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Abstract—The pursuit of energy efficiency has been driving the
development of techniques to optimize hardware resource usage
in high-performance computing (HPC) servers. On multicore ar-
chitectures, thread-level parallelism (TLP) exploitation, dynamic
voltage and frequency scaling (DVFS), and uncore frequency
scaling (UFS) are three popular methods applied to improve the
trade-off between performance and energy consumption, repre-
sented by the energy-delay product (EDP). However, the complex-
ity of selecting the optimal configuration (TLP degree, DVFS,
and UFS) for each application poses a challenge to software
developers and end-users due to the massive number of possible
configurations. To tackle this challenge, we propose NeurOPar,
an optimization strategy for parallel workloads driven by an
artificial neural network (ANN). It uses representative hardware
and software metrics to build and train an ANN model that
predicts combinations of thread count and core/uncore frequency
levels that provide optimal EDP results. Through experiments
on four multicore processors using twenty-five applications, we
demonstrate that NeurOPar predicts combinations that yield EDP
values close to the best ones achieved by an exhaustive search
and improve the overall EDP by 42% compared to the default
execution of HPC applications. We also show that NeurOPar can
enhance the execution of parallel applications without incurring
the performance and energy penalties associated with online
methods by comparing it with two state-of-the-art strategies.

Index Terms—Parallel Computing, Artificial Neural-Network,
Performance-Energy Optimization

I. INTRODUCTION

Modern high-performance computing (HPC) systems have
become essential for executing data-intensive parallel work-
loads, such as machine learning, biomedical, and video/audio
recognition. Simultaneously, power consumption has emerged
as a critical concern and a constraint for building exascale
computing infrastructures since it is directly proportional to
the increasing availability of data to compute. Therefore, in-
stead of only focusing on maximizing performance, hardware
designers and software developers have started offering tools
or techniques through which users can improve performance
while saving energy [1].

The inherent limits in parallel applications and systems
are critical factors that surface the need for such techniques.
When thread-level parallelism (TLP) is exploited, hardware
and software-related aspects may prevent linear performance

and energy improvements as active threads increase [2]–[4].
They include data synchronization, shared memory contention,
and off-chip bus saturation, as we discuss in Section II. It
means that exposing as much parallelism as possible and using
the maximum number of hardware resources available in the
system will not always deliver the best outcome in perfor-
mance and energy. In these scenarios, techniques that select
the ideal TLP degree of parallel applications can be employed
to reduce energy without jeopardizing their performance.

When exploiting TLP, the operating frequency of the core
and uncore parts of a chip/package plays an essential role
in the performance and power consumption. While the core
subsystem consists of the processing units and private caches
(e.g., L1 and L2), the uncore part comprises shared com-
ponents (e.g., last-level cache – LLC – and the quick path
interconnect controllers). It occupies about 30% of the die
area, accounting for up to 20% of the overall chip power
consumption [5]. Hence, the same reasoning applied to TLP
exploitation can be applied to core and uncore subsystems:
using the maximum frequency level will not always result in
the best energy efficiency. In this scenario, techniques may be
applied to reduce the power consumption of the chip/package,
such as dynamic voltage and frequency scaling (DVFS) and
uncore frequency scaling (UFS). These mechanisms allow the
component to have a min/max frequency and a governor that
governs it to manage the operating frequency levels with a
corresponding variation in the supply voltage.

Unfortunately, efficiently employing TLP exploitation,
DVFS, and UFS to optimize performance and energy con-
sumption is complex due to the number of variables involved.
Besides the hardware and software issues affecting thread scal-
ability, applications may present different CPU and memory
usage behaviors, influencing the frequency levels. It means that
the configuration (TLP degree, DVFS governor, and uncore
frequency) that delivers the best outcome changes according
to the application. We illustrate this scenario in Fig. 1 for the
execution of three applications on an Intel Xeon Silver 24-core
processor with a different number of threads, DVFS governors,
and uncore frequencies. Each plot depicts the energy-delay
product – EDP (i.e., the trade-off between performance and
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(a) N-Body
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(b) STREAM
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(c) LULESH2.0

Fig. 1: EDP results of three applications running with different configurations of the number of threads × DVFS governor ×
Uncore frequency on an Intel 24-core system. Values are normalized to the best one, so the lower the value, the better.

energy) of all configurations normalized to the best one.
Hence, the closer to 1.0, the better the EDP. As observed,
the ideal configuration changes according to the application
characteristics: N-Body, which has thread scalability limited by
data synchronization, achieves the best EDP with a low TLP
degree and higher core/uncore frequency; STREAM, where
the off-chip bus saturation limits the performance, is better
executed with a low core/uncore frequency and a medium TLP
degree; and LULESH, a proxy application with performance
limited by shared memory accesses, has the best outcome with
a medium TLP degree and higher CPU/uncore frequency.

Therefore, reliance on end-users to make decisions regard-
ing TLP, DVFS, and UFS can lead to a non-ideal use of
hardware resources due to the huge design space exploration.
As an example, let us consider the optimization of a parallel
application on a system that supports 88 HW threads, with
3 DVFS governors available and 8 uncore frequency levels.
An exhaustive search would need to test 2, 112 configurations
(88× 3× 8) every time the input changes, being impractical.
To deal with this challenging scenario, we explored the fact
that numerous applications manifest comparable characteris-
tics regarding their TLP degree, instructions per cycle (IPC),
and inter-thread communication patterns (e.g., DRAM band-
width utilization, LLC misses, and NUMA node accesses).
Our hypothesis is that this information could be used to
enhance the execution of parallel workloads without incurring
the performance and energy penalties associated with online
methods and the resource-intensive nature of offline strategies.

