
Reverse Time Migration with Lossy and Lossless
Wavefield Compression

Carlos HS Barbosa
Department of Civil Engineering

Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil

c.barbosa@nacad.ufrj.br

Alvaro LGA Coutinho
Department of Civil Engineering

Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil

alvaro@nacad.ufrj.br

Abstract—Seismic imaging techniques like Reverse Time Mi-
gration (RTM) are time-consuming and data-intensive activities
in the field of geophysical exploration. The computational cost
associated with the stability and dispersion conditions in the
discrete two-way wave equation makes RTM time-consuming.
Additionally, RTM is data-intensive due to the need to manage a
considerable amount of information, such as the forward prop-
agated wavefields (source wavefield), to build the final migrated
seismic image according to an imaging condition. In this context,
we introduce lossy and lossless wavefield compression for parallel
multi-core and GPU-based RTM to alleviate the data transfer
between processor and disk. We use OpenACC for enabling
GPU parallelism and the ZFP library aligned to decimation
based on the Nyquist sampling theorem to reduce storage. We
study experimentally the effects of wavefield compression for
both GPU-based and optimized OpenMP+vectorization RTM
versions. Multi-core and GPU-based RTM have been linked to the
ZFP library to compress the source wavefield on-the-fly once it
has been decimated according to the Nyquist sampling theorem
to calculate the imaging condition. This approach can reduce
drastically the persistent storage required by the technique.
However, it is essential to understand the impact of using
compressed wavefields on the migration process that builds the
seismic image. In this context, we show how much storage can
be reduced without compromising the seismic image’s accuracy
and quality.

Index Terms—Seismic imaging, High-performance Computing,
Reverse Time Migration, OpenMP/OpenACC, Compression

I. INTRODUCTION

Reverse Time Migration (RTM) is a depth seismic migration

technique that provides a reliable high-resolution representa-

tion of the Earth’s subsurface useful for exploring hydrocar-

bons [10]. The classical RTM is based on the two-way wave

equation and an imaging condition [21]. Two major problems

related to its algorithm developments are defining strategies to

deal with the huge amount of information demanded by the

forward-propagated (source) wavefield solution and providing

efficient and portable codes for the main available platforms

in the academy and industry. The source wavefield must be

accessed backward in time during the backward-propagated

(receiver) wavefield calculation to build the imaging condition.

Such requirement forces the source wavefield storage, which

is constantly exchanged between CPU/GPU and memory, to

update the solution over space and time and calculate the

imaging condition. Moreover, solving the governing wave

equations of RTM by numerical methods is computationally

intensive due to the number of operations to update the grid

points. For instance, using the FDM to discretize the two-way

isotropic acoustic wave equation demands a different number

of operations per grid point, depending on the discretization

order.

RTM is classified as a time-consuming and data-intensive

technique [24], [26], [30], [31]. From a time-consuming view-

point, RTM algorithms need to be developed to take full

advantage of all computer hardware technologies, such as

Central Processing Units (CPUs) equipped with multi-cores

[31]–[33], graphic processing units (GPUs) [24], [26], [30],

[32], and vector processors (VPs) [34]–[37] machines. On the

other hand, strategies to diminish input/output (I/O) related

to the source wavefield revolve mainly around full/partial

reconstruction techniques [16]–[19], [22], [31], [38]. Methods

for storing the source wavefield can take advantage of Nyquist

sampling theorem to decimate the temporal evolution of the

wavefield propagation [16], [18], [22]. This process can be

considered the simplest way to compress the source wavefield

[22], [39], [53]. Lossless/lossy compressors linked or not to

decimation techniques can also reduce even more the storage

demand. On top of that, careful use of lossy compressors does

not hamper the final seismic images [22], [31], [52].

Most scientific applications that use compression methods,

such as climate, cosmology, molecular dynamics, and fluid

dynamics simulations, apply them for further analyses like data

visualization [40]–[42]. Moreover, it is common to compress

scientific data to accelerate inter-GPU communications and

transmission between the CPU and GPU for collaborative

workflows [41], [52]. In the context of geophysical applica-

tions like RTM, compressing wavefields imposes significant

challenges due to the nature of the problem. The wavefield

simulation solution must be compressed and decompressed

on-the-fly to support the imaging condition calculation. Ad-

ditionally, the compressed wavefield must be stored and re-

trieved from disk as the information volume can reach tens of

petabytes for large-scale scenarios. This inherent characteristic

of the RTM problem increases the computational complexity

and presents coding challenges in managing wavefield storage.

In this context, we introduce RTM algorithms that consider

the lossy and lossless compression of the source wavefield so-

lution, which is also beneficial for the emerging heterogeneous

machines based on multi-CPU/GPUs. We describe and ana-

lyze RTM algorithms linked to decimation and compression

methods. In this sense, before storing the source wavefield,

RTM compresses it on-the-fly after its decimation for further

calculation of the imaging condition. The strategy reduces

the persistent storage required by the method. Besides, we

analyze how much is possible to reduce the source wavefield

storage and the quality of the seismic images in terms of

the difference to a reference solution. We also evaluate the

computational performance of the RTM algorithms linked to

compression methods for heterogeneous CPU/GPU machines

in terms of execution time, storage demand, and overhead.

We noted that in situations with high overheads due to the

time spent compressing the source wavefield if we choose an

adequate platform and a proper compression rate, it is possible

to reduce execution time and storage demand.

II. RELATED WORK

A. GPU implementations for RTM

The literature for RTM-based GPU implementation is vast

[24], [26], [30], [32], [33], [43]–[46], [50]. Most of the

work is based on CUDA implementations. Some of them

focus on the OpenACC library, looking for portability. For

instance, [24] implemented the seismic modeling and RTM

on single and multi-GPUs using a hybrid MPI+OpenACC

approach which aims to develop portable high-level directive-

based codes across heterogeneous platforms for seismic imag-

ing applications. Their main contributions show that seismic

applications can benefit from improvements in the OpenACC

programming models by controlling the GPU’s shared memory

and overlapping MPI communications with GPU computations

to improve computational performance.

