 1, pp. 46-55, Jan.-March 1998, doi:
10.1109/99.660313

[3] J.-L. Medina-Franco, M.-A. Giulianotti, G.-S. Welmaker, R.-A.
Houghten, “Shifting from the single to the multitarget paradigm in drug
discovery”, Drug Discovery Today, Volume 18, Issues 9-10, 2013, Pages
495-501, ISSN 1359-6446, doi: 10.1016/j.drudis.2013.01.008.

[4] B. Ravikumar, T. Aittokallio, “Improving the efficacy-safety bal-
ance of polypharmacology in multi-target drug discovery”, Ex-
pert Opinion on Drug Discovery, 2018, 13:2, 179-192, doi:
10.1080/17460441.2018.1413089

[5] M. L. Bolognesi, A. Cavalli, “Multitarget Drug Discovery
and Polypharmacology”, ChemMedChem 2016, 11, 1190, doi:
10.1002/cmdc.201600161

[6] A. Hopkins, “Network pharmacology: the next paradigm in drug dis-
covery”, Nat Chem Biol 4, 682–690 (2008). doi: 10.1038/nchembio.118

[7] M. Naderi and others, “Binding site matching in rational drug design:
algorithms and applications”, Briefings in Bioinformatics, Volume 20,
Issue 6, November 2019, Pages 2167–2184, doi: 10.1093/bib/bby078

[8] J. Konc, “Binding site comparisons for target-centered drug discov-
ery”, Expert Opinion on Drug Discovery, 2019, 14:5, 445-454, doi:
10.1080/17460441.2019.1588883

[9] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching“, Commun. ACM 18, 9 (Sept. 1975), 509–517. doi:
10.1145/361002.361007

[10] E. Coutsias and M. Wester, “RMSD and Symmetry”, Comput. Chem.
2019, 40, 1496-1508. doi: 10.1002/jcc.25802

[11] Zinc finger C3H1-type profile. https://prosite.expasy.org/PDOC50103
(accessed Aug. 24, 2023).

[12] DrugBank. https://go.drugbank.com/releases/latest (accessed Aug. 24,
2023).

[13] Extrae instrumentation package. http://tools.bsc.es/extrae (accessed Aug.
24, 2023).

[14] Paraver: A Tool to Visualize and Analyze Parallel Code.
https://tools.bsc.es/paraver (accessed Aug. 24, 2023).

[15] GCC Developer Options. https://gcc.gnu.org/onlinedocs/gcc/Developer-
Options.html (accessed Aug. 24, 2023).

[16] BSC IBM Power9 cluster. https://www.bsc.es/user-support/power.php
(accessed Aug. 24, 2023).

[17] Global Interpreter Lock. https://wiki.python.org/moin/GlobalInterpreterLock
(accessed Aug. 24, 2023).