Given the scenario above, we propose NeurOPar, an opti-
mization strategy for single-process multi-threaded workloads
driven by an artificial neural network (ANN). It considers
the hardware and software metrics associated with a specific
application to predict configurations encompassing the number
of threads, DVFS governor, and uncore frequency that yield
the best performance and energy consumption outcome. To
achieve this, NeurOPar is divided into two distinct phases.
First, a Training Phase involves constructing and training an
ANN model, which utilizes a comprehensive set of repre-
sentative metrics and applications exhibiting diverse behavior
patterns. Subsequently, in the Execution Phase, NeurOPar
employs the trained ANN model, alongside the hardware

metrics gathered from a subset of the target parallel workload,
to predict the most suitable configuration for executing it.

With the generated ANN model in the training phase, Neu-
rOPar automatically predicts a configuration of TLP degree,
DVFS governor, and uncore frequency level for each parallel
application that optimizes the EDP. We validate NeurOPar
by executing a list of twenty-five well-known applications
from different domains on four multicore processors. When
considering the entire benchmark set and processors, Neu-
rOPar improves the EDP by 43% compared to the default
execution of parallel applications (max number of threads
and max levels of core/uncore frequency). When comparing
to the results found by an exhaustive search, we show that
more than 84% of the predicted solutions of NeurOPar are
at most in the top-10 configurations. Moreover, we show that
NeurOPar can enhance the execution of parallel applications
without incurring the overhead associated with online methods
by comparing it with two state-of-the-art online strategies.

II. BACKGROUND

A. Dynamically Management of Core and Uncore Frequencies

In modern processors, optimizing core and uncore frequency
is vital in maximizing performance and energy efficiency.
Dynamic voltage and frequency scaling (DVFS) is a processor
feature that enables software to adjust a core’s clock frequency
at runtime without a reset [6]. The core subsystem consists of
computing units and private caches per core (e.g., L1 and L2).
In this scenario, DVFS aims to dynamically scale the CPU’s
supply voltage for a given frequency, ensuring it operates at
the minimum speed required for the specific task [6]. This
approach significantly reduces chip/package power consump-
tion due to the quadratic relationship between voltage and
dynamic power. To simplify DVFS management for software
developers, Operating Systems provide frameworks that allow
each core to have a min/max frequency and a governor for
control. Governors are kernel modules that control core fre-
quency/voltage operating points. Common governors include
powersave, which sets the CPU frequency at the minimum
allowable; performance, which fixes the CPU frequency at the
maximum; and ondemand, where the frequency changes based
on workload behavior.



Uncore subsystem power optimization is also vital for HPC
workloads, accounting for ≈20% of overall package power
consumption and ≈30% of die area [5]. It comprises shared
components between cores, such as the last-level cache, quick-
path interconnect controller, and integrated memory controller.
By independently managing uncore elements (introduced in
Intel Haswell-EP), one can configure different frequency levels
for the core and uncore subsystems according to the workload
demands. In this scenario, uncore frequency scaling techniques
are used to select the frequency automatically.

B. Scalability of Parallel Applications

Many works have shown that running some kinds of parallel
applications with all the available resources (e.g., number of
cores and cache memories) will not necessarily lead to the
best outcome in performance and energy consumption due to
hardware and software issues that prevent linear improvements
with the number of active threads [2], [3]. Applications that
work with large volumes of private data stored in main
memory and require frequent data retrieval face scalability
challenges due to the saturation of the off-chip bus [2]. In this
scenario, as thread count rises, demand for the bus increases
linearly, but its bandwidth is limited by I/O pins [7] and does
not scale with active threads. Thus, additional thread count,
rather than yielding performance gains, only increases energy
consumption when the bus saturates.

Similarly, when threads must read shared data, the amount
of access to shared memory addresses influences performance
and energy consumption as the number of threads increases.
Since threads communicate by accessing shared data in areas
that are usually more distant from the core (e.g., last-level
cache and main memory) and have higher latency and power
consumption per access than private caches, this communi-
cation potentially leads to bottlenecks, affecting the parallel
application performance and energy consumption [3]. There
are also scenarios where different threads must communicate
by accessing the same variable addresses. In this case, syn-
chronization directives are employed to avoid race conditions
between threads and ensure the correctness of the result.
However, when multiple threads reach a synchronization point,
only one thread executes it at a time, which means that part of
the application is serialized. Hence, with more threads, more
serialization occurs within critical sections, which impacts the
overall execution time and energy consumption [2].

Moreover, as threads experience non-uniform memory ac-
cess times in NUMA architectures, uneven workload distri-
bution across threads and the thread/data placement policy
can lead to load imbalance. In this scenario, some threads
may complete their tasks quickly while others remain busy,
resulting in idle resources and reduced overall performance.
This imbalance becomes more pronounced as the number of
threads increases, limiting the potential for linear performance
and power consumption improvements. In summary, these
hardware and software factors highlight the importance of
careful thread optimization and mitigation strategies to address
performance and energy limitations in parallel applications.

TABLE I: Metrics retired from Intel VTune Profiler to analyze

the behavior of parallel applications

Metric Description

Physical core
utilization

Measures the parallel efficiency of the application
by determining the proportion of physical CPU
cores that the application utilizes.

Logical core
utilization

The same as the previous, but considering
logical CPU cores.

CPI Rate Indicates how much time each executed
instruction took.

Cache Bound Shows how often the machine was stalled on
L1, L2, and L3 caches.

Memory Bound Indicates how the memory subsystem issues
affect the performance.

DRAM Bound Shows how often the CPU was stalled on
the main memory

Memory Bandwidth
Represents a fraction of cycles during which the
application could be stalled due to approaching
bandwidth limits of the main memory.

Memory Latency
Represents a fraction of cycles during which
an application could be stalled due to the latency
of the main memory.

NUMA: % of
Remote Accesses

In NUMA machines, it shows the percentage
of remote accesses.

C. Influence of Hardware Metrics on the Thread Scalability
and Core/Uncore Frequency Levels

Modern multicore processors provide profiling tools (e.g.,
Intel VTune and AMD uProf ) so users can analyze the applica-
tion and get insights on how to optimize it. In this scenario, to
identify the metrics that play an essential role when selecting
ideal levels of thread scalability and core/uncore frequency, we
have executed applications from our benchmark set (discussed
in Section IV) with different combinations of the number of
threads × core frequency × uncore frequency in two Intel
multicore machines. For each execution, we collected the
metrics depicted in Table I through the Intel VTune profiler.