Serpa et al. [26] evaluated three different computational

optimizations based on multicore and GPU architectures and

investigated their codes’ performance, energy efficiency, and

portability. The results show that computational implementa-

tions for GPUs architectures are more efficient than multicore

ones even the energy consumption been higher. However, it

exists a trade-off between performance, portability and energy

efficiency that should be consider on CUDA and OpenACC

based implementations. OpenACC programming is easier than

CUDA, however the authors argument that the user has to de-

fine how much loss of performance is acceptable for portable

codes.

B. Data compression and bufferization to mitigate I/O in
geophysical applications

Storage demand is also crucial for GPU-based RTM. In

this context, Liu et al. [43] propose RTM with RBC to

diminish migration algorithms’ storage demand, showing that

such a strategy benefits GPU implementations. The GPU

computational implementation was coded in CUDA and tested

for 2-D RTM applications. Sun and Fu [22] took advantage

of the Nyquist sampling theory and a compression technique

to store the wavefield at the Nyquist time step to reduce the

amount of information on their application. Kukreja et al.

[47] proposed a new approach that combines checkpointing

methods with error-bounded lossy compression for the Full

Waveform Inversion (FWI). The checkpointing methodology

decimates wavefield propagation for further compression using

the ZFP library. The authors concluded that their combined

checkpointing+compression methodology reduces data move-

ment, execution time, and peak memory. Huang et al. [54]

developed a hybrid lossy compression method (called HyZ)

and evaluated the compression ratio as well as the com-

pression/decompression speed for several lossy compression

algorithms (including HyZ, BR, SZx, SZ, SZ-Interp, ZFP,

etc.) within an OpenMP-based RTM framework. The authors

only compared the image qualities of a single RTM snapshot

and the stacked image for the BR and HyZ compressors.

Furthermore, they also concluded that HyZ improves the

overall RTM performance from 6.29× to 6.60× over their

original workflow.

Finally, Alturkestani et al. [50] present a non-intrusive

Multilayer Buffer System (MLBS) framework that aims to

maximize RTM I/O bandwidth in the presence of GPU

hardware accelerators. According to the authors, the MLBS

hides the RTM’s I/O overhead by asynchronously creating

opportunities for overlapping data motion from GPU to disk

and vice-versa (wavefield I/O) with computations of the wave

equation stencil [51].

III. CONTRIBUTIONS

Compressing the wavefield has been effectively employed

in geophysical applications, such as RTM and FWI [22], [43],

[47], [53], [54]. Specifically, the ZFP methodology remains

insufficiently explored in terms of image quality after com-

pression/decompression of the wavefield and computational

performance of the on-the-fly wavefield compression across

different platforms, including CPUs and GPUs. In this context,

this paper makes the following contributions:

• Introduction of on-the-fly lossy and lossless compression

methods to reduce the source wavefield storage of RTM

algorithms. The lossy and lossless compressors are based

on the decimation method and the ZFP methodology1.

• Providing a detailed algorithm description that can be

implemented on heterogeneous machines with CPU and

GPU hardware.

• Experimental studies of the effects of compressing the

source wavefield solution on the migration process that

builds the seismic image by applying the imaging condi-

tion.

• Evaluation of the computational performance of the RTM

algorithms linked to the compression methods in terms

of execution time, storage demand, and overhead. These

numerical experiments consider implementations in su-

percomputers equipped with CPU and GPU hardware.

1https://computing.llnl.gov/projects/zfp

IV. REVERSE TIME MIGRATION

Reverse Time Migration (RTM) is a depth migration tech-

nique based on the two-way wave equation and an imaging

condition [10], [20], [21]. Building the imaging condition

requires solving the wave equation twice. The first solution

is described (for an acoustic medium) by the second-order

partial differential equation:

∇2p (r, t)− 1

v2 (r)
∂2p (r, t)

∂t2
= f (t) δ(r− rs), (1)

where p is the pressure (also referred as source wavefield), v
the compressional wave velocity, r the spatial coordinates, t
the time in [0, T], f (t) is the seismic source at the position

r = rs, and δ is the Dirac delta function. The pressure p is

defined in a domain Ω ⊂ R
nsd , nsd = 2, 3. The second-

order differential equation (1) needs initial and boundary

conditions. A natural initial condition is to define p (r, 0) =
∂p (r, 0) /∂t = 0 for r ∈ Ω. Lastly, we set p (r, t) = 0 on

∂Ω ∈ R
nsd , where ∂Ω is the domain boundary.

The second solution is obtained by solving the following

equation:

∇2p̄ (r, τ)− 1

v2 (r)
∂2p̄ (r, τ)

∂τ2
= s (r, τ) δ(r− rr), (2)

where p̄ is the receiver wavefield, s (r, τ) is the seismogram

recorded at the receivers positions r = rr, and τ = T − t is

the reversal time evolution [11], where τ ∈ [0, T]. p̄ is also

defined in Ω ⊂ R
nsd , and corresponding initial, and boundary

conditions should be set.

Solving (1) and (2) in finite domains generates artificial re-

flections coming from the boundaries. Normally, it is common

to use additional equations to eliminate such artificial events.

Among the several options in the literature, the Convolutional

Perfectly Matched Layer (CPML) [13], [14] and the damping

factors for plane waves introduced by [15] are the most used.

Although unusual in wave propagation simulation studies,

the RBCs, first introduced by [16], can also be employed

in seismic imaging methods based on the two-way wave

equation, such as RTM and FWI [16]–[19].

Once we have the source and receiver wavefields, the

imaging condition can be calculated as:

I (r) =
∫ T

0
p (r, t) p̄ (r, τ) dt∫ T

0
[p (r, t)]2 dt

, (3)

where I (r) is called source-normalized convolutional imaging

condition [12]. The seismic imaging from (3) has the same

unit, scaling, and sign of the reflection coefficient [10].

V. DATA COMPRESSION

Data compression is an efficient strategy to reduce per-

sistent storage in seismic migration algorithms like RTM.

