
Toward Open Repository of Performance Portability

of Applications, Benchmarks and Models

Ami Marowka

Parallel Research Labs

Petach-Tikva, Israel

amimar2@yahoo.com

Abstract—The adoption of heterogeneous computing systems
based on diverse architectures to achieve exascale computing
power has worsened the performance portability problem of sci-
entific applications that were designed to run on these platforms.

To cope with the challenges posed by supercomputing, new
performance portability frameworks have been developed along-
side advanced methods and metrics to evaluate the performance
portability of heterogeneous applications. However, many studies
have shown that the new methods and metrics do not produce co-
herent results which yield clear conclusions that are required for
designing the hardware and software architectures of tomorrow’s
supercomputing systems.

We outline a proposal to establish an open repository of
performance portability of applications, benchmarks and models
which will be standardized, objective, and based on strict
operating and reporting guidelines. Such guidelines will ensure
a fair, comparable and meaningful measure of the performance
portability while the requirement for a detailed disclosure of the
obtained results and the configuration settings will ensure the
reproducibility of the reported results.

Index Terms—Performance Portability, Performance Effi-
ciency, Metrics, SPEC

I. INTRODUCTION

Emerging performance portability frameworks such as

Kokkos [2], Raja [1] and SYCL [3] alongside mature hetero-

geneous high-level programming models such as OpenMP [5],

OpenACC [4] and MPI [6] are the main software development

infrastructures that will be available for software engineers to

build scientific applications in the era of exascale computing.

The interplay between the never-ending demand for high

performance applications, on the one hand, and the demand

for portability and productivity of those applications, on the

other hand, becomes more complex as hardware architectures

become more heterogeneous. The performance portability

frameworks developed in recent years haved shown impressive

progress in everything related to functional portability with the

appearance of high-level cross-platform programming models

based on the approach of backend compilers, such as Kokkos,

and a single-source C++ standard for heterogeneous comput-

ing, such as SYCL.

Despite all this impressive progress, performance portability

still poses challenging technological issues to software and

hardware architects. Dealing with these issues requires, first

and foremost, an agreed definition for the term performance

portability and agreed metrics for measuring and evaluating

the degree of performance portability of heterogeneous appli-

cations, benchmarks, and higher-level heterogeneous program-

ming models.

Furthermore, in order to measure performance portability

in a way that it will be possible to compare different im-

plementations of the same application in a meaningful and

objective manner, clear and agreed upon guidelines and rules

are needed for how the measurements should be performed and

reported so that they can be reproduced. In addition, the results

should be available and accessible to the High Performance

Computing (HPC) community in an open repository.

Of all the necessary requirements for having a method-

ological framework for measuring and comparing performance

portability, it seems that regarding the definition of the term

performance portability there is a broad consensus [7]:

Definition: performance portability

A measurement of an application’s performance

efficiency for a given problem that can be executed

correctly on all platforms in a given set.

The definition explicitly states that performance efficiency

is the ultimate measure of performance portability. Therefore,

several approaches were proposed to measure performance

efficiency alongside several metrics to calculate performance

portability [7], [8], [11]–[13]. And if we add to these facts that

there is no agreed framework of rules and guidelines on how to

measure and calculate performance efficiency and performance

portability, then it is not surprising that it is not possible to

draw informed insights from the dozens of studies that have

been done in recent years, and it would not be an overstatement

to claim that the current situation is a complete mess that can

be reorganized.

This paper is intended to delineate a way to organize future

studies of performance portability under an uniform frame-

work of rules and guidelines for measuring, calculating and

reporting performance portability of applications, benchmarks

and performance portability frameworks. We demonstrate our

approach using the Standard Performance Evaluation Cor-

poration (SPEC) benchmarks [14] as a way to solve the

disorganization that exists in this important research area.

However, other similar frameworks can be appropriate alter-

native infrastructures for the ideas presented in this paper.

The main contribution of this paper lies in the novel

idea of how to integrate the future studies of performance

portability in an existing and dynamic framework that has

proven itself over three decades and, as we will see later,

it already has the basic definitions. Furthermore, we would

like to emphasize that in this paper we are only sketching the

proposed framework and the examples we use to demonstrate

the calculation of the performance portability are based only

on the measurements that appear within the current SPEC

repository. We would like to remind the reader that SPEC was

designed to be a performance benchmarking framework for

HPC platforms and not performance portability benchmarking

framework.

With that goal, we make the following contributions:

• We present the main problems which cause the inconsis-

tent measurement, calculation, and reporting of perfor-

mance portability results in the studies that have been

carried out in recent years and which yield inconsisten-

cies.

• We introduce new types of performance efficiencies in

addition to the existing ones in order to enable analysis of

performance portability of applications and models from

different perspectives.

• We demonstrate the calculation of performance portabil-

ity of applications and benchmarks based on currently

published SPEC performance measurements.

The rest of the paper is structured as follows. Section 2

presents the motivation to establish an orderly framework

for examining the performance portability of applications.