We start by discussing the metrics that provide insights w.r.t.
the TLP degree of the application: Physical and Logical core
utilization. Fig. 2 illustrates the relationship between perfor-
mance improvements over the sequential execution (secondary
y-axis) and the percentage of CPU utilization (primary y-axis)
for four parallel applications with different TLP behavior.
These applications range from ep.C.x, which exhibits the
highest available TLP degree, to MRI, which has the lowest
opportunity for TLP exploitation. As observed, the perfor-
mance improvements are linearly influenced by the percentage
of CPU utilization. To analyze how the metric correlates
with the TLP degree, we used the Pearson Correlation [8].
It considers a range of [−1, · · · ,+1], where the stronger the
correlation, the closer the value will be to +1 or −1. We
found values of r = 0.93, r = 0.99, r = 0.99, and r = −0.99
for ep.C.x, bt.C.x, Heartwall, and MRI, respectively. Hence,
optimization frameworks can leverage such information to
guide the decisions when defining the best number of threads.
Furthermore, we found that the other metrics depicted in Table
I presented r values lower than |0.35|, representing a small
strength of linear association with the TLP degree.

When considering the core and uncore frequency levels, the
metrics related to memory and CPU usage are helpful when
finding optimal combinations of frequency levels. To illustrate
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Fig. 2: Performance improvements over sequential version

(SpeedUp) and the respective CPU usage for different number

of threads on a 2x44-core Intel processor

this scenario, Table II depicts the EDP behavior of three
applications from our benchmark set with different CPU and
memory usage. For STREAM and FFT, which are memory-
intensive applications, the higher the uncore frequency, the
better the CPI values and the lower the time spent in shared
memories (e.g., NUMA % of remote accesses, LLC, and
DRAM), resulting a better EDP relative to the execution
with a minimal level of uncore frequency. Moreover, in these
memory-intensive applications, the lower the core frequency,
the better the EDP. On the other hand, for a CPU-intensive
application (e.g., N-Body), the only outcome of increasing the
uncore frequency is a negative impact on the EDP.

III. NEUROPAR

NeurOPar aims to optimize the trade-off between perfor-
mance and energy consumption of shared-memory parallel
applications regardless of the API used to implement them
(e.g., OpenMP, PThreads). For that, it exploits the intrinsic
characteristics of these applications w.r.t. their scalability and
CPU/Memory usage to predict the ideal combination of TLP
degree and core and uncore frequency levels. NeurOPar is
split into two phases: training and execution.

A. Training Phase

NeurOPar learns an ideal combination of TLP degree, core,
and uncore frequency levels by evaluating parallel applications
with distinct characteristics regarding their thread scalability
and CPU/Memory usage. This particular phase is performed
solely once during the entire optimization procedure and
applies the steps illustrated in Fig. 3a.

1) Defining the Training Set.: In this step, the user is
responsible for providing a list of p application binaries (A1,
A2, · · · , Ap) with their dataset. They are used by NeurOPar to
extract hardware metrics regarding their behavior (e.g., thread
scalability, CPU, and memory usage). Furthermore, the metrics
extracted from these applications are used to build and train
the ANN model.

TABLE II: EDP behavior of three distinct applications when

varying the uncore frequency level

Uncore
Frequency

STREAM FFT N-Body

CPI MEM-
Bound (%)

EDP
Relative CPI NUMA (%)

Accesses
EDP

Relative CPI MEM-
Bound (%)

EDP
Relative

1.2GHz 2.20 89.4 1.00 1.06 77.8 1.00 0.59 23.4 1.00

1.4GHz 2.00 86.1 0.89 0.99 70.0 0.90 0.58 23.5 1.01

1.6GHz 1.69 84.4 0.86 0.94 62.5 0.88 0.59 23.8 1.06

1.8GHz 1.54 80.2 0.80 0.91 62.5 0.90 0.59 23.4 1.19

2.0GHz 1.50 78.6 0.76 0.89 62.5 0.88 0.58 23.8 1.24

2.2GHz 1.45 76.1 0.75 0.88 61.8 0.87 0.59 23.4 1.31

2.4GHz 1.37 74.2 0.72 0.84 61.5 0.87 0.59 23.4 1.33

2.6GHz 1.34 71.1 0.72 0.83 61.2 0.87 0.58 23.7 1.42

2.8GHz 1.32 70.3 0.72 0.80 60.9 0.87 0.59 23.6 1.47

3.0GHz 1.27 69.6 0.70 0.79 60.1 0.86 0.59 23.6 1.57

2) Feature Extraction.: During this step, NeurOPar per-
forms a design space exploration (DSE) on the target archi-
tecture considering the applications defined in the training set
with the possible combinations of the number of threads, core
(through DVFS governors), and uncore frequency levels. For
each execution, NeurOPar collects and stores in a dataset (i)
the execution time, energy consumption, and EDP to define
the combination that delivers the best outcome; and (ii) the
hardware and software metrics discussed in Section II-C.
The metrics are extracted via Intel VTune Profiler on Intel
processors and AMDuProf on AMD systems. To mitigate
potential data-related issues that could introduce bias into
the machine learning model, such as under- and over-fitting),
NeurOPar applies the following operations over the dataset:
Discretization, to ensure that all data are represented as numer-
ical values. For example, each DVFS governor is represented
as a unique identifier, such as powersave (0), ondemand (1),
and performance (2); and Normalization, where the metric
values of the dataset are normalized to a common scale in the
range of [0, 1] through the Min-Max normalization strategy.