Compressing the data consists of converting an input data

stream into another one that has a smaller size, where the

stream can be a file on disk or a buffer on memory. There are

two classes of methods for data compression, which are the

lossy and lossless algorithms. If the numerical values are only

approximately represented after they have been decompressed,

the compression is called lossy. Otherwise, if the values are

represented exactly as the original data, it is called lossless

compression [7], [8]. There are several lossy and lossless

compressors such as Gzip [1], DEFLATE algorithm [3], ZLIB

[4], SZ library [5], MGARD library [6], TuckerMPI [2], ZFP

library [8] among others.

We have chosen the ZFP compressor, which is an open-

source C/C++ library for compressing integer and floating-

point data of multidimensional numerical arrays. The ZFP

compressor [7] operates on d−dimensional arrays (d ∈ [1, 4])
by partitioning them into blocks of 4d values. The blocks

are independently compressed/decompressed from each other.

Because of that, ZPF is recognized as one of the most effec-

tive high-speed lossy floating-point compressors. To achieve

high compression rates, ZFP uses lossy but optionally error-

bounded compression controlled by four different parame-

ters known as expert, fixed-rate, fixed-precision, and fixed-

accuracy modes. On the other hand, although bit-for-bit loss-

less compression of floating-point data is not always possible,

ZFP also offers an accurate near-lossless compression. For

that, we can use the reversible mode [8], [9].

VI. COMPUTATIONAL IMPLEMENTATION

The numerical discretization used to solve the acoustic wave

equations (1) and (2) are based on the non-staggered grid

scheme (NSG) [23]. The NSG is the most simple and popular

finite-difference numerical scheme used to discretize Partial

Differential Equations (PDEs) where each derivative can be

approximated using numerical operators obtained by Taylor

series expansions [23]. Applying a finite-difference scheme to

(1), that is 8th-order in space and 2nd-order in time, produces

the following discretization:

pnt+1
i,j,k = Ci,j,k[2b0+ (4)

4∑
m=1

bm(pnt

i+m,j,k + pnt

i−m,j,k + pnt

i,j+m,k

+ pnt

i,j−m,k + pnt

i,j,k+m + pnt

i,j,k−m)]

− 2pnt

i,j,k + pnt−1
i,j,k − fnt

i,j,k.

where the indexes i, j and k represent the directions (x, y, z),
nt is the temporal step, and p is the pressure. The matrix

Ci,j,k = (vi,j,kΔt/h)2, where vi,j,k is the velocity, and h =
Δx = Δy = Δz is the grid size. Lastly, bm are the finite

difference coefficients. Similar discretization can be obtained

for (2).

Discretizing the imaging condition (3) yields:

Ii,j,k =

∑Nt−1
nt=0 p̄nτ

i,j,k · pnt

i,j,k∑Nt−1
nt=0 pnt

i,j,k · pnt

i,j,k

, (5)

where · and ·
· represent the component-wise multiplication

(also known as Hadamard product) and division operations

for the (i, j, k)-th component of a vector, and nτ = Nt − nt

represents the discrete reversal time.

Therefore, the FDM discretization of the acoustic wave

equation leads to the discrete versions of the velocity field,

source wavefield, receiver wavefield, imaging condition, and

seismic source represented by the vectors v, p, p̄, I, and f ,

respectively. For the 3D case, the vectors v, I, p, and p̄ have

the dimension N = Nx×Ny×Nz , where Nx, Ny and Nz are

the number of grid points in each Cartesian direction. Lastly,

the seismic source f has dimension Nt for each shot, where

Nt = T/Δt.

Algorithm 1 shows computational implementation of RTM

which compress the source wavefield to deal with persistent

storage. RTM algorithm needs as inputs a velocity field, a

seismic source, and a set of seismograms, {s1, · · ·, sNshots
}

that contains information about the medium reflectivity. The

computation of the imaging condition uses, among others,

the source, and receiver wavefield solutions to build the mi-

grated seismic section that stacks the partial results over time(
Ik∑nτ

)
, and over the number of seismograms

(
Ik∑ shot id

)
.

The sum in line 21 approximates the time integral of the

seismic imaging (3).

Algorithm 1 Reverse Time Migration with Wavefield Com-

pression

Require: v, {s1, · · ·, sNshots
}, and f

1: function RTM(vector v, vectors {s1, · · ·, sNshots
}, vector

f)

2: read v, f , and {s1, · · ·, sNshots
}

3: initialize image condition I∑ shot id = 0
4: for shot id = 1 to Nshots do
5: initialize nt = 0
6: apply initial conditions for it = 0
7: for it = 1 to Nt do
8: nt = it ∗Δt
9: solve equation (1) � source wavefield

10: compress pnt
for nt | mod(nt,Δtnyq) = 0

11: store the compressed pnt

12: end for
13: initialize nτ = 0, and I∑ τ = 0
14: apply initial conditions for iτ = 0
15: for iτ = 1 to Nt do
16: nτ = (Nt − iτ) ∗Δτ � reversal time

17: read sshot id

18: read compressed pnτ for nτ

19: decompress pnτ

20: solve equation (2) � receiver wavefield

21: I∑nτ
= I∑nτ

+ (pnτ
· p̄nτ

) / (pnτ
· pnτ

)
22: end for
23: stack I∑ shot id = I∑ shot id + I∑nτ

24: end for
25: I ← I∑ shot id

26: store I
27: end function

We employ the ZFP fixed-accuracy mode to compress the

4-D numerical array that stores the source wavefield pnt .

According to ZFP documentation2, the fixed-accuracy mode

guarantees that each reconstructed value falls within a user-

specified absolute error tolerance, which usually results in

the smallest RMS error and therefore highest peak signal to

noise ratio for the same rate [29]. The ZFP library can be

linked to the algorithm as a static/dynamic link for C/C++

language implementation, for instance. Thus, we modify the

RTM algorithm aiming to compress/decompress the source

wavefield (lines 10, 11, 18, and 19). Besides, instead of storing

the source wavefield for every time step (Δt) based on the

FDM, we took advantage of the Nyquist theory as explored by

[22] to store the wavefield at the Nyquist time step to reduce

the amount of information. The Nyquist time step Δtnyq is

defined as,

Δtnyq =
1

2(fmax − fmin)
, (6)

where fmax and fmin are the highest and lowest frequency of

the seismic source.