Section 3 presents related studies. Section 4 presents the SPEC

benchmarks framework. Section 5 presents our suggestion to

integrate in SPEC the evaluation of the performance porta-

bility. Section 6 demonstrates the calculation of performance

portability of applications that are currently appear in SPEC

and Section 7 presents conclusions.

II. MOTIVATION

In this section, we present the current main performance

portability issues that call for organizing this research field

in order to enable informed conclusions to be drawn from

future studies. Furthermore, due to these issues there is fun-

damental motivation to maintain a rigid framework of rules

and regulated measurement mechanisms for future studies of

performance portability whose results will be stored in an open

repository accessible to the HPC community.

The report of the first Department of Energy (DOE) Perfor-

mance, Portability and Productivity annual meeting in 2016

showed clearly that there is no consensus on a workable

definition of the performance portability term [15]. This sit-

uation led researchers to propose the definition presented in

the introduction and which has been widely accepted in the

HPC community. This meeting motivated Pennycook et. al. to

propose the PP metric to calculate the performance portability

based on the harmonic mean [7]. But this metric proved itself

to be problematic as was articulated in many studies [8], [13],

[16]–[18].

The main claims against the PP metric were that it is

unintuitive, unfamiliar, loses information, difficult to use, and

the performance portability scores it yields are unrealistic.

Therefore, the P̄̄P metric based on the arithmetic mean was

proposed, which actually solved the above problems and

yielded much more realistic results without losing information

[8]. The designers of the PP metric accepted some of the claims

but left the rest of the problems unaddressed [11]. Currently,

the situation is that there are studies that still use the PP metric

but not according to the original definition in order to avoid

the aforementioned problems [19]. For example, based on the

PP metric, if one platform does not support an application, it

suggests that the performance portability of the application

is zero. This, however, just does not make sense because

there is always a platform out there that does not support

a given application. Therefore, what actually happens is that

the metric is used in such a way that only those platforms

which support the application are taken into account [18], [19].

Otherwise, the performance portability scores will be zero and

thus meaningless, as has happened in many studies [20]–[22].

The current situation is that there are currently two metrics,

including one that is still controversial, which is an undesirable

situation.

Another issue is related to the performance efficiency ap-

proaches that are currently in use: application efficiency and

architectural efficiency approaches. The widespread claim is

that it is not clear which approach to use, since each one

produces different results [16]. Although the two approaches

complement each other, the situation is still far from clear for

many researchers . The best indication for this claim is that, to

the best of our knowledge, there has not yet been even a single

study that has used both approaches for a given application-

platform pair and then performed an appropriate analysis of the

results. In Section 5 we present different types of each of the

approaches that can be included in the SPEC framework, but

not necessarily all of them will be mandatory. Undoubtedly,

a combination of types from both approaches provides more

insights of the performance portability of a given application.

III. RELATED WORK

This section presents a few related studies that have criti-

cized the PP metric and those that have proposed solutions for

improving the metric. Furthermore, this section elaborates on

the issues presented in the previous section by presenting the

misunderstandings of different researchers regarding how to

calculate the performance portability of applications.

Dreuning et al. convincingly presented some of the dilem-

mas that the PP metric poses to developers and the ambiguity of

the results obtained [16]. They demonstrated the usability and

the usefulness of the PP metric by implementing five OpenACC

applications using a set of three platforms (one CPU and two

GPUs). The first question they asked themselves was: Which

measure to use, bandwidth or operational throughput? The

solution they found was to use the Roofline model [23] to

calculate the ratio of the application and the hardware oper-

ational intensity values to determine whether the application

was compute- or memory-bound and accordingly whether to

use bandwidth or operational throughput. The second question

was: Which performance efficiency to use, application or

architectural efficiency? From analyzing the results of their

experiments, they concluded that to assess whether the per-

formance of a given application can be improved further,

architectural efficiency alone is not sufficient, and a diagnosis

of what the application efficiency provides is also required.

They also noted that the harmonic mean tracks the low

values of the CPUs even though the values of the GPUs are

significantly higher. We showed that this observation is typical

of the PP metric, but not of P̄̄P, which is why we recommend

always to present the scores for CPUs and GPUs separately

[8].

Siklosi et al. examined the performance of Stencil appli-

cations on hybrid CPU-GPU systems [9]. They found that

using the PP metric to calculate the performance portability

of applications is not intuitive. In their opinion, the reason for

this is that if architectural efficiency is used, then the PP metric

tends to track the low values and therefore the improvement

of a hybrid system is not reflected in the calculated PP score.

However, when using application efficiency, a hand-tuned

baseline implementation is required, which to the best of their

knowledge does not exist.

Daniel and Panetta showed that the PP metric is easily

affected by the problem size [17]. To address this suscepti-

bility, they proposed an alternative metric called Performance

Portability Divergence (PD) as the arithmetic mean of RMS

divergences across a set of platforms H :

PD =
∑

i∈H
ΔRMS

|H|

where the divergence RMS, ΔRMS , is the root mean square

of performance distances between a set of input sizes and Per-

formance Distance is the relative error in performance measure

between two applications solving the same problem with the

same platform and input size. The performance measure used

by Daniel and Panetta is the application efficiency.