3) Model Generation.: When building an ANN model,
different parameter values may be used to control the learning
process and significantly affect the performance of the ANN
model. These parameters correspond to the (i) the number
of hidden layers; (ii) the number of neurons in each layer;
(iii) the activation function used; (iv) the learning rate; (v)
the momentum; and (vi) the number of epochs. Hence, to
optimize the selection of such parameter values, NeurOPar
applies the KerasTuner, a scalable hyperparameter optimiza-
tion framework that solves the points of hyperparameter search
[9]. Once the parameter values are defined, the ANN model is
trained using the dataset built in the last step as the input. To
train the model, NeurOPar employs the Stratified k-Fold cross-
validation, a variation of the standard k-Fold cross-validation
technique designed to be effective in cases of a significant
imbalance of the target value in the dataset. It splits the dataset
on k folds such that each fold contains approximately the same
percentage of samples of each target class as the complete set.
NeurOPar performs 20 executions of this validation strategy
and selects the model that presents the best accuracy to be
used as the Predictor. Finally, the output of this step is a
predictor model used in the Execution phase to infer the best
combination of the number of threads and core and uncore
frequency levels for any given parallel application.
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Fig. 3: NeurOPar Workflow

B. Execution Phase

Once the ANN model is trained for the target architecture
(Training Phase), NeurOPar can use it to predict configura-
tions of the number of threads, core, and uncore frequency
levels that optimize the performance and energy consumption
of parallel applications. For that, the workflow of this phase
is illustrated in Fig. 3b and described below.

1) Input: The input of this phase, provided by the user,
is the parallel application along with its dataset that the user
wants to execute on the target architecture.

2) Feature Extraction and Inference: This stage is respon-
sible for predicting a TLP degree and core/uncore frequency
based on the characteristics of the application. For that,
NeurOPar first reads the database to check if the application
has been previously predicted by the ANN model. From this
point, NeurOPar decides the execution flow based on the
available information. When it is the first time the application
is executed on the architecture, the feature extraction and infer-
ence stage starts: (a) the application executes with the default
configuration (e.g., maximum number of hardware threads,
and maximum levels of core/uncore frequency). (b) during
the execution, NeurOPar extracts the same hardware metrics
as the training phase (previously discussed). (c) NeurOPar
pre-processes the data (discretization and normalization) to be
input for the predictor model. (d) the Predictor is applied.
The output of this stage is the predicted number of threads,
core, and uncore frequency. This information is stored in
the database along with the application’s information so it
can be retrieved the next time the application is deployed
for execution. That is, if the application has already been
predicted, NeurOPar recognizes it by checking the database
(comparing the hash information of the application binary).
From this point on, it gets the predicted configuration to
execute such an application and configures the frequency levels
and TLP degree for its execution.

3) Execution: In this step, the application is executed with
the predicted combination of TLP degree, core, and uncore
frequency levels.

C. Implementation

NeurOPar is implemented with the Python3 language. To
perform the training phase, the user only needs to pro-
vide the applications along with their dataset by calling the

command python3 neuropar.py train listApps,
where train means that NeurOPar will train a new model
and listApps file contains the path to the application binaries.
This phase is performed only once on the target architecture.
From this moment on, the user can use the predicted model
to optimize the execution of parallel applications implemented
with distinct APIs (e.g., OpenMP and PThreads): python3
meuropar.py execution App, where execution indi-
cates that NeurOPar will apply the predicted model on the
application binary App. The EDP of each application execution
during the training phase is obtained by multiplying the execu-
tion time (in seconds) by the energy consumption (in Joules).
The execution time is obtained with the time.time() func-
tion from the time module from Python3. On the other hand,
energy consumption is obtained directly from the hardware
counters present in modern processors. In the case of Intel
processors, the Running Average Power Limit (RAPL) library
is used [10], while the Application Power Management library
is used for AMD processors [11].

IV. METHODOLOGY

A. Benchmarks

We have considered forty parallel applications already writ-
ten in C/C++ from assorted benchmark suites, split into two
classes as discussed below: training and validation.

1) Training: Fifteen applications were used as the input for
the Training phase to extract hardware and software metrics
and train the ANN model of NeurOPar. Eight from the
NAS-PB: bt.c, bt.b, cg.b, ft.b, lu.b, mg.b, sp.b, and ua.b.
Three from the Rodinia Benchmark: needleman-wunsch large,
streamcluster small, and streamcluster large. Two from the
Parboil: Histo and stencil. Two from different domains: N-
Body and FFT. As we illustrate in Figures 4 and 5, the chosen
applications to extract the hardware/software metrics cover
different behaviors that impact thread scalability and operating
frequency levels: (i) the TLP degree (as defined by the authors
in [12] – the close this value is to 1.0 normalized to the
total number of available cores, the more TLP is available),
which varies from histo (lowest TLP available), where less
than 5% of the execution is performed in parallel to the bt.C
benchmark (highest TLP available); (ii) the percentage of time
spent in memory accesses during the entire execution (MEM-
Bound metric from Table II) and (iii) the average amount
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Fig. 4: TLP degree of each benchmark used for training
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Fig. 5: Memory/IPC behavior of each bench. used for training

of IPC exhibited during the execution, showing whether the
application is CPU- or Memory-bound.

2) Validation: Twenty-five applications with different char-
acteristics were used to validate NeurOPar, as illustrated in
Figures 6 and 7. Eight from the NAS-PB: cg.c, ep.c, ft.c, is.c,
lu.c, mg.c, sp.c, and ua.c. Six from the Rodinia suite: cfd,
heartwall, kmeans, lud, Needleman-Wunsch s, and pathfinder.
Five from the Parboil suite: bfs, sgemm, spmv, cutcp, and mri.
Four from different domains: Poisson, Stream, Jacobi, and
HPCCG. Two real-world applications: LULESH2.0, used by
a variety of computer simulations of science and engineering
problems. It is one of the five challenge problems implemented
by the Lawrence Livermore National Laboratory (LLNL) in
the DARPA-UHPC program and has been studied as a proxy
application in the DoE co-design efforts to reach the exascale
era [13]; and Fletcher Modeling, an application widely used
in Oil and Gas companies that simulates the propagation of
waves throughout time [14].