Therefore, lines 10 and 11 in Algorithm 1 show the com-

pression of the multidimensional array p for the Nyquist time

step Δtnyq , and its storage on disk. Lines 18 and 19 describe

the reading of p also for Δtnyq and its decompression.

A. OpenMP Multi-core Parallelism

We follow [12], [31] who presented an RTM algorithm

that explores the Message Passing Interface (MPI) library

and the OpenMP+vectorization to deal with parallelism in

hybrid multi-core machines. In this sense, our multi-core

implementation is written in C programming language, and

it takes advantage of OpenMP directives to explore multiple

cores/threads parallelism and the single-instruction-multiple-

data (SIMD) model to deal with the data-level parallelism.

Thus, the SSE or AVX instructions (for Intel compilers)

activate vectorization depending on where we compile the

applications.

As we can see in Algorithm 1, the RTM is composed of

two parts. The first one calculates the source wavefield, and

the second part calculates the receiver wavefield. The RTM

assesses the source and receiver wavefields by solving two

different wave equations. Thus, the multi-core/thread paral-

lelism and vectorization can be applied to the second-order

wave equations that are discretized with a second-order finite

difference scheme in time and an eighth-order scheme in space

(equation (4)). We use the OpenMP directives pragma omp
parallel for and pragma omp simd to parallelize the

nested loops of the forward wavefield propagation, backward

wavefield propagation, and seismogram insertion. Reversal

time implementation of the RTM explores the technique

proposed by [11]. This technique guarantees the coercivity of

the adjoint problem. The reversal time wavefield propagation is

calculated after the forward wavefield propagation by inserting

the seismic signals of the seismogram. The insertion of the

seismogram uses the variable changing τ = T − t.

2https://zfp.readthedocs.io/en/release0.5.5/modes.html#
fixed-accuracy-mode

B. OpenACC GPU parallelism

The GPU programming model, based on OpenACC3 direc-

tives, aims to provide an easier way for scientific applications

coding [24], [25]. Besides, compared to CUDA, OpenACC

programming demands less coding efforts in heterogeneous

environments with CPU+GPU [24], [26]. The OpenACC im-

plementation needs to deal with three main issues: CPU (host)

calculations, GPU calculations, and communications to and

from the GPU. Thus, any computational implementation must

maximize the GPU computations and prevent communications

between the host and GPU.

Algorithm 2 details the OpenACC implementation for the

RTM which implements the compression of wavefield (Al-

gorithm 1). We follow the OpenACC-based implementation

strategies presented in [30] to accommodate the compression

based on decimation and the ZFP library. Thus, the three

different colors in Algorithm 2 stand for host computations

(green), data transfer (blue), and GPU calculations (red). The

first part moves the compressed source wavefield during its

calculation from the GPU to the host and stores it in disk

(lines 6 to 9). In general, storing the source wavefield in

a disk is needed because the GPU memory or RAM is

insufficient to store it, even after its compression. The second

part of the RTM algorithm (lines 14 to 19) moves back the

source wavefield from the host to GPU and decompressed

it, calculates the receiver wavefield, and builds the imaging

condition. To calculate the receiver wavefield, line 12 moves

the seismograms from the disk to the GPU.

Algorithm 2 requires two data transfers for the velocity field

and seismic source, Nshots data transfers for the seismograms,

2×Nt data transfers for the source wavefield, and Nshots data

transfers for the seismic images. Thus, we use the copyin
directive for copying the velocity field, seismic source, and

seismograms from host to GPU, copyout directive for

copying the seismic images from GPU to host, and create
directive to allocate on GPU the vectors for the wavefield

solution. The kernels loop directive creates the parallel

region and parallelizes the nested loops. Lastly, we use the

update self directive to move the source wavefield from

the GPU and store it in the disk, and update device to

read the source wavefield from the disk and move it to the

GPU.

VII. NUMERICAL EXPERIMENTS

In this subsection, we present the performance analysis of

the RTM using two different computational platforms. We

analyze the execution times, overhead, storage demand, and

impact of compressing the wavefields on the RTM solutions.

The CPU and GPU clusters are machines from the Santos Du-

mont system at the National Scientific Computing Laboratory

at Petrópolis/Brazil 4. The CPU cluster has 2× Intel Xeon E5-

2695v2 Ivy Bridge processors with 2.4GHZ and 24 cores per

node. On the other hand, the CPU-GPU cluster has a 2× Intel

3https://www.openacc.org/
4https://sdumont.lncc.br/support manual.php?pg=support

Algorithm 2 RTM GPU Implementation with Wavefield Com-

pression 1

Require: v, f , and {s1, · · ·, sNshots
}

1: function RTM GPU(vector v, vectors {s1, · · ·, sNshots
},

vector f)

2: allocate data variables

3: read v, and f
4: Move data to GPU

5: for time = first to last do
6: solve wave equation (1)

7: compress source wavefield

8: move source wavefield to host

9: store source wavefield for each time

10: end for
11: read seismograms

12: Move seismogram to GPU

13: for time = first to last do
14: set reversal time evolution

15: read source wavefield

16: Move source wavefield to GPU

17: decompress source wavefield

18: solve wave equation (2)

19: calculate imaging condition

20: end for
21: update host with seismic image

22: store seismic image

23: deallocate all the data variables

24: end function

Xeon Skylake 6252, 2.4GHZ with 48 cores and 4 × NVIDIA

V100 per node.

A. Effects of compressing the wavefield on the seismic image

To illustrate RTM results considering the source wavefield

compression, we choose the 2D Marmousi benchmark, which

is 3.0 km in depth and 9.2 km in the horizontal direction

(Figure 1). We choose to synthesize the observed seismograms

solving the two-way wave equation with the reference velocity

field provided by the benchmark. Therefore, we simulate a

fixed split-spread acquisition [27], where the seismic source

is a Ricker-type with a cutoff frequency of 45 Hz, is placed

on the surface and moved 100 meters for each shot. Near-

surface hydrophones record the seismic signals that compose

the seismograms, and the receivers are equally spaced of 12.5

meters. Thus, the dataset for seismic migration is composed

of 82 seismograms.