The PD metric is different from the PP and P̄̄P metrics.

It does not capture the performance and portability of an

application across platforms. The PP and P̄̄P metrics calculate

the average performance efficiencies of a given application on

top of a given architecture set. On the other hand, the PD

metric calculates the average variability of the performance

efficiencies of a number of input sizes of a given application

on top of a given set of architectures. These are therefore two

distinct products. The PD metric can be a complementary

metric to PP and P̄̄P that shows the variance obtained from

different input sizes.

Sedova et al. proposed a performance portability metric

denoted by the symbol PPMD , where MD stands for Molec-

ular Dynamics [10]. It measures the contributions of non-

portable components to an application’s performance. The

PPMD metric is the harmonic mean of the speedups of the

application’s components that are low-level, optimized and

non-portable.

Sedova et al. do not explain why they chose to use the

harmonic mean. Unlike the PP and P̄̄P metrics, the PPMD

metric is calculated for a particular architecture rather than

TABLE I: Comparison between the performance portability

scores obtained by PP vs. P̄̄P metrics in the study from [18].

Platforms

Kernel SKX Gen9 V100 PP S.D.(HM) P̄̄P S.D.(AM)

LUD 35.89% 48.71% 49.80% 43.81% 8.39 44.80% 6.31

BP-AW – 81.73% 91.66% 86.41% 7.00 86.67% 4.96

SC 9.97% 50.58% 92.90% 22.94% 25.93 51.15% 33.85

KNN 78.15% 40.32% 35.50% 45.61% 16.82 51.32% 19.07

HS 16.47% 96.03% 72.40% 35.33% 35.10 61.63% 33.36

a set of architectures. The PPMD metric purports to evaluate

performance portability but in practice it measures the price

in performance that must be paid to make the application

portable.

Bertoni et al. studied how several OpenCL implementations

of the Rodinia Benchmarks performed across three platforms

and used the PP metric to estimate the performance portability

of the tested implementations [18]. They claimed that the

PP metric was insufficient for this purpose because it scored

different implementations equally despite the fact that their

performance efficiencies were very different. Therefore, they

proposed to measure the standard deviation of the performance

efficiencies to add another perspective on the performance

efficiencies distribution across platforms.

It is argued here that using the P̄̄P metric improves the

diagnoses. Table I shows the performance efficiencies of

the various implementations on the platforms used and the

scores of the PP and P̄̄P metrics side by side along with

their standard deviations. Clearly, the scores of the P̄̄P metric

differentiate better which of the implementations have better

performance portability and it also more reliably reflects the

performance efficiencies from which the P̄̄P values are derived.

Pay particular attention to how the scores of the SC and HS

kernels have changed significantly.

Bertoni et al. chose to calculate the performance efficiencies

in relation to the Roofline peak performance. They describe in

detail the methodology used to construct the Roofline graphs,

thus demonstrating how complex and exhausting the process

is.

IV. SPEC BENCHMARKS

In this section we present the SPEC benchmark suites that

are relevant to the topic of the present paper. We will focus on

describing the main set of run-rules to which an implementer

needs to adhere when using these benchmarks for measuring

the performance of a given computing system. These rules

and guidelines, or similar, can be also adopted for evaluating

performance portability. In the next section we present our

suggestion for extending the SPEC infrastructure for assessing

the performance portability of applications and heterogeneous

programming models.

SPEC is a three-decade-old consortium formed to develop

standardized and realistic benchmark suites for rating and

comparing the performance of contemporary computing plat-

forms ranging from a single processor to large-scale super-

computers of thousands of cores. Three benchmark suites are

relevant to the topic of this paper: SPEC ACCEL, SPEC OMP

2012, and SPEChpc 2021, each of which is described below.

The SPEC ACCEL benchmark suite was designed to

test the performance of computationally intensive parallel

applications using three programming models: OpenCL (19

programs), OpenACC (15 programs), and OpenMP 4 target

off-loading (15 programs).

The SPEC OMP2012 benchmark suite provides 14 scien-

tific and engineering application codes based on the OpenMP

3.1 standard for measuring the performance of shared-memory

parallel machines. The applications were designed in mind to

be portable to a variety of CPU architectures and operating

systems.

SPEChpc 2021 provides large-scale scientific applications

using the pure MPI standard or hybrid MPI+X, where X can be

OpenMP or OpenACC. It contains four suites at different sizes

of workload (tiny, small, medium, and large) for evaluating

large-scale systems at different sizes, ranging from a single

node to hundreds of nodes.

SPEC’s methodology is to provide the vendors of computing

systems with a simple tool for measuring the performance of

their products that will be standardized, objective, and based

on strict operating and reporting guidelines. The requirement

that the benchmark will be run and reported according to a

set of rules makes the results comparable, meaningful, and

reproducible. Each benchmark suite is available in source code

that has already been ported to various platforms. The source

code needs only to be compiled for the target system and

then to be tuned for obtaining the best results possible. Each

benchmark is comprised of a wide range of representative

scientific programs ranging from basic kernels and mini-apps

to large weather modeling applications.