B. Execution Environment

To validate NeurOPar, we performed the experiments
on four multicore platforms: Intel24, Intel40, Intel88, and
AMD64, as shown in Table III. All the architectures used Linux
Kernel v.4.19. We compiled the applications with GCC/G++
10.2, using the -O3 flag and OpenMP v.5. Although it is not
possible to change the uncore frequency of the AMD64 system,
we want to evaluate how NeurOPar performs on such an
environment. We compare the results achieved by NeurOPar
with the following scenarios: PAR STD: it executes each appli-
cation with the maximum number of threads available and the
core/uncore frequencies set to the maximum allowed, which
is the standard behavior when running parallel applications
on HPC servers. Oracle: each parallel application executes
with the configuration (i.e., TLP degree, DVFS governor, and
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Fig. 6: TLP degree of each benchmark used for Validation
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Fig. 7: Memory/IPC of each bench. used for validation

uncore frequency) that delivers the best outcome in EDP. The
ideal configuration was obtained via an exhaustive execution
of each application with different combinations of TLP degree
(from 1 to the number of cores available in the architecture),
DVFS governor, and uncore frequency.

Moreover, to observe if NeurOPar can enhance the execu-
tion of applications without incurring performance and energy
penalties associated with online methods, we compare it to two
online strategies: EM-OMP, an energy minimization model
that adjusts the core voltage/frequency scaling and thread
count based on workload predictions [15]. In these executions,
the uncore frequency was set to be managed by the OS; and
Aurora, an online heuristic that adapts the number of threads
for each parallel region of OpenMP applications [16]. During
the experiments, the core/uncore frequency was managed by
the OS. It is worth mentioning that we selected these strategies
because, as far as we know, there is no online method that
tunes all three hardware knobs at the same time. The results
shown next consider the average of ten executions.

TABLE III: Main characteristics of each processor

Model Intel Xeon
Silver 4214R

Intel Xeon
E5-2650 v3

Intel Xeon
E5-2699 v4

AMD Ryzen
Threadr. 3990x

Microarch. Cascade Lake Haswell Broadwell Zen 2
#Cores (#Threads) 12 (24) 2x10 (40) 2x22 (88) 64 (128)
Core Freq 1.2 - 3.5 GHz 1.2 - 3.0 GHz 1.2 - 3.6 GHz 2.9 - 4.3 GHz
Uncore Freq 1.2 - 2.4 GHz 1.3 - 3.0 GHz 1.2 - 2.8 GHz –
TDP 100W 105W/processor 145W/processor 280W
L3 Cache 16.5 MB 50 MB 110 MB 256 MB
RAM 64 GB 128 GB 256 GB 128 GB
Name Intel24 Intel40 Intel88 AMD64



TABLE IV: Configurations found by the Oracle and NeurOPar on each multicore system

Intel24 Intel40 Intel88

Oracle NeurOPar Ranking Exec. Over.
NeurOPar

Time of
Oracle Oracle NeurOPar Ranking Exec. Over.

NeurOPar
Time of
Oracle Oracle NeurOPar Ranking Exec. Over.

NeurOPar
Time of
Oracle

cg.C.x 24,ond,1.8 24,ond,1.8 Top-1 27.6s 5889.4s 40,perf,3.0 40,perf,3.0 Top-1 19.2s 7632.4s 88,ond,2.4 88,perf,2.4 Top-5 11.7s 13156.4s

ep.C.x 24,perf,1.2 24,ond,1.8 Top-3 23.3s 10601.2s 40,perf,1.3 40,perf,2.2 Top-3 16.4s 10336.5s 88,perf,1.6 88,perf,2.0 Top-3 5.8s 11879.6s

ft.C.x 12,perf,1.2 24,perf,1.8 Top-15 23.6s 4654.6s 40,perf,2.6 40,perf,2.6 Top-1 15.7s 5535.2s 44,perf,2.8 40,perf,2.8 Top-3 9.3s 9600.8s

is.C.x 24,perf,1.2 24,ond,1.8 Top-5 2.1s 679.6s 40,perf,1.8 40,perf,2.2 Top-3 1.5s 763.7s 44,perf,2.4 40,perf,2.4 Top-3 1.4s 1293.7s

lu.C.x 24,ond,1.8 24,perf,1.2 Top-15 70.2s 17143.5s 40,perf,2.2 40,perf,2.2 Top-1 40.1s 16088.5s 84,ond,2.4 88,perf,2.0 Top-2 20.9s 24026.8s

mg.C.x 12,psave,1.2 8,ond,1.8 Top-15 79.2s 9753.9s 20,perf,2.6 20,perf,2.6 Top-1 46.5s 6537.5s 44,psave,2.0 36,psave,1.6 Top-20 43.3s 15362.8s

sp.C.x 4,ond,1.8 8,perf,1.8 Top-15 246.9s 25685.1s 12,perf,2.6 20,perf,2.6 Top-5 91.3s 17652.9s 20,perf,2.4 16,perf,2.4 Top-7 76.2s 37140.1s

ua.C.x 12,perf,1.2 12,ond,1.8 Top-8 105.8s 19210.5s 40,perf,2.2 40,perf,2.2 Top-1 50.2s 15624.2s 80,perf,2.8 40,perf,2.4 Top-10 28.8s 24685.8s

cfd 24,perf,1.8 24,perf,1.8 Top-1 26.8s 8440.1s 40,perf,2.2 40,perf,2.2 Top-1 20.5s 7720.4s 44,perf,2.4 88,perf,2.4 Top-2 12.8s 13076.3s

hw 20,perf,1.2 22,ond,1.8 Top-10 3.9s 443.6s 40,perf,1.8 40,perf,2.2 Top-7 3.7s 973.9s 52,perf,2.0 56,perf,2.4 Top-5 5.0s 2429.7s

km 24,ond,1.8 24,perf,2.4 Top-6 10.8s 1152.1s 40,perf,2.2 40,perf,2.2 Top-1 9.2s 1861.4s 88,ond,2.0 80,ond,2.0 Top-20 7.3s 3007.7s

lud 12,perf,1.2 12,perf,1.2 Top-1 37.6s 3395.6s 20,perf,2.2 20,perf,2.2 Top-1 11.8s 2468.4s 44,ond,1.6 40,perf,2.4 Top-14 19.4s 10740.8s