Figure 2(a) shows the resulting seismic image without using

compression that we define as the reference outcome. Figure

2(b), (c), and (d) show the migrated seismic images built by

RTM linked to the compression library. These results apply

the lossless compression, the lossy tolerance compression

of 10−6, and the lossy tolerance compression of 10−4 to

source wavefields. Observe that the aggressive lossy tolerance

compression of 10−4 damages the final seismic image (Figure

Fig. 1. 2D velocity field from the Marmousi benchmark.

2(d)). However, we do not note any damage on the seismic

images in Figures 2(b), and (c).

Fig. 2. RTM outcomes after migration using the forward-propagated source
wavefield (a) without compression, (b) with lossless compression, (c) with
a lossy tolerance compression of 10−6, and (c) with a lossy tolerance
compression of 10−4.

The errors produced by the difference between the reference

image and seismic images built using compression can be seen

in Figure 3. We use the following component-wise difference

Idiffi,j,k given by:

Idiffi,j,k = Irefi,j,k − Ici,j,k (7)

where Irefi,j,k is the reference seismic image without compress-

ing the source wavefield and Ici,j,k the seismic image that takes

into account the wavefield compression (decimation, lossless,

and lossy accuracy). Notice that Irefi,j,k and Ici,j,k are related to

the imaging condition from (5).

Figure 3(a) shows that lossless compression of the source

wavefield provides the best result. In this case, the error is of

order 10−6. On the other hand, a lossy tolerance compression

of 10−4 of the source wavefield produces the most inferior

outcome. Lastly, a lossy tolerance compression of 10−6 sug-

gests that lossy compression can also be an option to deal with

the storage of source wavefields. In this case, the error is of

order 10−3.

Fig. 3. Component-wise difference among the reference migrated image (no
compression) and (a) the migrated image after applying lossless compression
on the source wavefield, (b) the migrated image after applying a lossy
tolerance compression of 10−6 on the source wavefield, and the migrated
image after applying a lossy tolerance compression of 10−4 on the source
wavefield.

a) Wavefield storage demand for the 2D Marmousi
benchmark: The total demand to store the source wavefield

in disk without compression is 1.8 GB per shot, and after

applying compression is 1.1 GB for lossless compression,

92.9 MB for the lossy tolerance compression of 10−6, and

15.2 MB for the lossy tolerance compression of 10−4. These

values represent compression ratios of 1.64, 18.84, and 121.26,

respectively. Figure 4 shows the storage demand per time

slice for the source wavefield without compression (blue line),

with lossless compression (orange line), with a lossy tolerance

compression of 10−6 (red line), and with a lossy tolerance

compression of 10−4 (green line). We see that the size varies

for each time step when we use data compression. This

behavior occurs because amplitude information changes during

wavefield propagation.

Fig. 4. Size per time slice for the 2D source wavefield without compression
(blue line), with lossless compression (orange line), with a lossy tolerance
compression of 10−4 (green line), and with a lossy tolerance compression of
10−6 (red line).

B. Performance analysis for 3D domains: HPC4E benchmark

The 2D RTM results shown in Figures 2 and 3 suggest

that compression can be a good strategy to reduce the storage

demand concerning the source wavefield. Thus, we discuss

in this section the storage demand and overhead of storing

the source wavefield for a 3D application. For this, we have

chosen the MODEL AF provided by the High Performance

Computing for Energy (HPC4E) Seismic Test Suite 5 [28].

The MODEL AF is a model designed as a set of 15 layers

with constant velocity values and flat topography (Figure 5).

Besides, the velocity parameter model (velocity field) covers

an area of 10 × 10 × 4.5 km. Again, we synthesized the

observed seismograms by solving the two-way wave equation

with the reference velocity field. The seismic source is a

Ricker-type with a cutoff frequency of 20 Hz placed near the

surface at location [5000.0, 5000.0, 25.0] meters. Near-surface

hydrophones record the seismic signals that compose the seis-

mograms, and the receiver geometry follows the expressions:

rx = 25.0(i− 1) + 1012.5 with i = 1, · · ·, 320, (8)

ry = 25.0(j − 1) + 1012.5 with j = 1, · · ·, 320, (9)

where the pair [rx, ry] meters represents the receiver locations

near the surface.

Figure 6 shows the storage demand in disk per time slice

for the source wavefield without compression (blue line), with

5https://hpc4e.bsc.es/downloads/hpc-geophysical-simulation-test-suite

Fig. 5. 3D velocity field provided by the HPC4E Seismic Test Suite.

lossless compression (orange line), with a lossy tolerance

compression of 10−6 (green line), and with a lossy tolerance

compression of 10−4 (red line). Note that size changes for

each time step when we apply the data compression similar to

the 2D experiment from Figure 4. Again, this behavior occurs

because amplitude information changes during the wavefield

propagation. On the other hand, the total demand to store the

source wavefield in disk for all time steps without compression

is 65.16 GB per shot, and after applying compression is 49.82
GB for lossless compression, 31.34 GB for the lossy tolerance

compression of 10−6, and 21.68 GB for the lossy tolerance

compression of 10−4. These values represent compression

ratios of 1.31, 2.08, and 3.06, respectively. But, remember

that an aggressive compression damages the final RTM result,

as we illustrate in Figures 2(d), and 3(c) for the 2D Marmousi

benchmark application.

Fig. 6. Size per time slice for the 3D source wavefield without compression
(blue line), with lossless compression (orange line), with a lossy tolerance
compression of 10−4 (green line), and with a lossy tolerance compression of
10−6 (red line).

Table I shows the execution time and overhead measure-

ments for the 3D RTM considering the source wavefield

compression. Notice that we apply two error tolerances for

the lossy compression, which are 10−6 and 10−4. Thus, the

tests in this section consist of running the the 3D RTM

implementations based on Algorithm 1 on the CPU (Intel

Xeon Ivy Bridge) and GPU (NVIDIA V100) platforms from

Santos Dumont cluster. The CPU-based implementations for

the RTM algorithms consider the 24 cores on the running tests.

The execution time and overhead values shown in Table I

suggest that the overhead for the source wavefield compression

and decompression is high. For instance, the execution time

increased 203%, 147%, and 122% when we consider the

wavefield compression with the lossless tolerance, lossy error

tolerance of 10−6, and lossy error tolerance of 10−4 on the

CPU platform. Considering the GPU platform, the execution

time increased 381%, 245%, and 179% when the wavefield

compression is applied with the lossless tolerance, lossy error

tolerance of 10−6, and lossy error tolerance of 10−4.