SPEC allows performance tuning at compilation time and

at runtime. Performance tuning can be done by using optimal

settings of the compiler options or selecting the number of

ranks and threads per rank to obtain the best performance.

According to SPEC, two levels of optimization and compi-

lation are allowed:

Base metrics. This level enforces strict rules of unaggres-

sive compilation such as using the same flags in the same order

for all programs of a given language in a benchmark suite.

It demands a common set of optimizations and environment

settings to all the programs in a suite, but it allows reordering

of arithmetic and floating-point operands. Moreover, at the

base level the same compiler must be used for all programs

of a given language within a benchmark suite and the same

libraries, compiler, and linker options.

Peak metrics. This level is optional and allows more

flexibility in choosing different compiler options for better

performance tuning. At peak level, different compilers may be

used for all programs of a given language within the bench-

mark suite. All flags or options that affect the compilation may

be different for each benchmark in the benchmark suite.

In principle, SPEC policy does not allow any modification

of the source codes except under specific and restricted cir-

cumstances. The SPEC rules are intended to ensure a fair and

objective measure of the performance of HPC platforms. For

example, SPEC ACCEL allows source code modifications for

the peak-level runs of OpenACC and OpenMP benchmarks.

Changes to the compiler directives and source code are permit-

ted for portable optimizations to achieve improved scalability.

Changes in the algorithm are, however, not permitted. Vendor-

specific extensions are allowed if they are portable.

Examples of allowed source code modifications and opti-

mizations are loop reordering, reshaping arrays, and memory

distribution. On the other hand, language extensions and

adding calls to vendor-specific functions are not allowed.

Furthermore, SPEC allows runtime dynamic optimizations

techniques under the control of hardware and software. Such

optimizations include improving the instruction cache perfor-

mance by rearranging the code, value prediction, and reallo-

cation of functional units among hardware threads.

A fundamental principle of SPEC’s methodology is given to

the requirement of a detailed disclosure of the obtained results

and the configuration settings for reproducing benchmark

results. Usually, a report of the benchmark results consists

of three runs and the median of these runs. It must describe

the performance methods that were used and the source-

code modifications, if there were any, as well as a general

description of each modification applied.

Finally, it is important to note that SPEC encourages using

the benchmark suites in academic and research institutions

and therefore they are available free of charge for research

purposes.

V. EXTENDING SPEC REPOSITORY

In this section we present the basic concepts and features for

upgrading the SPEC infrastructure for rating and comparing

the performance portability of applications, benchmarks and

models from different perspectives and different application-

architecture pair spaces within SPEC repository.

Before we discuss and specify how performance portability

measures can be integrated within the SPEC framework, we

have to decide which performance portability metric to apply.

Thereafter, we have to decide which performance efficiency

approaches we want to use and the performance efficiency

types that will be required in order to present the performance

portability from different points of view. Finally, we have to

recommend which of them will be optional and which ones

will be mandatory.

A. Performance portability

The search for a better performance portability metric is

ongoing, and is one of the challenging research areas of the

current generation of high-performance heterogeneous com-

puting. The most promising metric proposed to date is the P̄̄P

metric [8]. The P̄̄P metric is defined as the arithmetic mean

of an application’s performance efficiency observed across a

set of platforms from the same architecture class. Formally,

for a given supported set of platforms S ⊆ H from the same

architecture class, the performance portability of a case-study

application a solving problem p is:

P̄̄P(a, p, S,H) =

{∑
i∈S

ei(a,p)

|S| if |S| > 0

0 otherwise
(1)

where S := {i ∈ H |ei(a, p) > 0} and ei(a, p) is the

performance efficiency of case-study application a solving

problem p on platform i.

A comprehensive research study based on dozens of prac-

tical studies showed that the P̄̄P metric has the key properties

of a good performance portability metric [8], [12]. These

studies show that the P̄̄P metric is objective, comparable,

consistent, lossless, easy to use, intuitive, and familiar to users.

We recommend adoption of the P̄̄P metric for calculating the

performance portability scores of applications tested within the

SPEC framework.

We would like to bring to the reader’s attention a special

added value obtained from the incorporation of the perfor-

mance portability assessment within the SPEC framework and

concerning the set of platforms, H , in the definition. From the

dozens of studies conducted on the subject of performance

portability in recent years, it appears that the average number

of platforms on which the studies were based on was four,

while the maximum number was 14. Needless to say, the larger

the number of platforms, the more accurate the assessment

of performance portability. Consolidation of the performance

portability assessment within the SPEC framework will in-

crease the number of platforms in H because over time it

will include all the platforms that support a given application.

Furthermore, the evaluation of the performance portability

scores of any given application on any given platform will

be done with the same rules and guidelines, and it will be

possible to follow the changes of the performance portability

over time.

B. Performance efficiency

Recall the definition of performance portability:

A measurement of an application’s performance

efficiency for a given problem that can be executed

correctly on all platforms in a given set.

It follows from the definition that it is based on measuring

the performance efficiency of a given application on a specific

platform:

Definition: Performance Efficiency

A measurement of an application’s achieved perfor-

mance as a fraction of the baseline performance.

when performance is usually measured by runtime or

throughput. The baseline performance can be the theoretical

or practical peak performance, such as the theoretical peak

throughput of a specific GPU or its Roofline peak throughput

[23].