nw s 8,ond,1.2 8,ond,1.2 Top-1 6.9s 1299.4s 24,perf,2.6 24,perf,2.6 Top-1 11.8s 1832.7s 12,perf,2.4 12,perf,2.4 Top-1 22.3s 6943.5s

pf 24,ond,1.2 6,ond,1.2 Top-5 17.7s 5367.9s 32,perf,1.3 32,perf,1.3 Top-1 13.0s 5503.8s 16,ond,1.2 16,ond,1.2 Top-1 7.3s 7728.3s

bfs 2,ond,1.2 2,ond,1.8 Top-2 1.2s 693.9s 2,perf,1.8 4,perf,3.0 Top-6 1.2s 481.3s 2,perf,2.4 2,perf,2.4 Top-1 0.9s 880.0s

sgemm 24,ond,1.2 24,ond,1.8 Top-3 1.6s 344.3s 20,perf,2.2 16,perf,3.0 Top-10 1.3s 320.0s 40,perf,2.0 20,perf,2.4 Top-15 1.6s 1320.2s

spmv 24,ond,1.2 24,ond,1.2 Top-1 4.8s 1048.7s 20,perf,1.3 32,perf,1.8 Top-15 24.7s 7656.1s 24,ond,1.6 44,perf,2.4 Top-5 16.2s 11379.5s

cutcp 24,perf,1.2 24,perf,1.2 Top-1 1.7s 240.2s 40,perf,1.8 40,perf,2.2 Top-2 1.7s 286.9s 88,perf,2.4 88,perf,2.4 Top-1 1.5s 681.5s

mri 2,ond,1.8 2,ond,1.8 Top-1 10.0s 1608.6s 2,perf,3.0 2,perf,3.0 Top-1 10.6s 1728.7s 2,perf,2.4 2,ond,1.6 Top-5 7.2s 4014.5s

poisson 24,perf,1.8 24,perf,1.8 Top-1 8.4s 1133.3s 20,perf,2.6 20,perf,2.6 Top-1 21.6s 2090.3s 44,perf,2.4 44,perf,2.4 Top-1 30.8s 8505.5s

stream 10,psave,1.2 4,ond,1.8 Top-10 4.3s 798.6s 20,perf,3 20,perf,3 Top-1 4.0s 716.9s 24,psave,2.0 16,perf,2.4 Top-10 2.0s 1124.3s

jacobi 10,psave,1.2 10,psave,1.8 Top-11 2.6s 456.3s 20,perf,2.2 20,perf,3.0 Top-3 2.7s 455.9s 20,psave,2.0 12,perf,2.0 Top-15 1.8s 988.5s

hpccg 6,ond,1.8 18,perf,1.8 Top-2 6.6s 2257.6s 36,perf,2.6 36,perf,3.0 Top-4 5.3s 1987.2s 24,perf,2.4 44,perf,2.8 Top-6 2.3s 2799.9s

lulesh 12,perf,1.8 12,perf,1.8 Top-1 143.1s 15642.8s 12,perf,3.0 12,perf,3.0 Top-1 186.2s 21313.4s 12,ond,2.4 12,perf,2.4 Top-2 320.5s 104607.0s

fletcher 24,perf,1.2 24,perf,1.2 Top-1 13.0s 3511.8s 36,perf,1.3 36,perf,2.2 Top-3 19.7s 6095.0s 44,perf,2.0 44,perf,2.4 Top-3 21.0s 13137.9s

V. EVALUATION

A. Accuracy of NeurOPar

We start by presenting the ANN model built during the train-
ing phase of NeurOPar on each machine. During the feature
extraction step, we considered the following configurations: (i)
the number of threads ranges from 1, 2, 4, 6, ..., n, where n is
the number of hardware threads available in the architecture;
(ii) the selected DVFS governors were powersave, ondemand,
and performance; and (iii) the uncore frequency levels in the
range from min to max in steps of 0.1GHz, according to
Table III. Therefore, to generate the data used to feed the
ANN model (which is performed only once during the entire
optimization process), 504 executions per application were
performed on the Intel24 (7,560 in total); 1,197 on the Intel40
(17,955 in total), 2,430 on the Intel88 (36,450 in total), and
108 on the AMD641 (1620 in total). Given that HPC servers
have several identical machines, the feature extraction step
may be distributed among computational nodes, reducing the
time needed to collect metrics.

Given the data generated in the feature extraction step, the
following ANN models were built in the model generation
step on each machine. Intel24: ANN with four layers (input
layer with 38 neurons, 2 hidden with 16/8 neurons, and 29
neurons in the output layer); the number of epochs = 300;
batch size = 16; learning rate = 0.05; and dropout rate = 0.4.
Intel40: ANN with five layers (input layer with 52 neurons,
3 hidden with 32/16/8 neurons each, and 43 neurons in the
output layer); the number of epochs = 1000; batch size = 32;
learning rate = 0.01; and dropout rate = 0.4. Intel88: ANN
with five layers (input layer with 75 neurons, 3 hidden with
32/16/8 neurons each, and 66 neurons in the output layer); the

1it is worth mentioning that for the AMD64 system, we were not able to
dynamically change the uncore frequency dynamically

number of epochs = 400; batch size = 32; learning rate = 0.05;
and dropout rate = 0.2. AMD64: ANN with five layers (input
layer with 56 neurons, 2 hidden with 32/16/8 neurons each,
and 54 neurons in the output layer); the number of epochs =
300; batch size = 16; learning rate = 0.04; and dropout rate =
0.2.In the end, the best-trained model on each architecture after
the Model Generation step achieved an accuracy of 91%, 93%,
83%, and 91% on the Intel24, Intel40, Intel88, and AMD64,
respectively.