TABLE I
TIME REQUIREMENTS AND OVERHEAD FOR THE 3D RTM

IMPLEMENTATION CONSIDERING DIFFERENT COMPRESSION RATES FOR

THE SOURCE WAVEFIELD. THE MEASUREMENTS TAKE INTO ACCOUNT TEN

EXECUTIONS OF EACH IMPLEMENTATION.

Platform Method Time (s)[Var. (s)] Overhead (s)[Var. (s)]
CPU None 1543.670 [4.108] -
CPU Lossless 3130.821 [387.605] 1587.151 [389.555]
CPU Lossy 10−6 2261.357 [556.679] 717.687 [561.601]
CPU Lossy 10−4 1878.574 [523.458] 334.904 [520.352]
V100 None 256.166 [46.810] -
V100 Lossless 1232.587 [2.910] 976.421 [3.191]
V100 Lossy 10−6 882.737 [0.992] 626.571 [0.841]
V100 Lossy 10−4 713.542 [10.135] 457.376 [8.472]

a) Migrated seismic image for the 3D HPC4E bench-
mark: Figure 7 shows the stacked seismic image for the 3D

HPC4E Seismic Test Suite benchmark. As mentioned earlier,

we generated the observed seismograms by simulating the

wave propagation and recording the seismic signals at the

locations following (8) near the surface at 25.0 meters in

depth. The survey acquisition also follows the source geometry

expressed by:

sx = 200.0(i− 1) + 1000.0 with i = 1, · · ·, 41, (10)

sy = 200.0(j − 1) + 1000.0 with j = 1, · · ·, 41, (11)

where the pair [sx, sy] meters represents the seismic source

locations near the surface at 25.0 meters in depth. Thus,

survey acquisition has 1681 shots that can be used in seismic

migration.

Fig. 7. Seismic image for the 3D HPC4E Seismic Test Suite.

VIII. DISCUSSIONS

Incorporating the ZFP library to compress/decompress the

source wavefield raises the RTM execution time in 203%,

147%, and 122% for the lossless tolerance, lossy error toler-

ance 10−6, and lossy error tolerance 10−4 on the CPU cluster,

and 381%, 245%, and 179% on the GPU cluster, respectively.

However, the storage requirement decreased 23.5%, 51.9%,

and 66.7% on both CPU and GPU platforms, considering

the same error tolerances. Choosing the compression strategy

to reduce the wavefield storage requires better platforms to

compensate for the overhead, such as multi-GPU clusters. For

instance, assuming the lossy compression of order 10−6 the

execution time on the GPU platform is 1.75× better than the

best RTM execution time on the CPU platform and demands

51.9% less information to be stored on disk.
Furthermore, the ZFP compression added around 600.789s

to compress the source wavefield per shot, considering the

3D numerical experiments. This value seems huge, but con-

sidering the compression per time step, where Nt = 600,

the ZFP compressor takes 1.445s to compress a vector of

501 × 501 × 235 grid points. The time evolution nature

of the RTM formulation adds an extra complexity layer to

compression techniques.
Finally, we can see in Figures 2 and 3 that the final results

can reach excellent visual quality. However, the tolerance

defined by the lossless and lossy compression can impact

the image quality. The seismic image results present errors

of order 10−3 for the most aggressive compression case and

errors of order 10−6 for the lossless compression. Assuming

the lossy compression of order 10−6, the execution time

on the GPU platform is 57.2% better than the best RTM

execution time on the CPU platform and demands 51.9% less

information to be stored on disk. Figures 2(c) and 3(b) support

that choice is also a good option for RTM applications.

IX. CONCLUSIONS AND FUTURE WORK

This work explores strategies based on decimation and

compression methodologies to reduce the storage in disk

required by the conventional RTM algorithm. The RTM al-

gorithms are implemented in C language, using vectorization,

OpenMP, and OpenACC to take into account the best features

of supercomputers equipped with CPU/GPU hardware. In this

context, the key findings are summarized as follows:

• Analysis of the seismic images results show that com-

pressing the source wavefield did not damage the seismic

image quality for controllable compression ratios, such as

the decimated lossless and 10−6 lossy accuracy.

• Significant overhead values due to the wavefield com-

pression were observed. However, choosing the GPU

implementation compensates for the execution time spent

in compression for the same tolerance.

• The RTM solutions with wavefield compression signif-

icantly reduce the storage demand for both 2D and 3D

experiments. The wavefield compression ratios reach the

value of 18.84 for the 2D experiment and 2.08 for the 3D

experiment without hampering the seismic image quality.

As future research, tuning the ZFP compressor and explor-

ing other compression techniques deserve better attention. For

instance, compression methods, such as the Gzip, ZLIB, SZ,

HyZ, and MGARD libraries [1], [4]–[6], [42], [49], [54], or

the emerging Artificial Intelligence-based approaches, such as

auto-encoder compression [48], can be explored to improve

compression efficiency and accelerate geophysical applica-

tions. Besides, better speedups and less overhead could be

achieved by overlapping the wave equation and compression

calculations with the source wavefield data movement from

GPU to disk.

ACKNOWLEDGMENT

This study was financed in part by CAPES, Brazil Finance

Code 001. This work is also partially supported by FAPERJ,

CNPq, and Petrobras. Computer time on Santos Dumont ma-

chine at the National Scientific Computing Laboratory (LNCC

- Petrópolis)

REFERENCES

[1] P. Eutsch, “GZIP File Format Specification Version 4.3”. https://www.
rfc-editor.org/info/rfc1952, 1996, Accessed: 2022-06-29.

[2] W. Wang, W. Zhang, and T. Lei. ”Compression of seismic forward
modeling wavefield using TuckerMPI.” Computers & Geosciences, pp.
105298, 2023.

[3] A. Feldspar. “An explanation of the DEFLATE Algorithm”. https://zlib.
net/feldspar.html, 1997, Accessed: 2022-06-29.