Two performance efficiency approaches have been proposed

to date in the scientific literature: application efficiency and

architectural efficiency.

These two approaches present two different perspectives on

the relative performance of a given application running on

a particular platform and both yield different scores. Each

of them examines the performance of a given application in

relation to different reference performances. The application

efficiency is measured in relation to the performance of the

fastest known implementation on that platform, while the

architectural performance is measured in relation to the theo-

retical or practical performance that can possibly be achieved

on the given platform. Now let us define these two approaches

formally.

Definition: application efficiency

The achieved performance, on a given platform,

normalized relative to the best-known performance

of an application’s implementation on the same

platform.

Definition: architectural efficiency

The application’s achieved throughput on a given

platform normalized relative to the peak throughput

of the given platform.

C. Application efficiency approach

SPEC’s base metrics and peak metrics are actually the

respective equivalents of the achieved performance and peak

performance that define the performance efficiency ratio.

Hence, we can define the SPEC efficiency as follows:

Definition: SPEC efficiency

The ratio of SPEC’s base metrics to SPEC’s peak

metrics.

Therefore, the first step that needs to be done in order to

extend SPEC for performance portability is to modify the run-

rules and the reporting of the results so that the measurements

of the peak metrics will not be optional but mandatory, at least

for the purpose of calculating performance portability.

Application efficiency is a very popular measure because it

is simple and easy to use [17], [19], [22]. All that is required

is to measure the runtime of the application, on the given

platform, and then calculate its fraction relative to the runtime

of the fastest known portable application on the same platform.

The problem is that we can never be sure if we have at hand the

fastest implementation. And so, it can happen that immediately

after we have published our research, a faster implementation

is found which makes the results of our findings outdated.

Furthermore, from the studies that have been done in

recent years and which have used this measure, it appears

that researchers always chose as the baseline performance

the performance of the implementation that showed the best

performance from three or four implementations studied in

their research and not from those known in the literature [17],

[19]. If we add the observation that different studies used

different compilers, compiler options, input sizes, and that

the source codes are not always available, it is clear that this

situation leads to non-uniformity and incoherence of the results

and difficulties in reproducing them.

Such situations cannot occur when we restrict ourselves to

a rule-based and supervised framework like SPEC. If an im-

plementation with better performance enters the repository, the

performance portability calculation of the relevant applications

will be automatically updated. Such an automatic update is

possible if dynamic web pages are used such as those of a

spreadsheet that enables automatic update of the calculation

of a given function if one of its variables changes its value.

Such a solution allows for a common performance reference

in the repository at any point in time for all applications and

benchmark suites. In this way, the database of performance

portability reports will remain uniform and consistent while

allowing an objective comparison between applications with

the possibility of reproducing the various results.

A restricted definition of application efficiency was first

introduced in [12] and was used to calculate the performance

portability of portable programming models. The definition

was formulated after a survey based on hundreds of case

studies which showed that most researchers use this measure

in practice. This measure reflects how far the performance of

a given portable application is from the peak practical perfor-

mance possible, or in other words, the cost in performance

that a portable application sacrifices to be portable.

Therefore, in order to integrate this measure into the SPEC

framework, the best performance of a low-level, unportable,

and optimized implementation that appears in the SPEC

repository needs to be selected as the baseline performance.

In addition, it is required that if a faster unportable and

optimized implementation will appear in the future in SPEC,

an automatic update of the performance portability scores

of all relevant applications in the SPEC’s repository will be

updated accordingly.

We define three types of performance efficiency according

to a reference application whose performance is used as the

baseline performance. In each of the efficiency types, the

reference application has a different level of abstraction, so its

performance is directly derived from its ability to utilize the

hardware resources of the platform effectively. The following

application efficiency types are described in increasing order of

the peak achievable performance of the reference application.

Definition: application efficiency-Type 0

(SPEC efficiency)

The achieved SPEC’s base metrics of a given

portable application-platform pair normalized rel-

ative to the SPEC’s peak metrics on the same

application-platform pair.

All SPEC’s run-rules and guidelines apply for measuring

this type of performance efficiency. It yields high values since

the optimization level of the SPEC’s peak metrics is usu-

ally restricted to choose different compiler options for better

performance tuning or by making changes to the compiler

directives.

In the next section we will demonstrate, using SPEC

efficiency, how to calculate the performance portability of

applications and benchmarks from data taken from the current

SPEC repository.

Definition: application efficiency-Type 1

The achieved performance of a given portable

application-platform pair, normalized relative to the

best-known performance of any portable application

on the same platform in the SPEC repository.

Here the baseline performance is the performance of any im-

plementation of the application that uses another performance

portability framework that achieved the best performance on

the same platform within SPEC repository. For example,

the performance of an OpenACC implementation, on an

NVIDIA V100 GPU, normalized relative to the performance

of a Kokkos implementation that outperforms the OpenACC

implementation on NVIDIA V100.