We depict in Table IV the combinations found by the
exhaustive search performed by the Oracle solution and the
ones predicted by NeurOPar for the twenty-five evaluated
applications on each target architecture. Each combination is
represented by <number of threads, DVFS governor, uncore
frequency level>. The next column shows the index of the
configuration predicted by NeurOPar in ranking the best
solutions. Then, the column ”Exec. Over. NeurOPar” indicates
the execution overhead, in seconds, needed by NeurOPar
to extract the features and predict the combination for each
application when it is executed for the first time in the
architecture. Finally, the last column for each processor depicts
the total time taken by the exhaustive search performed by the
Oracle to find the ideal combination for each application and
architecture.

Let us first compare the accuracy of the predictions made by
NeurOPar with the Oracle solutions. As depicted in the first
two columns of Table IV for each processor, it predicted cor-
rectly the ideal combination of TLP degree, DVFS governor,
and uncore frequency level in 40%, 56%, and 16% of the appli-
cations in the Intel24, Intel40, and Intel88, respectively. Even
though the number of exact predictions is relatively low, it is
essential to highlight the nature of the optimization problem
and the space of possible combinations per application: In the
exhaustive search, a total of 504 possible configurations were



evaluated on the Intel24, 1,197 on the Intel40, and 36,450
on the Intel88. This scenario highlights the main challenge of
finding the best configuration for each application. Therefore,
predicting a configuration capable of delivering results close to
the Oracle is essential when it cannot reach the best solution.
With that, 70% of the predictions made by NeurOPar reached
a solution within the Top-5 (among the five best found by the
exhaustive search), and 84% of the times within the Top-10.

When it comes to the EDP results, Fig. 9a compares the
results of NeurOPar to the Oracle for each application and
multicore processor. EDP is normalized to the Oracle, so
the closer the values are to 1.0, the closer the configuration
predicted by NeurOPar to the best possible one. Because
NeurOPar can predict configurations that are most of the
time in the Top-10 best results, the overall EDP difference
between it and Oracle for the entire benchmark set is only
13% on the Intel24, 4% on the Intel40, and 9% on the
Intel88. Overall, the top-10% (90-percentile) configuration
presented 31% of EDP gains over PAR STD. In the top-85
and top-80 percentile, the EDP gains were 22% and 11%
over PAR STD, respectively. In specific cases (e.g., ft.C.x and
sp.C.x on the Intel24), NeurOPar failed to deliver an EDP
close to the one delivered by Oracle. The worst scenario
happened for the sp.C.x execution on the Intel24, where
the number of threads predicted was twice the number that
delivered the best EDP (8 instead of 4, see Table IV). Since this
application has its thread scalability limited by the overhead
of shared memory communication and data-synchronization
between threads [16], assigning more resources to it other
than the optimal number of threads will only increase the
execution time and energy consumption, and hence, the EDP,
as highlighted in Figure 8. Moreover, there are cases in which
NeurOPar predicted a core and/or uncore frequency different
from the ideal (e.g., ep.C.x in all the processors). However, the
impact on EDP is smaller than predicting a non-ideal number
of threads since the TLP degree has been shown to have more
impact on the behavior of the evaluated parallel applications.

B. NeurOPar vs. State-of-the-art Strategies
Figure 9 depicts the EDP results for the entire benchmark set

with the geometric mean (gmean) considering the Intel three
processors, while Fig. 10 shoes the results for the AMD64
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Fig. 8: EDP behavior of sp.C when varying the number of

threads. DVFS governor and uncore frequency are set to the

values that deliver the best result for each number of threads.

system. We compared NeurOPar to the standard execution
of parallel applications in Fig. 9b (PAR STD), while Figures
9c and 9d compare NeurOPar to the EM-OMP and Aurora
strategies. Each bar represents the EDP achieved by NeurOPar
normalized to the method to be compared, represented by
the black line. Hence, values below the line (1.0) mean that
NeurOPar achieved better EDP than the strategy.

Let us first discuss the results on the Intel processors.
Compared to PAR STD, NeurOPar shows EDP improvements
in most cases. The best scenario for NeurOPar is for the
benchmarks that present the lowest TLP degree due to the
existence of critical sections inside their parallel regions: bfs
and mri. Hence, executing them with the maximum number
of threads (as PAR STD does) dramatically increases the
EDP. Only in specific scenarios where the best configuration
is equal to the one used by the PAR STD, both strategies
delivered similar EDP: cg.C.x on the Intel24 and lu.C.x on
the Intel88. When considering the overall geometric mean
on each multicore system, NeurOPar provided 37.2%, 36.1%,
and 53.2% of EDP improvements on the Intel24, Intel40, and
Intel88 machines, respectively.

When it comes to the online strategies (EM-OMP and
Aurora), even though they can deliver better results than the
STD PAR for many applications due to the thread scalabil-
ity and CPU/Memory behavior, the performance and energy
penalties incurred due to the learning time at runtime limit the
EDP improvements, therefore, NeurOPar achieves better EDP
results than the evaluated online strategies in most cases, as
illustrated in Figures 9c and 9d. Compared to the EM-OMP,
on the overall of all benchmarks and processors, NeurOPar
achieved an EDP 47.6% better than it. We have experimentally
found that EM-OMP spends too much time converging to a
solution because the learning algorithm starts with the TLP
degree equal to the minimum value (e.g., 1) and increases it
in steps of 1 at each iteration until its convergence. This, in
turn, penalizes the performance and energy consumption of
the applications, mainly the ones that present a high degree of
TLP. Concerning the results achieved by Aurora, NeurOPar
showed 30.1% of EDP improvements over it. The primary
sources of these improvements come from applications that
present a high TLP degree (e.g., ft.C.x and is.C.x). Even though
Aurora employs a smarter learning algorithm than EM-OMP (a
heuristic that evaluates the thread scalability and then applies
a hill-climbing-based algorithm with lateral movements) was
still not able to reach the EDP levels of NeurOPar in such
applications. Furthermore, in specific applications, where the
workload changes as the application executes, the nature of
Aurora learning algorithm can adapt the execution environ-
ment accordingly and provide better EDP than NeurOPar (e.g.,
sgemm, spmv, and cutcp). We also show in Fig. 10 the results
of all strategies on the AMD64 system. As observed, NeurOPar
also delivers better EDP results than all the evaluated strategies
by only optimizing the thread count and core frequency.