[4] J.-L. Gailly, M Adler, “Zlib compression library”, 2004, Available in:
http://www.dspace.cam.ac.uk/handle/1810/3486.

[5] S. Di, and F. Cappello. ”Fast error-bounded lossy HPC data compression
with SZ.” 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 2016.

[6] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky. ”Multilevel tech-
niques for compression and reduction of scientific data-The multivariate
case.” SIAM Journal on Scientific Computing, 41.2, pp. A1278-A1303,
2019.

[7] P. Lindstrom, P. Chen, and E.-J. Lee. ”Reducing disk storage of
full-3D seismic waveform tomography (F3DT) through lossy online
compression.” Computers & Geosciences, 93, pp. 45-54, 2016.

[8] P. Lindstrom. ”Fixed-rate compressed floating-point arrays.” IEEE trans-
actions on visualization and computer graphics, 20, 12, 2674-2683, 2014.

[9] J. Diffenderfer, and A. L. Fox, J. A. Hittinger, G. Sanders, P. G.
Lindstrom. ”Error analysis of zfp compression for floating-point data.”
SIAM Journal on Scientific Computing, 41, 3, A1867-A1898, 2019.

[10] H.-W. Zhou, H. Hu, Z. Zou, Y. Wo, O. Youn. ”Reverse time migration: A
prospect of seismic imaging methodology.” Earth-science reviews, 179,
2018, pp. 207-227.

[11] D. Givoli. ”Time reversal as a computational tool in acoustics and
elastodynamics.” Journal of Computational Acoustics, 22, 03, 2014, pp.
1430001.

[12] C. H. S. Barbosa. ”Advanced Computational Strategies for Reverse Time
Migration”. PhD Thesis, Federal University of Rio de Janeiro, Brazil,
2023.

[13] D. Komatitsch and R. Martin. ”An unsplit convolutional perfectly
matched layer improved at grazing incidence for the seismic wave
equation.” Geophysics, 72, 5, 2007, pp. SM155-SM167.

[14] D. Pasalic and R. McGarry. ”Convolutional perfectly matched layer
for isotropic and anisotropic acoustic wave equations: 80th Annual
International Meeting, SEG, Expanded Abstracts, pp. 2925–2929, doi:
10.1190/1.3513453.” Abstract, 2010.

[15] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef. ”A nonreflecting
boundary condition for discrete acoustic and elastic wave equations.”
Geophysics, 50, 4, 1985, pp. 705-708.

[16] R. G. Clapp. ”Reverse time migration with random boundaries: 79th An-
nual International Meeting, SEG, Expanded Abstracts, pp. 2809–2813.”
Abstract, 2009.

[17] R. G. Clapp. ”Reverse time migration: Saving the boundaries: Technical
Report SEP-136.” Stan-6 ford Exploration Project 7, 2008.

[18] B. D. Nguyen and G. A. McMechan. ”Five ways to avoid storing source
wavefield snapshots in 2D elastic prestack reverse time migration.”
Geophysics, 80, 1, 2015, pp. S1-S18.

[19] Q. Li, L.-Y. Fu, R.-W. Wu, and Q. Du, ”Efficient acoustic reverse time
migration with an attenuated and reversible random boundary.” IEEE
Access, 8, 2020, pp. 34598-34610.

[20] G. T. Schuster. ”Seismic inversion”. Tulsa, OK U.S.A. 74137-3575,
Society of Exploration Geophysicists, 2017.

[21] J. F. Claerbout. ”Imaging the earth’s interior”. Vol. 1. Stanford, Califor-
nia, Stanford University, 1985.

[22] W. Sun, and L.-Y. Fu. ”Two effective approaches to reduce data storage
in reverse time migration.” Computers & Geosciences, 56, 69-75.

[23] L. Di Bartolo, C. Dors, and W. J. Mansur. ”A new family of finite-
difference schemes to solve the heterogeneous acoustic wave equation.”
Geophysics, 77, 5, 2012, pp. T187-T199.

[24] A. Qawasmeh, R. Maxime, H. Calandra, B. M. Chapman. ”Perfor-
mance portability in reverse time migration and seismic modelling via
OpenACC.” The International Journal of High Performance Computing
Applications, 31, 5, 2017, pp. 422-440.

[25] N. Kushida, Y-T Lin, P. Nielsen, R. Le Bras. ”Acceleration in acoustic
wave propagation modelling using OpenACC/OpenMP and its hybrid for
the global monitoring system.” Accelerator Programming Using Direc-
tives: 6th International Workshop, WACCPD 2019, Denver, CO, USA,
November 18, 2019, Revised Selected Papers 6. Springer International
Publishing, 2020.

[26] M. Serpa, Pavan, J. Pablo E. H. M. Cruz, R. L. and Machado, J. Panetta,
A. Azambuja, A. S. Carissimi, P. O. A. Navaux. ”Energy efficiency
and portability of oil and gas simulations on multicore and graphics
processing unit architectures.” Concurrency and Computation: Practice
and Experience, 33, 18, 2021, pp. e6212.

[27] P. Kearey, B. Michael, I. Hill. An introduction to geophysical explo-
ration. Vol. 4. John Wiley & Sons, 2002.

[28] J. De la Puente. D6.3 Website deploying a suite of geophysical tests
for wave propagation problems on extreme scale machines. HPC4E -
High Performance Computing for Energy 689772, HPC4E Consortium
Partners, 2015.

[29] K. Zhao, Kai, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, F.
Cappello. ”SDRBench: Scientific data reduction benchmark for lossy
compressors.” 2020 IEEE International Conference on Big Data (Big
Data). IEEE, 2020.

[30] C. H. S. Barbosa, A. L. G. A. Coutinho. “Multi-GPU 3-D Reverse Time
Migration with Minimum I/O”. In: Navaux, P., Barrios H., C. J., Osthoff,
C., et al. (Eds.), High Performance Computing, pp. 160–173, Cham,
September. Springer International Publishing. ISBN: 978-3-031-23821-
5.

[31] C. H. S. Barbosa, A. L. G. A. Coutinho. ”Enhancing Reverse Time
Migration: Hybrid Parallelism plus Data Compression”. In: Proceedings
of the XLI Ibero-Latin-American Congress on Computational Methods
in Engineering. ABMEC, November, 2020.