This type of application efficiency expands the space of the

application’s implementations from which the best baseline

performance can be chosen. This space includes all the imple-

mentations of the application in any performance portability

framework on the same platform within SPEC repository.

Definition: application efficiency-Type 2

The achieved performance of a given portable

application-platform pair, normalized relative to the

best-known performance of any unportable applica-

tion on the same platform in the SPEC repository.

This type of application efficiency expands the space of the

application’s implementations even further. Here the baseline

performance can be the performance of any application’s

implementation on the same platform, and not necessarily a

portable one. For example, the performance of an OpenACC

implementation on an NVIDIA V100 normalized against a

CUDA implementation that outperforms the implementation

of OpenACC on NVIDIA V100.

D. Architectural efficiency approach

Architectural efficiency measures the extent to which the

application utilizes the resources of the platform on which

it is implemented in relation to two reference levels of per-

formance: one is the peak theoretically possible performance

level, that is, an unattainable upper-bound performance level,

and the other is the practical peak performance level, that is,

a performance level which can be achieved through the opti-

mization of all platform resources. Therefore, we distinguish

between two types of performance efficiency measures accord-

ingly to the peak performance reference used: theoretical peak

throughput or practical peak throughput.

Definition: architectural efficiency-Type 0

The achieved throughput of a given portable

application-platform pair, normalized relative to the

peak theoretical throughput of the given platform.

Architectural efficiency is relatively simple to measure.

All that needs to be done is to measure the throughput,

in GFLOP/s or GB/s, of the application using a profiling

tool and then calculate its fraction relative to the theoretical

performance published by the vendor. Practitioners do not

like this measure because its results yield a theoretical score.

Therefore, they prefer more practical measure such as using

the Roofline model.

TABLE II: Summary of the different types of the performance efficiency approaches.

Performance Efficiency Approach

Application Efficiency Architectural Efficiency

Relative Baseline Application Relative Baseline Application

Type Application Platform Performance Application Platform Performance

0 same same peak metrics same same peak theoretical

1 any portable same best-known same same peak Roofline

2 any unportable same best-known - - -

TABLE III: The list of SPEC OMP2012 applications.

Benchmark Language Application domain

350.md Fortran Molecular Dynamics

351.bwaves Fortran Fluid Dynamics

352.nab C Molecular Modeling

357.bt331 Fortran Fluid Dynamics

358.botsalgn C Protein Alignment

359.botsspar C Sparse LU

360.ilbdc Fortran Lattic Boltzmann

362.fma3d Fortran Mechanical Simulation

363.swim Fortran Weather Prediction

367.imagick C Image Processing

370.mgrid3311 Fortran Fluid Dynamics

371.applu331 Fortran Fluid Dynamics

372.smithwa C Pattern Matching

376.kdtree C++ Sorting and Searching

TABLE IV: The list of platforms used for the case study and their configuration.

Platform No. Platform Configuration

1 Intel Xeon E5-2670 16 cores, 2 chips, 8 cores/chip

2 Intel Xeon E5-2697 v2 24 cores, 2 chips, 12 cores/chip

3 Intel Xeon E7-8890 v3 72 cores, 4 chips, 18 cores/chip

4 Intel Xeon E7-8890 v3 288 cores, 16 chips, 18 cores/chip

5 Intel Xeon Phi 7210 64 cores, 1 chip, 64 cores/chip

6 Intel Xeon Gold 6154 576 cores, 32 chips, 18 cores/chip

7 Intel Xeon Platinum 8260L 48 cores, 2 chips, 24 cores/chip

8 Intel Xeon Platinum 9242 96 cores, 2 chips, 48 cores/chip

9 AMD EPYC 9654 192 cores, 2 chips, 96 cores/chip

10 SPARC T7-4 128 cores, 4 chips, 32 cores/chip

Definition: architectural efficiency-Type 1

The achieved throughput of a given portable

application-platform pair, normalized relative to the

peak Roofline throughput of the given platform.

The Roofline model is a visualization tool that shows

the type of peak throughput that might be expected for an

application with a given arithmetic intensity. The Roofline

graph is a line whose slope is associated with the peak memory

bandwidth throughput (GB/s), and then a flat part that is

associated with peak flop throughput (GFLOP/s).

Unfortunately, it is a time-consuming and challenging task

to estimate the platform features needed for a Roofline analysis

[18]. Moreover, due to the lack of standardization of the profile

tools and the progressively optimized micro-benchmarks used

for generating Roofline graphs, multiple graphs tend to be

created with different properties for the same platform [8].

This problem can be solved by very rigorous rules and

guidelines that will dictate how Roofline graphs should be

created. These rules will determine in detail which profiling

tools and progressively optimized micro-benchmarks to use for

generating Roofline graphs and which platform features are

needed for a Roofline analysis. There are tools on the market

that can greatly facilitate the process of creating a Roofline

graph, for example Intel Vtune [24] or Empirical Roofline

Tool (ERT) [25]. At the end of the process, SPEC commit-

tee members will approve which Roofline graph to use for

measuring the Roofline efficiency for all SPEC applications.

