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Abstract—The recently proposed Posit number system has
been regarded as a particularly well-suited floating-point format
to optimize the throughput and efficiency of low-precision com-
putations in convolutional neural network (CNN) applications.
In particular, the Posit format offers a balance between decimal
accuracy and dynamic range, which results in a distribution
of values that seems particularly interesting for deep learning
applications. However, the adoption of the Posit still raises
some concerns regarding hardware complexity, particularly when
accounting for the overheads associated with the quire exact
accumulator. Accordingly, this paper presents a holistic study
on the model accuracy, performance, power, and area trade-offs
when adopting low-precision Posit multiply-accumulate (MAC)
units for the training of CNNs. In particular, 28nm ASIC
implementations of a reference Posit MAC unit architecture
demonstrate that the quire accounts for over 70% of the area and
power utilization, and the obtained CNN training results showed
that its use is only strictly required when considering mixed low-
precision configurations. As a result, reducing the size of the
quire results in an average reduction of area and power by 57%
and 47%, without imposing visible training accuracy losses.

Index Terms—Posit Number System, Quire Structure, Low-
precision Arithmetic, Convolutional Neural Networks, Deep
Learning

I. INTRODUCTION

The recently proposed Posit format [1] has been gaining

some momentum in the Deep Learning (DL) domain. While it

was initially proposed as a direct replacement to the IEEE-754

standard, its benefits have been most evident in low-precision

arithmetic scenarios, particularly in the training and inference

phases of Convolutional Neural Networks (CNNs) [2]–[6].

By design, the Posit number system offers a unique trade-off

between dynamic range and decimal precision by including

a new regime field. Due to their inherent balance, Posits are

particularly suited to represent numbers near zero (in magni-

tude). Additionally, the Posit standard [7] features an optional

exact accumulator structure (quire) for fused operations.

However, the implementation of the quire introduces a

significant increase in logic complexity when designing Posit
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arithmetic units [8]–[12]. In fact, when considering the de-

ployment of FMA/MAC units, typically used in tensor-like

accelerators [5], [13], [14], it is necessary to account for

the overheads associated not only with the decoding/encoding

but also with the quire. Although the quire format has been

updated in recent Posit format revisions [7], [15], it still poses

a significant concern since its size grows linearly by a factor

of the precision and exponentially with the exponent size.

In this respect, while a significant body of work has already

demonstrated the different Posit configuration trade-offs for

CNNs training [3]–[6], most studies do not account for the

hardware cost of implementing Posit arithmetic units. In fact,

most previous studies have been circumscribed to mathemati-

cal evaluations with Posit emulation libraries [6], not account

for the quire and its overheads [5] or have a limited scope [16].

Accordingly, this paper consists of a comprehensive study of

the Posit numbering system, comprising its different formats

and characteristics, its impact on the training of neural net-

works, and how this relates to hardware requirements. Hence,

instead of aiming our objectives to the comparison of the

Posit and IEEE-754 formats, we focused our attention on the

evaluation of different Posit configurations.

With the premise that the quire is one of the most critical

structures (both in terms of result accuracy and hardware

overhead), the presented study focuses on evaluating its use

and impact with low-precision Posit units, by attempting to

answer the following key questions:

Q1 – Accuracy: What is the impact in the trained model

accuracy of adopting different Posit configurations?

Q2 – Quire Format: How does the use of a quire influence

the accuracy of the trained model?

Q3 – Hardware Cost: Are the potential gains worth the

hardware overhead associated with the quire?

Q4 – Mixed-Precision: Can the performance, power, and area

of Posit MAC units be fine-tuned by adopting different Posit

configurations in different CNN stages?

Q5 – Alternatives: Can these overheads be mitigated by

using accumulator structures alternative to the quire without

significant impacts on the model accuracy?

To answer these questions, the presented study makes use

of the recently proposed PositNN framework [6] to emulate

the training phase of LeNet-5 and CifarNet CNN models. The

conducted evaluations adopted different Posit configurations,

quire formats, and alternative structures. The obtained accu-

racy results were paired with the resulting performance, power,



and area metrics, obtained from implementations of reference

Posit FMA/MAC units using 28nm ASIC technology.
The observed results show that the use of the quire is fun-

damental in CNN training for mixed-precision configurations.

However, it still accounts for 82% of the total chip area and

72% of the power consumption in an 8-bit Posit MAC unit.

Consequently, a new scaled accumulator structure is proposed,

showcasing a viable alternative to the standard quire. This

is achieved by reducing the size of the fixed-point format

quire and by pairing it with a scale factor component. When

compared with ASIC implementations of a reference Posit

MAC with the standard quire, the proposed structure provides

an average reduction of area and power by 57% and 47%,

respectively, with no significant impact on the model accuracy.
In accordance, this paper introduces the following contribu-

tions and features:

• An in-depth study on the Posit system when training

CNNs. The study evaluates the model accuracy, per-

formance, power, and area trade-offs of adopting low-

precision Posit arithmetic units, by considering multiple

Posit configurations, with and without quire, as well as

mixed-precision scenarios.

• Definition of a new scaled accumulator structure, alterna-

tive to the quire, that reduces its size to mitigate hardware

requirements while maintaining the model accuracy.

• Extension of the PositNN framework [6] and the un-

derlying Universal library [17] to support the scaled

accumulator and alternative quire formats.

• Architecture RTL design and ASIC implementation of

the proposed scaled accumulator structure in a reference

Posit FMA/MAC unit.1

II. BACKGROUND

The Posit numbering system [1] was designed as an al-

ternative numbering format to the IEEE-754 floating-point

standard [20] (henceforth simply referred to as floats). The

Posit format defines a parameterization pair <𝑛 , 𝑒𝑠>, where 𝑛
represents the precision (i.e., bit-width) and 𝑒𝑠 denotes the

maximum exponent size. The general structure of an 𝑛-bit

posit with 𝑒𝑠 exponent bits is depicted in Eq. 1.