[32] M. S. Serpa, E. H. Cruz, M. Diener, A. M. Krause, P. O. Navaux, J.
Panetta, A. Farrés, C. Rosas, M. Hanzich. Optimization strategies for
geophysics models on manycore systems. The International Journal of
High Performance Computing Applications, 33(3), 473-486, 2019.

[33] L. Qu, R. Abdelkhalak, H. Ltaief, I. Said, D. Keyes. Exploiting temporal
data reuse and asynchrony in the reverse time migration. The Interna-
tional Journal of High Performance Computing Applications, 2022.

[34] C. H. S Barbosa, L. N. Kunstmann, R. M. Silva, C. D. Alves, B. S. Silva,
D. M. S. Filho, M. Mattoso, F. A. Rochinha, A. L. G. A. Coutinho. A
workflow for seismic imaging with quantified uncertainty. Computers &
Geosciences, 145, pp. 104615, 2020.

[35] R. Mathur, R. Atcheson, Y. Kubo. Optimizations for seismic applications
on the NEC SX-Aurora TSUBASA. In SEG International Exposition and
Annual Meeting. OnePetro, October, 2020.

[36] V. Etienne, A. Momin, L. Gatineau, S. Momose. Performance Char-
acterization of a Vector Architecture for Seismic Applications. In Fifth
EAGE Workshop on High Performance Computing for Upstream. EAGE
Publications BV, September, 2021.

[37] S. Momose, Y. Kubo, M. Ikuta. Performance Evaluation of Stencil Cal-
culation in RTM Code. In Fifth EAGE Workshop on High Performance
Computing for Upstream. EAGE Publications BV, September, 2021.

[38] W. W. Symes. Reverse time migration with optimal checkpointing.
Geophysics, 72, 5, pp. SM213-SM221, 2007.

[39] M. Ainsworth, S. Klasky, B. Whitney. Compression using lossless
decimation: analysis and application. SIAM Journal on Scientific Com-
puting, 39, 4, pp. B732-B757, 2017.

[40] G. F. Barros, M. Grave, J. J. Camata, A. L. G. A. Coutinho. Enhancing
dynamic mode decomposition workflow with in situ visualization and
data compression. Engineering with Computers, pp. 1-22, 2023.

[41] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, J. Ahrens.
Understanding GPU-based lossy compression for extreme-scale cosmo-
logical simulations. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (pp. 105-115). IEEE, May, 2020.

[42] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, F. Cappello.
SDRBench: Scientific data reduction benchmark for lossy compressors.
In 2020 IEEE International Conference on Big Data, pp. 2716-2724.
IEEE, December, 2020.

[43] H. Liu, B. Li, H. Liu, X. Tong, Q. Liu, X. Wang, W. Liu. The issues of
prestack reverse time migration and solutions with graphic processing
unit implementation. Geophysical Prospecting, 60, 5, pp. 906-918, 2012.

[44] G. F. Liu, X. H. Meng, Z. J. Yu, D. J. Liu. An efficient scheme for
multi-GPU TTI reverse time migration. Applied Geophysics, 16, 1, ,
pp. 56-63, 2019.

[45] Y. Wang, H. Zhou, X. Zhao, Q. Zhang, P. Zhao, X. Yu, Y. Chen, Y.
CuQ-RTM: A CUDA-based code package for stable and efficient Q-
compensated reverse time migrationCUDA-based Q-RTM. Geophysics,
84, 1, pp. F1-F15, 2019.

[46] J. Fang, H. Chen, H. Zhou, Y. Rao, P. Sun, J. Zhang. Elastic full-
waveform inversion based on GPU accelerated temporal fourth-order
finite-difference approximation. Computers & Geosciences, 135, pp.
104381, 2020.

[47] N. Kukreja, J. Hückelheim, M. Louboutin, J. Washbourne, P. H. Kelly,
G. J. Gorman. Lossy checkpoint compression in full waveform inversion:
a case study with ZFPv0. 5.5 and the overthrust model. Geoscientific
Model Development, 15, 9, pp. 3815-3829, 2022.

[48] J. Wittmer, J. Badger, H. Sundar, T. Bui-Thanh. An autoencoder com-
pression approach for accelerating large-scale inverse problems. arXiv
preprint arXiv:2304.04781, 2023.

[49] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress, D.
Pugmire, M. Wolf, N. Podhorszki, S. Klasky and others. Mgard+: Op-
timizing multilevel methods for error-bounded scientific data reduction.
IEEE Transactions on Computers, 71, 7, pp. 1522-1536, 2021.

[50] T. Alturkestani, H. Ltaief, and D. Keyes. Maximizing I/O bandwidth
for reverse time migration on heterogeneous large-scale systems. In
Euro-Par 2020: Parallel Processing: 26th International Conference on
Parallel and Distributed Computing, Warsaw, Poland, August 24–28,
2020, Proceedings 26 (pp. 263-278). Springer International Publishing,
2020.

[51] T. Alturkestani, T. Tonellot, H. Ltaief, R. Abdelkhalak, V. Etienne, and
D. Keyes. Mlbs: Transparent data caching in hierarchical storage for out-
of-core hpc applications. In 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC) (pp. 312-
322). IEEE, 2019.

[52] R. Kriemann, H. Ltaief, M. B. Luong, F. E. H. Pérez, H. G. Im, and
D. Keyes. High-Performance Spatial Data Compression for Scientific
Applications. In European Conference on Parallel Processing (pp. 403-
418). Cham: Springer International Publishing, August 2022.

[53] K. Zhao, S. Di, M. Dmitriev, T. L. D. Tonellot, Z. Chen, and F.
Cappello. Optimizing error-bounded lossy compression for scientific
data by dynamic spline interpolation. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE) (pp. 1643-1654). IEEE, April,
2021.

[54] Y. Huang, K. Zhao, S. Di, G. Li, M. Dmitriev, T. L. D. Tonellot, & F.
Cappello. Towards Improving Reverse Time Migration Performance by
High-speed Lossy Compression. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid) (pp.
651-661). IEEE, May, 2023.