Bottom line. The performance efficiency types presented in

this section enlighten different and complementary perspec-

tives of an application’s performance portability. At the same

time, multiple types can sometimes be confusing rather than

helpful. It is certainly possible to choose fewer performance

efficiency types or to decide that some of them will be manda-

tory and others optional. We will leave this decision to the

SPEC committee as part of the drafting of the final document.

Table II presents a concise summary and comparison of the

different types of the performance efficiency approaches.

In the next section we show and demonstrate how to calcu-

late the performance portability of applications and benchmark

suites using the SPEC efficiency and P̄̄P metric.

VI. EXAMPLES BASED ON SPEC REPOSITORY

In this section we present examples based on the perfor-

mance of applications of SPEC OMP 2012 benchmark that

appear within the current SPEC repository. We calculate the

performance portability score of three applications and of

the whole benchmark itself. We used SPEC’s performance

efficiency and the P̄̄P metric for calculating the performance

portability scores.

Since the current SPEC repository is performance oriented

and not performance portability, we were forced to present

fewer examples than we would like. For example, the perfor-

mance reporting of the most of the platforms in the current

SPEC repository does not include the SPEC’s peak metrics

since the reporting of this performance score is optional.

Therefore, we were unable to present examples of additional

TABLE V: Performance Portability of the Molecular Dynam-

ics application.

350.md Molecular Dynamics

Platform No. Base Peak Efficiency

threads seconds thread seconds %

1 32 975 32 803 82

2 48 585 48 483 83

3 144 197 144 161 82

4 576 59.5 576 38.6 65

5 256 537 256 434 81

6 513 5.6 576 5.33 95

7 96 33.4 96 33.3 99

8 192 16.9 192 16.8 99

9 384 31.3 192 30.5 97

10 256 153 768 111 72

P̄̄P = 85.5%

TABLE VI: Performance Portability of the Protein Alignment

application.

358.botsalgn Protein Alignment

Platform No. Base Peak Efficiency

threads seconds thread seconds %

1 32 1276 32 1235 97

2 48 808 48 779 96

3 144 287 144 280 98

4 576 74.6 576 74.5 99

5 256 1133 256 1136 100

6 513 29.5 576 26.7 90

7 96 304 96 286 94

8 192 141 192 136 96

9 384 49.8 384 49.8 100

10 256 166 256 165 99

P̄̄P = 96.9%

programming models, such as OpenACC, on state-of-the-art

platforms. Furthermore, the performance portability scores

presented in this paper were calculated only for the SPEC

Efficiency since the current SPEC repository lacks the data

needed to calculate the performance portability based on all the

performance efficiency approaches and their types. However,

the purpose of the examples is primarily to demonstrate the

ideas presented in this paper.

Table III shows the 14 applications of the SPEC OMP

2012 benchmark suite written using OpenMP 3.1 with a short

description of the domain of each one of the applications.

Table IV shows the 10 platforms that were used for our

examples and their configurations. It can be observed that

all the platforms are SMP machines with 16 cores and up to

576 cores. Tables V, VI, and VII show the SPEC performance

efficiencies measured for molecular dynamics, protein align-

ment, and weather prediction applications, respectively. The

performance portability scores that were obtained are 85.5%,

96.9%, and 93.7%, respectively, which are considered high

scores but quite expected because the reference performance

of the SPEC efficiency was not achieved after aggressive

optimizations. Table VIII shows the performance portability

score, 91.4%, of the whole SPEC OMP 2012 suite on the

TABLE VII: Performance Portability of the Weather Predic-

tion application.

363.swim Weather Prediction

Platform No. Base Peak Efficiency

threads seconds thread seconds %

1 32 855 16 771 90

2 48 667 24 608 91

3 144 219 72 212 96

4 576 79.3 288 77.8 97

5 256 233 256 220 94

6 513 28.4 567 26.5 90

7 96 310 48 298 96

8 192 153 96 145 94

9 384 87.9 192 82.9 94

10 256 146 128 140 95

P̄̄P = 93.7%

TABLE VIII: Performance Portability of SPEC OMP2012

suite.

SPEC OMP 2012

Platform No. Efficiency %

1 94

2 91

3 94

4 86

5 98

6 95

7 82

8 84

9 96

10 94

P̄̄P = 91.4%

given platforms.

VII. CONCLUSIONS

The extensive collection of independent studies done in

recent years to study the performance portability of appli-

cations is not based on common rules and guidelines. As a

result, there is great difficulty in comparing the findings of

the various studies in order to reach informed conclusions

and insights that will allow software and hardware architects

to improve the performance portability and productivity of

scientific applications in the future in light of the constant

acceleration in technological innovations and the design of

heterogeneous systems.

In this paper we have presented a proposal for building an

appropriate repository for performance portability within an

existing SPEC framework. Such a repository will be standard-

ized, objective, and based on strict operating and reporting

guidelines. Such guidelines will ensure a fair, comparable and

meaningful measure of the performance portability while the

requirement for a detailed disclosure of the obtained results

and the configuration settings will ensure the reproducibility

of the reported results.