𝑠𝑖𝑔𝑛︷︸︸︷
𝑠

𝑟𝑒𝑔𝑖𝑚𝑒︷��︸︸��︷
𝑟 𝑟 ... 𝑟

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡︷�����������︸︸�����������︷
𝑒0 𝑒1 ... 𝑒𝑒𝑠−1

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛︷������︸︸������︷
𝑓0 𝑓1 𝑓2 ...︸���������������������������������������������������������︷︷���������������������������������������������������������︸

𝑛 𝑏𝑖𝑡𝑠

(1)

Similarly to floats, the Posit structure includes the sign,

exponent, and fraction fields, but with an additional field

called regime. Whenever the sign bit corresponds to a negative

number, it is necessary to take the 2’s complement before

decoding the remaining fields. Moreover, the regime is a

variable-sized field, whose encoded value (𝑘) is given by the

run-length (𝑚) of ’0’ or ’1’ bits:

𝑘 =

{
𝑚 − 1 , if 𝑟 = 1
−𝑚 , otherwise.

(2)

1https://github.com/hpc-ulisboa/Posit-FMA-Units/

As a consequence of this variable-sized regime, the expo-

nent and fraction bit-widths are unknown before decoding

the regime. The calculated 𝑘 together with the exponent

configuration and the value encoded in the exponent field (exp)

defines the scaling factor (sf) for the encoded posit (equivalent

to the exponent in the IEEE-754 format), which is given by:

sf = exp + 𝑘2es (3)

Accordingly, a posit number value is given by:

(−1)sign × 2sf × 1. 𝑓 (4)

The Posit format has single encodings for zero (000...0)

and Not-a-Real (NaR) to represent all mathematical exceptions

(100...0). Moreover, posits do not underflow to 0 neither

overflow to infinity. Instead, they saturate to the minimum and

maximum representable number, respectively.

The Posit format makes use of an exact accumulator struc-

ture (quire), based on the Kulisch accumulator [21]. It is

used to store sums of products without rounding, avoiding

any accuracy loss. The quire is a fixed-point 2’s complement

value (see Fig. 1) composed by 4 fields: sign, carry guard (cg),

integer (int) and fraction (frac); and its size is given by:

quire size = 1 + cg + 2es+2 × (𝑛 − 2) (5)

Although the Posit numbering system supports an arbitrary

parameterization of the precision and of the exponent size,

there are standardized configurations. In particular, the Posit

standard has two main releases, differing on the hyperparam-

eter es and the carry guard (cg) size. While an older release

from 2018 (Release 4.3) [15] defines es = log2 (𝑛) − 3 for the

most commonly adopted precisions with 8, 16, and 32 bits

(to correspond to the same dynamic ranges used in IEEE-754

floating-point arithmetic) and cg = 𝑛−1, the latest release from

2021 (Release 4.12) [7] sets a fixed es = 2 (providing low-

precision posits a much wider dynamic range) and cg = 31 in

all configurations (allowing billions of accumulations).

Table I depicts the recommended Posit and quire config-

urations and their characteristics according to the respective

standard release, 4.3 [15] and 4.12 [7]. It can be observed

that increasing es provides a larger dynamic range at the

cost of fraction bits (accuracy). The latest revision (4.12)

was proposed as a direct consequence of the conclusion from

several studies indicating that, in DL applications, 𝑒𝑠 = 2 con-

figurations provide better results for low-precision posits [3]–

[6], [22]–[24]. However, since in the older release [15] any

increase of es imposed a significant increase of the quire size

for low-precision posits, the latest revision [7] fixed the 𝑐𝑔
to 31 bits for all configurations, providing an accumulation

capacity of up to 231 − 1 values.

���������	
������������	
�����
����
��

� �����
����� ������ �������

Fig. 1. Binary quire format adopted in Posit numbering system.



TABLE I
GENERAL CHARACTERISTICS OF THE POSIT FORMAT AND ITS QUIRE ACCUMULATOR ACCORDING TO THE TWO LATEST POSIT STANDARD RELEASES

(REL. 4.3 [15] AND REL. 4.12 [7]), MATCHED WITH THE IEEE-754 STANDARD AND FP8 [18], [19] COUNTERPARTS.

# Bits Exp. Size Fraction Length Dynamic Range
Quire

size 𝑐𝑔 size int/frac size
minpos maxpos Rel. 4.3 [15] Rel. 4.12 [7] Rel. 4.3 [15] Rel. 4.12 [7]

Float (FP8) 5 2 1.5 × 10−5 5.7 × 104

Posit<8 , es>

0 0 to 5 1.5 × 10−2 64 32 56 7 31 12

1 0 to 4 2.4 × 10−4 4.1 × 103 56 80 7 31 24

2 0 to 3 6.0 × 10−8 1.7 × 108 104 128 7 31 48

3 0 to 2 3.6 × 10−15 2.8 × 1014 200 224 7 31 96

Float (FP16) 5 10 6.0 × 10−8 6.6 × 104

Posit<16 , es>

0 0 to 13 6.1 × 10−5 1.6 × 104 72 88 15 31 28

1 0 to 12 3.7 × 10−9 2.7 × 108 128 144 15 31 56

2 0 to 11 1.4 × 10−17 7.2 × 1016 240 256 15 31 112
3 0 to 10 1.9 × 10−34 5.2 × 1033 464 480 15 31 224

Float (FP32) 8 23 1.4 × 10−45 3.4 × 1038

Posit<32 , es>

0 0 to 29 9.3 × 10−10 1.1 × 109 152 31 60

1 0 to 28 8.7 × 10−19 1.2 × 1018 272 31 120

2 0 to 27 7.5 × 10−37 1.3 × 1036 512 31 240

3 0 to 26 5.7 × 10−73 1.8 × 1072 992 31 480

III. RELATED WORK

The advantages of the Posit format for different application

domains have attracted the interest of the research community,

with several hardware implementations and software platforms

being proposed. The benefits of the Posit system have been

particularly studied in the training and inference of CNNs.