A significant challenge in proposing energy efficiency op-
timization techniques for HPC systems is to avoid a signifi-
cant degradation in the application’s performance. Hence, to
demonstrate the performance improvements achieved by using
NeurOPar while optimizing EDP, we conducted a performance



(a) NeurOPar vs. Oracle

(b) NeurOPar vs. PAR STD

(c) NeurOPar vs. EM OMP

(d) NeurOPar vs. Aurora

Fig. 9: EDP Results of NeurOPar normalized to each strategy (represented by the black line) for the entire validation set with

the geomean on each multicore system. Values below 1.0 mean that NeurOPar delivers better EDP

and energy comparison. We compared the results of NeurOPar
with all previously discussed strategies and illustrate in Fig.
11 the execution time and energy consumption, considering
the geometric mean of the entire benchmark set, for each
multicore system and configuration evaluated (Configs – all
configurations of the exhaustive search, Oracle, PAR STD,
EM-OMP, and Aurora).

Because NeurOPar predicts configurations that are most of
the time in the Top-10 best solutions (Table IV), it shows
performance and energy improvements compared to the other
strategies even targeting EDP only. On the geometric mean
of benchmarks and architectures, NeurOPar improves the
performance and energy by 17% and 33% over PAR STD;
by 18%; and 20% over EM-OMP, and by 10% and 15% over
Aurora. Furthermore, the difference in performance and energy
to the Oracle solution is only 2.3% and 7.4%, respectively.

C. Overhead of NeurOPar

The outcome of being able to predict a configuration that
is most of the time at the Top-10 is an EDP result very
close to the one achieved by the exhaustive search (Oracle)
in most cases. However, as NeurOPar profiles the application

with the default configuration and only extracts information
from hardware and software during the first time it executes,
the execution overhead of NeurOPar is significantly smaller
than the exhaustive search for the entire benchmark set (Table
IV): only 0.62%, 0.43%, and 0.20% of the time spent by the
exhaustive search for the Intel24, Intel40, and Intel88 ma-
chines, respectively. Furthermore, there is an implicit overhead
of NeurOPar regarding the database and the time to access
it. NeurOPar occupies 9.2 kB of memory space; each hash
containing the applications information adds 174 bytes; the
time to update the database with a new entry is 0.004s; and
the time for searching a combination and reading it is 0.008s.

The highest computational cost of NeurOPar relates to the
DSE to feed the ANN, which depends on the target processor:
it took 18.2, 18.9, and 45.9 hours on the Intel24, Intel40, and
Intel88, respectively. When considering the energy costs, it
spent 3.06x106 joules on Intel24, 6.62x106 joules on Intel40,
and 19.4x106 joules on Intel88. The inference time is split
into execution overhead (the time to get the features from the
application, shown in Table IV) and inference, the time to
run the predictor model. The inference time per application
was: 0.0071s on Intel24, 0.0072s on Intel40, and 0.0075s



Fig. 10: EDP Results of each strategy normalized to PAR STD (represented by the black line) on the AMD 64-Core system.

Values below 1.0 mean better results.
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Fig. 11: Energy consumption and execution time results for the evaluated strategies considering the geometric mean of all

benchmarks. To provide a better view, we cropped the plots on the x and y axes, which excluded the worst results

on Intel88. However, it is worth highlighting that the DSE
is only performed once to extract the metrics for the ANN
model. Moreover, the DSE cost can be reduced (which is not
the focus of this paper) by employing distinct strategies, such
as sampling, reduction in the input set of the application, or
distributing the DSE across identical machines.

VI. RELATED WORK

Several works have been proposed to optimize parallel
applications’ performance levels and energy consumption by
adjusting just one variable (e.g., either the TLP degree, DVFS
governor, or uncore frequency). Works that employ some
heuristic for searching for an ideal number of running threads
include Feedback-Driven Threading (FDT - [2]), MAESTRO
[17], Varuna [18], and Aurora [16]. Approaches that aim
at selecting optimal CPU frequency levels by considering
workload characteristics include SERAS [19], VDP [20],
and PL-DVFS [21]. With the availability of drivers on the
latest versions of the Linux Kernel, there have been efforts
to optimize the energy consumption of parallel workloads
by tuning the uncore frequency [22]–[25]. Works that adapt
two variables to optimize the energy efficiency of parallel
applications include Nornir [26], Conductor [27], Hoder [28],
PARMA [29], CoScale [30], and Powerspector [31].

Only a few approaches simultaneously optimize the number
of threads, the core, and the uncore frequency levels. A.
Navarro et al., [32] exploit the energy savings when dynamic
concurrency throttling, DVFS, and uncore frequency scaling
are applied for parallel task-based applications. Chadha and
Gerndt [33] propose a framework for managing search spaces
and region-level optimizations for OpenMP applications. Dif-
ferently from both works, NeurOPar does not rely on the

need for a particular compiler or specific parallel programming
model. Because of that, it can be applied to optimize any
application regardless of how it was implemented. Further-
more, the prediction model generated by NeurOPar can be
used together with online strategies by providing insights to
improve performance and energy consumption further.

VII. CONCLUSIONS AND FUTURE WORK

We have presented NeurOPar, an optimization strategy for
parallel workloads driven by an artificial neural network. It
considers hardware and software metrics associated with an
application. It predicts combinations of the number of threads,
core, and uncore frequency levels that yield the best trade-
off between performance and energy consumption. Through
experiments on four multicore processors using twenty-five
applications, we demonstrate that NeurOPar predicts combi-
nations that yield EDP values close to the best ones achieved
by an exhaustive search and improve the overall EDP by
42% compared to the default execution of HPC applications.
Moreover, we have shown that NeurOPar can enhance the
execution of parallel applications without incurring the over-
head associated with online methods. In future work, we
intend to leverage information from the predictor to adapt
the application execution at runtime and consider information
from similar applications to improve the prediction of new
applications.
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