We also demonstrated how to calculate the performance

portability of applications and of an entire benchmark suite

that are currently available in SPEC repository. In our future

work, we plan to develop a series of benchmarks in order to

present an effective comparison of different performance effi-

ciency approaches to calculate the performance portability of

applications, benchmarks and models based on the definitions

presented in this paper.

REFERENCES

[1] R. D. Hornung, and J. A. Keasler. 2014. The RAJA Portability Layer:

Overview and Status. LLNL-TR-661403.

[2] H. Carter Edwards, Christian R. Trott and Daniel Sundrland, Kokkos: En-

abling manycore performance portability through polymorphic memory

access patterns, Journal of Parallel and Distributed Computing, 2014.

[3] The Khronos SYCL Working Group, SYCL 2020 Specification, 5 2022.

[4] OpenACC: Directive-Based Parallel Programming Model for Accelera-

tors. Available: http://www.openacc.org (2018).

[5] OpenMP. OpenMP 4.5 Specifications.

http://www.openmp.org/specifications/. Accessed: 2017-02-11.

[6] Message Passing Interface Forum. 2021. MPI: A Message-Passing
Interface Standard, Version 4.0. https://www.mpi-forum.org/docs/.

[7] S. J. Pennycook, J. D. Sewall, and V. W. Lee, ”Implications of a Metric
for Performance Portability,” Future Generation Computer Systems, aug
2017. [Online]. Available: https://doi.org/10.1016/j.future.2017.08.007

[8] A. Marowka,, Reformulation of the Performance Portability Metric,

Software: Practice and Experience, 2022; 52(1): 154-171.

[9] B. Siklosi, I. Z. Reguly, and G. R. Mudalige, Heterogeneous CPUGPU

Execution of Stencil Applications, in 2018 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 2018, pp. 71-80.

[10] A. Sedova, J. D. Eblen, R. Budiardja, A. Tharrington, and J. C. Smith,
High-Performance Molecular Dynamics Simulation for Biological and

Materials Sciences: Challenges of Performance Portability, in 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2018, pp. 1-13.

[11] S. J. Pennycook and J. D. Sewall, ”Revisiting a Metric for Performance
Portability,” 2021 International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2021, pp. 1-9.

[12] A. Marowka, On the Performance Portability of OpenACC, OpenMP,

Kokkos and RAJA, In ACM Proceeding of HPCAsia 2022 January 2022,
Pages 103-114.

[13] A. Marowka, New Insights on the Revised Definition of the Performance

Portability Metric Proceeding of PPAM 2022, LNCS 13827, pp. 1-12,
2023.

[14] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org.

[15] DOE Centers of Excellence Performance Portability Meeting, April 19-
21, 2016, Glendale, AZ, Post-meeting Report.

[16] H. Dreuning, R. Heirman, and A. L. Varbanescu, A Beginner’s Guide to

Estimating and Improving Performance Portability, in High Performance
Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam, Eds. Cham:
Springer International Publishing, 2018, pp. 724-742.

[17] D. F. Daniel and J. Panetta, On Applying Performance Portabil-

ity Metrics, in 2019 IEEE/ACM International Workshop on Perfor-
mance,Portability and Productivity in HPC (P3HPC), 2019, pp. 50-59.

[18] C. Bertoni, J. Kwack, T. Applencourt, Y. Ghadar, B. Homerding, C.
Knight, B. Videau, H. Zheng, V. Morozov, and S. Parker, Performance

Portability Evaluation of Opencl Benchmarks Across Intel and Nvidia

Platforms, in 2020 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), 2020, pp. 330-339.

[19] Deakin, T. J., Poenaru, A., Lin, T., and Mcintosh-Smith, S. N. (Ac-
cepted/In press). Tracking Performance Portability on the Yellow Brick
Road to Exascale. In Proceedings of the Performance Portability and
Productivity Workshop P3HPC: Supercomputing 2020 Institute of Elec-
trical and Electronics Engineers (IEEE).

[20] A. Hsu, D. N. Asanza, J. A. Schoonover, Z. Jibben, N. N. Carlson and R.
Robey, ”Performance Portability Challenges for Fortran Applications,”
2018 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), Dallas, TX, USA, 2018, pp. 47-58.

[21] S. L. Harrell, J. Kitsonz, R. Bird, S. J. Pennycook, J. Sewall, D.
Jacobsen, D. N. Asanza, A. Hsu, H. C. Cabada, H. Kim, and R.
Robey, ”Effective Performance Portability,” 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC
(P3HPC), Dallas, TX, USA, 2018, pp. 24-36.

[22] T. Deakin et al., ”Performance Portability across Diverse Computer Ar-
chitectures,” 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), Denver, CO, USA, 2019,
pp. 1-13.

[23] S. Williams, A. Waterman, and D. Patterson, ”Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

[24] ”Intel Vtune Amplifier,” https://software.intel.com/en-us/vtune. [Online].
Available: https://software.intel.com/en-us/vtune

[25] ”Empirical Roofline Tool,” 2019. [Online]. Available:
https://crd.lbl.gov/departments/computerscience/PAR/research/roofline/
software/ert/