A. Posit Arithmetic Units

Recent works include support for fundamental arithmetic

operators (adder/subtractor and multiplier) [9], [25]–[27],

FMA operations [28]–[31] and quire accumulation [4], [9],

[11], [14], [32], [33]. In what concerns MAC architectures,

Charmichael et al. [4] proposed a low-precision 8-bit Posit unit

for CNN inference. Zhang et al. [28] defined a parameterized

Posit FMA unit generator. Similarly, Murillo et al. [32] pro-

posed a set of algorithms that allow generating synthesizable

VHDL using FloPoCo [34]. Alternative Posit architectures

have also been recently explored. In particular, Neves et al.

proposed a Posit MAC unit with dynamically configurable

exponent size [33] and a reconfigurable tensor unit with a

4x4 array of 64-bit vectorized Posit MAC units [14].

B. Software Platforms

While off-the-shelf Posit hardware is not readily available,

a great body of work has been devoted to developing emu-

lation libraries and frameworks to evaluate the Posit number

system. The most prominent emulation libraries include Uni-

versal [17], a C++ template library that supports any arbitrary

precision posit and quires; SoftPosit [35], a C library (endorsed

by the Posit creators) with limited posit configuration support;

cppPosit [36], a C++ header-only library with support for

many posit variants, defined by template parameters. Machine

learning frameworks have also been proposed that due to the

current hardware limitations make use of the mentioned em-

ulation libraries. Examples include PositNN [6], a framework

based on PyTorch’s C++ API (Libtorch) capable of end-to-

end training and inference with any configuration; and Deep

PeNSieve [2], an extension to TensorFlow.

To tackle the lack of standard availability of Posit arith-

metic, ISA and compiler back-end support are introduced by

Xposit [10], offering a Posit RISC-V extension.

C. Posit Number System Studies

Most studies that apply Posit to DNNs only address the

inference stage [4], [16], [37], [38], which is often easier and

less sensitive to errors than the training phase. In particular,

Nakahara et al. [16] study reducing the size of the quire.

More recent studies explored the use of Posits in the training

of DNNs [2], [3], [5], [6], where performance improvements

and energy savings are more compelling. One of the first

studies [3] managed to train an FCNN on a simple binary

classification problem with a minimum of 12-bit Posit, while

smaller formats showed irregular convergence. Later, Lu et

al. [5] trained CNNs using 8 and 16-bit posits in a mixed-

precision setup, but still relying on the IEEE-754 format in

their hardware prototype. Murillo et al. [2] trained CNNs using

their Deep PeNSieve framework. They managed to converge

CNNs trained with 32 and 16-bit Posit, but failed to converge

using Posit<8 , 0>. More recently, Raposo et al. [2] trained

CNNs using as low as Posit<8 , 2> in a mixed precision setup.

Despite their success, most studies have been circumscribed

to mathematical evaluations, not relating them with the respec-

tive hardware requirements of Posit arithmetic units.

IV. CNN TRAINING WITH LOW-PRECISION POSIT

The following paragraphs present two studies. First, a

brief mathematical analysis of the Posit number system, with

particular emphasis on the decimal accuracy that is offered in

low-precision Posit configurations. Then, it is evaluated the

training accuracy of several datasets with the considered Posit

configurations. This is done by also assessing different quire



formats and by evaluating the viability of a new alternative

accumulating structures at the quire.

A. Mathematical Analysis

By following a similar approach as in [1], the representation

capabilities of the considered Posit configurations (and float

counterparts) were measured through an exhaustive analysis

of their dynamic range and decimal accuracy:

Decimal Accuracy = − log10

����log10

(
𝑥𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

𝑥𝑒𝑥𝑎𝑐𝑡

)���� (6)

The decimal accuracies of the considered Posit and float

formats are plotted in Fig. 2, when considering 32 (A),

and 8 bits (B). The obtained plots clearly demonstrate the

tapered behavior of the Posit format, when compared to the

representation offered by floats. In particular, posits provide

a higher accuracy for numbers represented with a near-zero

scale factor (i.e., around values {−1, +1}), thus defining an

area that is usually referred to as golden zone [8]. As the

dynamic range increases in magnitude, the accuracy gradually

decreases, by following a pyramid-like structure. Floats, on the

other hand, maintain a constant accuracy, with an exception

in the subnormal range, which presents a tapered accuracy.

When considering 32-bit precisions (see Fig. 2.A), there is a

visible trade-off relating decimal accuracy and dynamic range

between posits and floats. While posits offer higher accuracy

for numbers represented with a near-zero scale factor, when

the dynamic range increases they are surpassed by floats, until

they close off at zero or infinity. Conversely, by reducing the

decimal accuracy, posits can reach a much larger dynamic

range before saturating. However, this trade-off is much less

accentuated in lower precisions. For 8-bit configurations (see

Fig. 2.B), although posits still show higher accuracy for low-

magnitude numbers, the same relation is not so evident for

high-magnitude numbers due to the sparsity of the values.

For low-precision, it is clear that the Posit format presents

mathematical representation benefits when compared to floats,

especially for low-magnitude numbers. On the one hand, the

weight parameters of CNNs usually follow a normal distribu-

tion, with most of the values centered around zero (in magni-

tude) [6]. This observation suggests that posits may provide a

higher CNN model accuracy than floats, whose distribution is

sparser. On the other hand, posits are also potentially well-

suited to mitigate the vanishing gradient problem, usually

visible when training CNNs with low-precision formats. This

problem occurs when gradients become smaller while the

model converges, often resulting in weight updates so small

that their decimal accuracy is lost.Posits can handle weight

updates for longer (due to the higher decimal accuracy) and

potentially result in more accurate models at lower precisions.

B. CNN Training Study

Presently, there is still no standard hardware (and respective

software) with native support for Posit. Consequently, we were

faced with the need to use a framework that emulates their

mathematical behavior in software (PositNN [6]). Contrarily

Fig. 2. Comparison between the decimal accuracy of A) 32-bit posits and
32-bit floats and B) 8-bit posits and an 8-bit float variation for different Posit
exponent configurations. Notice that in the B) plot, the Posit<8 , 3> is not
visible since it overlaps with FP8 in the [-5, 5] range.

to other mainstream tools (such as PyTorch and TensorFlow)

that do not support Posit arithmetic, the PositNN framework

allows to run the training and inference phases of DL models

with arbitrary Posit precision and exponent configurations.

Accordingly, the following CNN models were considered

in this study, by evaluating the trained model accuracy:

• A 2-layer FCNN trained with MNIST for 10 epochs;

• A LeNet-5 model trained with MNIST and Fashion

MNIST for 10 epochs;

• A CifarNet variation (with ∼ 0.5 million parameters)

trained with CIFAR-10 and CIFAR-100 for 20 epochs.

The choice and complexity of the adopted models (and

number of training epochs) is limited by the emulation time

of the posit arithmetic by the PositNN library, which can take

several weeks for each configuration. Furthermore, emulating

more complex workloads and models is an unbearable effort,

both from the run-time perspective and from the matter of

support in the available frameworks (e.g., ResNet requires

BatchNorm2d which is not available in existing tools).

All the considered models were trained with the

Posit<𝑛 , 𝑒𝑠> configurations presented in Table I, by con-

sidering 𝑛 = {6, 8, 10, 12, 16} and 𝑒𝑠 = {0, 1, 2, 3}. To

detect potential accuracy losses, all models were also trained

with 32-bit floats, the de facto representation used to train

machine-learning models. Posit configurations with 𝑛>16 are

not presented here since all tests with such configurations

showed a similar performance to the float case. In an attempt

to answer the questions defined in Section I regarding the

utilization of the quire, three experimental setups were defined,

by considering: i) not using a quire; ii) using a quire format

(𝑐𝑔 = 31) according to Release 4.12 [7]; and iii) using a quire

format (𝑐𝑔 = 𝑛−1) according to Release 4.3 [15]. From the in-

sights gathered from these setups, a new accumulator structure

alternative to the quire was also defined and evaluated.
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Fig. 3. Model and respective dataset accuracy obtained from the training of CNNs with posit configurations (A) without using a quire, (B) using a quire
format (𝑐𝑔 = 31) according to Release 4.12 [7], (C) using a quire format (𝑐𝑔 = 𝑛 − 1) according to Release 4.3 [15], and (D) using a new accumulator
structure alternative to the quire. As reference, 32-bit floats are used in every model and respective dataset to detect potential accuracy losses.

Without Quire: Fig. 3.A presents the attained model accu-

racy when considering the several posit configurations without

the use of quire. It can be observed that posits with 𝑒𝑠 = 0
have more difficulty to converge, presenting worse results

when compared to the other exponent configurations. This is

a direct result of the reduced dynamic range of low-precision

configurations. Conversely, when considering 𝑒𝑠 = 3, a higher

dynamic range is attained, but at the cost of a fraction accuracy

loss. This also leads to a slightly lower model accuracy when

compared to the configurations with 𝑒𝑠 = 0 and 𝑒𝑠 = 1,

especially in the FCNN model with precisions lower than 10

bits. In fact, as the model complexity increases, the required

precision to successfully train the models also increases. This

can be observed by comparing the FCNN and the LeNet-

5 models. While the first reaches an accuracy similar to

the reference 32-bit float with 8-bit posits (and maximum

accuracy with 10 bits), the LeNet-5 model does not converge

with precisions lower than 10 bits. However, it also attains

a similar accuracy to the float reference with 10-bits posits.

This is further confirmed when observing the accuracy of the

CifarNet model, which progressively approaches the maximum

accuracy with 10 and 12-bit precisions, reaching it at 16 bits.

With Quire (𝑐𝑔 = 31 – Standard Release 4.12): Fig. 3.B

presents the obtained model accuracy when using the quire

format with 𝑐𝑔 = 31, defined in the most recent Posit standard.

Similarly to the setup without quire, the models have difficulty

converging with 𝑒𝑠 = 0, but overcome this issue when the

exponent increases. However, a significant difference from the

previous case is now observed with respect to the conver-

gence and model accuracy: similar performance to the FP32

reference is now attained with much narrower precisions. In

particular, the FCNN model is able to converge with only 6-bit



TABLE II
EVALUATION OF MIXED LOW-PRECISION CONFIGURATIONS FOR CNN TRAINING. ALL MODELS USE A POSIT<16 , 2> CONFIGURATION ON THE LOSS AND

OPTIMIZER STAGES. AS REFERENCE, 32-BIT FLOATS ARE USED TO DETECT POTENTIAL ACCURACY LOSSES.

Format Setup

LeNet5 CifarNet

MNIST Fashion MNIST CIFAR-10 CIFAR-100

Accuracy Accuracy Top-1 Top-3 Top-1 Top-5

Float (FP32) 99.19% 90.35% 70.25% 92.35% 35.95% 65.59%

Mixed16 Posit<8 , 2>
No Quire 98.32% 83.88% 15.72% 44.22% 1.00% 5.00%
Quire (𝑐𝑔 = 31) 99.17% 90.89% 71.11% 92.45% 35.61% 66.88%
Scaled Accum. 99.16% 89.97% 70.96% 92.56% 34.45% 65.78%

Mixed16 Posit<8 , 1>
No Quire 47.54% 10.00% 10.00% 30.00% 1.00% 5.00%
Quire (𝑐𝑔 = 31) 11.35% 10.00% 70.70% 92.34% 36.72% 67.00%
Scaled Accum. 11.35% 10.00% 71.86% 92.58% 37.10% 67.24%

Mixed16 Posit<6 , 2>
No Quire 9.80% 10.00% 10.00% 30.00% 1.00% 5.00%
Quire (𝑐𝑔 = 31) 98.83% 87.52% 62.04% 87.87% 1.00% 5.00%
Scaled Accum. 98.79% 88.07% 60.66% 86.77% 1.00% 5.00%

Mixed16 Posit<6 , 1>
No Quire 9.80% 10.00% 10.00% 30.00% 1.00% 5.00%
Quire (𝑐𝑔 = 31) 11.35% 10.00% 12.57% 36.62% 1.00% 5.00%
Scaled Accum. 11.35% 10.00% 10.00% 30.00% 1.00% 5.00%

posits (although with a lower accuracy), attaining an accuracy

close to the reference with only 8-bit posits. However, for the

remaining (more complex) models, the quire did not introduce

significant differences. In fact, the LeNet-5 model still requires

10-bit posits to attain convergence and the CifarNet model

shows no improvements for 8 and 10-bit posits.

According to these observations, two conclusions can be

attained: i) this quire configuration (𝑐𝑔 = 31) is only relevant

for low-precision training; and ii) for higher precisions, the

models converge and attain an accuracy similar to the FP32

reference, independently of the use of a quire.

With Quire (𝑐𝑔 = 𝑛 − 1 – Standard Release 4.3): To

provide further insights on the utilization of the quire, the

CNN models were also trained using the quire format from the

previous Posit standard. In this release, the quire makes use of

a variable carry guard size, proportional to the Posit precision

(𝑐𝑔 = 𝑛 − 1). This results in smaller quire sizes for low-

precision configurations, allowing to reduce the hardware costs

on dedicated units. Fig. 3.C highlights this fact by showing

that, in general, there is no significant difference in the attained

accuracy in relation to the previous setup.

Proposed Scaled Accumulator: The main objective of the

quire structure is to allow repeated accumulations with full

accuracy and overflow protection. However, it was verified that

not only CNN models can tolerate certain accuracy losses,

but they also rarely require large quires. To overcome such

compromise, the typical quire structure was replaced by a

scaled accumulator, attained by fixing the carry guard size to 7

bits (henceforward denoted as accumulation guard), reducing

the integer and fraction fields to the 𝑒𝑠 = 0 size, and pairing

with a scale factor to correctly represent the values. Hence, by

considering Eq. 5, the proposed scaled accumulator is set at:

accumulator size = 4𝑛 (7)

scale field size = log2 (𝑛) + 𝑒𝑠 + 2 (8)

It should be highlighted that such proposed scaled accumulator

is not designed to provide higher accuracy. Instead, it aims a

decrease the implementation cost of traditional quire structures

required for CNN training (as it will be shown in section VI).

The required changes were introduced in the software

library that emulates posits (Universal library [17]) to evaluate

its results for CNN training. Fig. 3 (row D) presents the

obtained results for the considered models. It can be observed

that there is no significant difference when compared to the

standard quires (see rows B and C). However, there is an added

benefit for the FCNN model with 6-bit posits, achieved with

both scaled accumulator and standard quire.

C. CNN Training with Mixed-Precision Arithmetic

As it was shown in previous studies [5], [6], even narrower

numerical formats can be used if different precisions are used

across the different training stages, namely at the forward pass,

calculus of the loss function, optimizer and backward pass.

Hence, to further evaluate the importance of the quire in

posit units, the LeNet-5 and CifarNet models were trained in

a mixed precision configuration, by considering 6- and 8-bit

posits in the forward and backward passes, and 16-bit posits in

the optimizer and loss stages (as they achieve float-like accu-

racy in all the considered models and exponent configurations).

Additionally, to determine the best exponent configuration in

the forward and backward passes, these models were trained

with exponent sizes 𝑒𝑠 = 1 and 𝑒𝑠 = 2. The training results

for the MNIST, fashion MNIST, CIFAR-10 and CIFAR-100

datasets are presented in Table II. To detect potential accuracy

losses, all models were also trained with 32-bit floats.

It can be observed that the Mixed16 Posit<8 , 2> config-

uration converges in all models when using the quire and

the scaled accumulator with an accuracy similar to the 32-

bits float reference (apart from small variations). For the

same configuration, although the LeNet-5 model converges in

both datasets (MNIST and Fashion MNIST) – even without



using the quire – a slight accuracy decrease is observed. On

the other hand, on the CifarNet model, the quire or scaled

accumulator are fundamental to attain accurate results, as

there is a significant decrease in accuracy for CIFAR-10 and

a convergence failure for CIFAR-100. In contrast, for the

Mixed16 Posit<8 , 1> configuration, accurate results are only

attained for the CifarNet model when using the quire or the

proposed scaled accumulator.

When trying to reduce the precision to 6 bits, it was

observed that the Mixed16 Posit<6 , 2> configuration was still

able to converge with similar accuracy when using the quire

and scaled accumulator (with the exception of the CIFAR-

100 dataset), although with some accuracy losses depending

on the model and dataset complexity. In contrast, all trained

models failed to converge when the quire was not used. For

the Mixed16 Posit<6 , 1> configuration, all setups failed to

converge due to the insufficient dynamic range.

Finally, several conclusions can be taken when considering

the posit configuration, quire and scaled accumulator:

• the Posit<8 , 2> configuration is the recommended setup

when training simple models in mixed precision configu-

ration; however, Posit<8 , 1> and Posit<6 , 2> can also be

used depending on the model and requirements;

• the use of the quire is essential when training CNN

models with low-precision posits;

• the proposed scaled accumulator (devised to reduce hard-

ware overheads) did not affect the results, achieving the

same accuracy as the standard quire.

V. POSIT FMA/MAC ARCHITECTURE

To complement the study presented in the previous section,

and evaluate the hardware overheads associated with the use

of a quire structure, it is first necessary to define a reference

architecture of a Posit arithmetic unit. As such, this section

presents a generic Posit FMA/MAC unit architecture (depicted

in Fig. 4.A), derived from recent state-of-the-art units [4], [9],

[11], [14], [32], [33]. The devised datapath was implemented

with a parameterizable RTL template that allows generating

different designs with different pairs of precision and exponent

configurations. The utilization of a quire is optional, which can

also be configured to follow any of the considered Posit stan-

dard releases and the corresponding parameters, by adjusting

the carry guard size (see Eq. 5). Finally, the proposed scaled

accumulator structure was also implemented and integrated

into the reference Posit FMA/MAC architecture by performing

the necessary modifications to the datapath.

A. Reference Posit FMA/MAC Architecture

The developed Posit FMA/MAC unit was implemented

with a 5-stage pipelined architecture. The datapath supports

addition, multiplication, fused multiply-add and multiply-

accumulate operations. As such, it follows the classical

pipeline stage distribution: i) decode; ii) multiply; iii) quire
(add/accumulate); iv) normalize; and v) encode. The following

paragraphs describe each stage in detail.
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Fig. 4. Reference FMA/MAC architecture for the (A) standard quire and (B)
scaled accumulator.

Decode: The Decode stage comprises three equivalent

decoding modules (see Fig. 4.A), one for each operand. As a

consequence, each decode stage translates the input posit value

to the corresponding sign (𝑠), scale factor (sf ) and fraction

( 𝑓 ) fields, according to the processing schemes defined in the

literature [4], [25]–[27], whose internal structure is depicted in

Fig. 5.A. The process starts by taking the 2’s complement of

the input value, according to the sign bit. Next, the regime run-

length is decoded by means of a leading-zero counter (LZC)

(if it starts with ’1’ the value is first inverted). Then, 𝑘 is

calculated and the regime is left-shifted out according to the

obtained zero count, leaving the exponent and fraction. The

𝑘 value is then concatenated with the exponent to obtain sf .

Finally, a ’1’ bit is added to the fraction to obtain 𝑓 .

Multiply: The Multiply stage (see Fig. 4.A) performs the

multiplication of the decoded posit𝑎 and posit𝑏 operands,

while propagating the decoded posit𝑐 to the next stage. Multi-

plication is performed by using the conventional floating-point

scheme, by performing a XOR between the signs, an addition

of the scale factors, and a multiplication of the fractions.

Quire Arithmetic: The Quire stage (see Fig. 4.A) starts

by converting the multiplication result and the third operand

(posit𝑐) to the quire format, which is accomplished by i)
taking the fraction 2’s complement, according to the sign and

operation (𝑠𝑢𝑏 signal); and ii) shifting the value according to

the scale factor. With the values in the quire format, addition or

accumulation with a previously stored quire value is performed
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Fig. 5. Posit (A) decoding and (B) encoding modules of the reference
FMA/MAC architecture.

(depending on the 𝑎𝑐𝑐 signal).

Normalization: The Normalize stage (see Fig. 4.A) is re-

sponsible for re-normalizing the obtained quire and extracting

the 𝑠, sf , and 𝑓 signals. First, the sign vector is extracted from

the most significant bit of the quire, which allows converting

the quire to an unsigned value through a 2’s complement. Next,

the number of shift positions required to normalize the quire

is obtained with a LZC. The obtained zero count is used by

a left shifter to align the unsigned quire vector. Finally, the

scale factor is obtained by adding the obtained zero count and

an offset (due to the quire conversion).

Encode: The Encode stage (see Fig. 5.B) converts the 𝑠,
sf , and 𝑓 signals of the output value back to the Posit format,

according to the schemes defined in the literature [4], [25]–

[27]. The process starts by detaching the regime value (𝑘) and

the exponent (𝑒) from the scale factor (sf ), according to the 𝑒𝑠
configuration. Then, the 𝑘 value 2’s complement is taken and

the regime is shifted together with the exponent and fraction,

according to 𝑘 and its sign. The resulting binary value is then

rounded and the 2’s complement is taken according to 𝑠.

B. Alternative Scaled Accumulator

As referred in section IV-B, to mitigate the hardware

overheads associated with the use of the quire, an alternative

scaled accumulator structure was proposed. Accordingly, the

following paragraphs describe its structure and the correspond-

ing modifications (see Fig. 4.B) to the base architecture.

Scaled Accumulator Architecture: The study presented in

Section IV showed it is possible to rely on an alternative struc-

ture to reduce the logic complexity and attempt to mitigate

the quire hardware overheads, while maintaining the training

accuracy of CNN models.

The proposed new binary format for the quire (defined

in Fig. 6 and Eq. 5) maintains a representation with a 2’s

complement fixed-point base value with size 4𝑛, obtained by

fusing the quire carry guard and the integer fields into a fixed-

size 7-bit accumulation guard (𝑎𝑔) field. Since the devised

fixed-point value precision is not enough to represent the entire

dynamic range of the corresponding Posit configuration, the

value is paired with a scale factor of size log2 (𝑛) + 𝑒𝑠 + 2.
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Fig. 6. Binary scaled accumulator format.

The introduced 𝑎𝑔 field results in an immediate reduction

in logic complexity, by simply limiting the maximum number

of accumulations that maintain overflow protection. As an

example, a Posit<8 , 2> configuration maintains a scaled ac-

cumulator with a total of 32 bits, instead of the corresponding

104 bits (release 4.3 [15]) or 128 bits (release 4.12 [7]) of

the original quire. Furthermore, with the introduction of the

associated scale factor, the new structure still allows a high

number of accumulations without significant accuracy loss.

Alternative Accumulator Stage: To deploy the proposed

scaled accumulator in the reference Posit MAC architecture,

the Quire stage was replaced with the new Accumulator stage

(see Fig. 4.B). Similarly to the original Quire stage, the

input operands (posit𝑐 and the result from the Multiply stage)

are first complemented and sign-extended and the fraction

most significant bit is placed in the accumulator guard least

significant bit, to obtain the base and scale factor values. Then,

the registered accumulator value and the propagated operand

are selected (with the 𝑎𝑐𝑐 signal) and the corresponding scale
factor values are compared. The base values are then aligned

according to their scale factor. Specifically, the operand with

the smaller scale factor is shifted by the scale factor differ-

ence, while the operand with the greater scale factor remains

unchanged. After being aligned, the base values are added. For

overflow protection purposes, the accumulator guard’s most

significant bit is checked for potential overflows, adjusting the

accumulator base and scale factor values accordingly.

Normalization Stage Modifications: Similarly to the pre-

vious stage, the original Normalize stage was also slightly

modified. The sign is extracted from the base most significant

bit element, and the value is converted to an unsigned value.

Next, the base is normalized to extract the Posit fraction

and its magnitude (obtained with a LZC as in the original

Normalization stage). The obtained magnitude is added to the

accumulator scale factor to obtain the final Posit scale factor.

VI. EVALUATION

To correlate the CNN training results with the corresponding

hardware requirements, RTL descriptions of the Posit con-

figurations listed in Table I and quire setups described in

Section IV-B were implemented according to the reference

Posit FMA/MAC architecture (section V). Specifically, the

arithmetic units for each Posit configuration were synthesized

i) without the use of the quire – NQ; ii) using the quire from

the latest Posit standard release 4.12 [7] – Q; iii) using the

quire from the previous Posit standard release 4.3 [15] – QO;

and iv) using the proposed scaled accumulator – SA. All RTL

descriptions were synthesized by targeting the 28nm UMC

standard cell technology under typical operating conditions



TABLE III
COMPARISON OF THE REFERENCE UNITS WITH STATE-OF-THE-ART.

Unit/ Pipeline ASIC Area Power Delay

Design Stages Tech. (𝜇𝑚2) (𝑚𝑊) (𝑛𝑠)

8-bit MAC (Q) 5 28 𝑛𝑚 7288 26.58 0.65
8-bit MAC (SA) 5 28 𝑛𝑚 1584 5.70 0.78
8-bit FMA (NQ) 5 28 𝑛𝑚 1613 6.97 0.50
8-bit MAC [27] 3 45 𝑛𝑚 4346 4.47 3.01
8-bit FMA [28] 0 28 𝑛𝑚 1400 1.08 1.00

16-bit MAC (Q) 5 28 𝑛𝑚 17062 48.30 0.78
16-bit MAC (SA) 5 28 𝑛𝑚 5705 17.60 0.91
16-bit FMA (NQ) 5 28 𝑛𝑚 5028 22.12 0.69
16-bit MAC [27] 3 45 𝑛𝑚 10258 10.91 5.99
16-bit FMA [28] 0 28 𝑛𝑚 3700 3.19 1.3

(1.05 V, 25° C). Chip area and power estimation results were

obtained with Cadence Genus 19.11.

To ensure a reliable evaluation of the hardware require-

ments, the defined FMA/MAC architecture was first compared

with current state-of-the-art solutions. Accordingly, selected 8-

and 16-bit architectures with 𝑒𝑠 = 2 (for the NQ, Q, and SA

setups) were synthesized and matched with equivalent units

from the literature. In particular, 8- and 16-bit versions of

the MAC unit described in [27] and the FMA unit presented

in [28] were considered for this validation. Table III presents

the corresponding synthesis results.

The obtained area, power, and delay results show that

the designed reference Posit FMA/MAC architectures present

equivalent values close to those from the state-of-the-art solu-

tions, in turn validating the use of the reference architectures

as a baseline for the remainder of this study.

Moreover, it is also possible to measure the exact overheads

associated with the use of the quire, by directly comparing

the area and power values obtained for Q and NQ setups.

When comparing both setups, it is possible to ascertain that

the quire structure accounts for 79% of the total chip area

and 61% of the power consumption of the Posit arithmetic

unit (on average). Conversely, when comparing a reference

MAC unit (Q setup) with the proposed scaled accumulator

(SA), it can be observed a significant reduction of area and

power by 57% and 47% (on average), respectively, only at the

cost of a slight increase in delay. While these results already

demonstrate some of the benefits of the proposed structure, a

more in-depth analysis is required by correlating them with

results obtained from the presented CNN training study.

A. Area and Power Trade-Offs

From the CNN training study presented in section IV, it

was observed that Posit configurations with 𝑒𝑠 = 1 and 𝑒𝑠 = 2
result in the highest model accuracy for all the considered

precisions. Accordingly, to complement the performed studies,

reference Posit FMA/MAC architectures for each setup (NQ,

Q, QO, and SA) were implemented and synthesized for 𝑛 =
{6, 8, 10, 12, 16} and 𝑒𝑠 = {1, 2}. To ensure fair area and power

comparisons, all synthesis runs were performed by targeting

an operating frequency of 1 GHz. The obtained results are

presented in Fig. 7A and Fig. 7B.

The first observation is the relation between the exponent

size and the resulting area and power, for the different quire

configurations. In particular, the plots from Fig. 7.A and

Fig. 7.B show that for the specific case that does not use

quire (NQ), when the exponent size increases the total area and

power of the unit slightly decreases. This is mainly motivated

by the reduction of the size of the multiplier, since the fraction

bits are fewer when the exponent size increases (see Table I).

Conversely, when using a quire (Q and QO), the power and

area increase when the exponent size increases. This is a direct

result of the exponential growth in the quire size depending

on the exponent (see Eq. 5). These results clearly highlight

the significant overheads associated with the use of the quire.

Furthermore, similarly to the setups that do not use quire

(NQ), the proposed scaled accumulator (SA) area and power

consumption decrease when the exponent size increases. This

is due to the fact that the size of the base value is fixed,

independently of the exponent size (see Eq. 7).

Relevant insights can also be obtained when analyzing the

quire formats from each Posit standard release (Q and QO).

As it could be expected, the latest Posit release (4.12 [7])

incurs in the utilization of more chip area and higher power

consumption when compared to release 4.3 [15] (QO). This

is mainly due to the increase of the size of the quire for

the same Posit configuration in the latest release. On the

other hand, it is also clearly visible that the proposed scaled

accumulator (SA) significantly reduces the chip area and

power consumption, when compared to the original quire

setups (Q and QO). Furthermore, as the precision increases,

the observed differences also increase, further showing the

benefits of the proposed structure.

To further highlight the observed hardware results, area and

power efficiency studies were also conducted by considering

performance-per-area (GFLOPS/𝑚𝑚2) and performance-per-

watt (GFLOPS/𝑊) metrics, respectively. The calculated met-

rics are presented in Fig. 7.C and Fig. 7.D. The obtained results

confirm the previous observations regarding the use of the

quire, with Q and QO representing the less efficient setups,

both in terms of area and power. Conversely, the proposed

scaled accumulator allows a visible efficiency increase.

B. Accuracy Trade-Offs in CNN Training

To conclude the present study, it is important to correlate

the observations gathered from the CNN training evaluation,

with the hardware trade-offs discussed above.

As it was observed in Section IV-C, mixed-precision config-

urations allow accurate training of CNNs. This enables reduc-

ing the size of the operands, in turn potentially reducing power

consumption (see Fig. 7.B) and the total operand bandwidth

from registers/memory, or improved throughput by exploring

data-level parallelism (using freed area to deploy more units).

However, under such configurations, it was observed that the

use of a quire is critical to maintaining model accuracy at low

precisions. On the other hand, according to the observed area

and power trade-offs, both standard quire definitions impose

a significant power and hardware cost (see Fig. 7).
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Fig. 7. Evaluation of the several reference architectures for 𝑒𝑠 = 1 and 𝑒𝑠 = 2
for different setups: NQ (No Quire), Q (Quire, with 𝑐𝑔 = 31), QO (Quire Old,
with 𝑐𝑔 = 𝑛 − 1), and SA (Scaled Accumulator). The subplots represent: A)
chip area; B) power consumption; C) area efficiency; and D) power efficiency.

The mixed-precision study also concluded that even the

smaller quire format (QO) has more decimal precision than

what is actually necessary to achieve good model accuracy,

and that a better compromise between accuracy and logic

complexity can be achieved by relaxing the quire properties

(see Table II). This is clearly visible when considering that the

proposed scaled accumulator did not impose accuracy losses

when training CNN models. However, the corresponding Posit

unit setups (SA) presented much less chip area (over 70%

reduction for 8-bit posits) and lower power consumption, when

compared to the original quire setups (Q and QO). Also, as

the precision increases, such relations also increase, further

showing the benefits of reducing the quire.

C. Considerations on Mixed-precision CNN Training

While mixed-precision CNN training resulted in an overall

increase in the attained model accuracies (see Section IV-C),

the use of different Posit configurations in different layers

conventionally requires the deployment of multiple Posit units

with different configurations (e.g., 8 and 16-bit units, see Ta-

ble II). This requires a careful balance between the character-

istics of the deployed units to minimize the total hardware cost

(see Fig.7). On custom solutions, this is a natural arrangement,

such as by relying on a tensor-like processor [5], [13], [14] to

perform the forward and backward passes with low-precision

(e.g., Posit<8 , 2>) and a controller computing the loss and

optimizer steps with higher precision (e.g., Posit<16 , 2>).

Naturally, more general-purpose solutions will require ex-

tending the datapath to consider a mixed-precision configura-

tion. Even when considering the use of the proposed scaled

accumulator, two separate Posit<16 , 2> and Posit<8 , 2> units

would impose a 20% chip area and 24% power consumption

increases when compared to using a single Posit<16 , 2> unit.

Although it is out of the scope of this work, several solutions in

related research areas could be explored to tackle this problem.

Instead of relying on the combination of multiple units,

variable-precision units [11], [14], [39], [40] allow varying

the computing precision by introducing dynamic datapaths

that can operate in different precisions. This solution not only

allows reducing the necessary chip area but it also allows parts

of the circuit to be turned off when the operand precision is

lowered. Alternatively, these solutions can also make a more

efficient use of computing resources by reusing the unused

resources in lower precisions to deploy efficient vectorization

mechanisms [11], [39] and increase the computing throughput.

At this respect, the above-mentioned solutions are already

being applied on transprecision computing, which relies on the

principle that different applications (and phases) have different

precision requirements [41]. To exploit this feature, researchers

carefully analyze application phases and define optimized

combinations of arithmetic units with different precisions (e.g.,

[18], [26]) to increase performance and energy efficiency.

VII. CONCLUSIONS

This paper presented an holistic study regarding the utiliza-

tion of the Posit format for low-precision CNN training. This

was done by observing the impact of different precision and

exponent size configurations on the trained model accuracy,

while correlating them with the hardware costs associated with

the corresponding implementation of Posit FMA/MAC units.

The conducted experiments were mainly focused on assessing

the utilization of the Posit quire structure, and evaluating

the model accuracy and hardware trade-offs associated with

its use. To do so, a training accuracy study was initially

performed with known CNN models, by considering the use

of several quire format configurations and an alternative scaled

accumulator structure, along with a mixture of low-precision

Posit format configurations. The obtained results were then

correlated with the associated area and power trade-offs,

obtained from 28nm ASIC implementations of reference Posit

FMA/MAC unit architectures for the considered setups.

The performed studies were successful in answering a set

of pre-established key questions. In particular, the observed

results showed that low-precision Posit formats are well-suited

for CNN training (Q1), specifically when using different pre-

cision configurations with different CNN layers (Q4). It was

also observed that the use of a quire only brings clear benefits

to the attained model accuracy in mixed-precision scenarios

(Q2 and Q4), particularly when considering that this structure

accounts for 79% of the total chip area and 61% of the

power consumption of a Posit MAC unit (Q3). According to

these observations, it was proposed a new scaled accumulator

structure alternative to the quire, offering an average reduction

of area and power by 57% and 47%, respectively, with no

significant impact on the CNN model training accuracy (Q5).



REFERENCES

[1] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[2] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep pensieve: A deep
learning framework based on the posit number system,” Digital Signal
Processing, vol. 102, p. 102762, 2020.

[3] R. M. Montero, A. A. Del Barrio, and G. Botella, “Template-based
posit multiplication for training and inferring in neural networks,” arXiv
preprint arXiv:1907.04091, 2019.

[4] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson,
and D. Kudithipudi, “Deep positron: A deep neural network using the
posit number system,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1421–1426, IEEE, 2019.

[5] J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang, “Evaluations on deep neural
networks training using posit number system,” IEEE Transactions on
Computers, vol. 70, no. 2, pp. 174–187, 2020.

[6] G. Raposo, P. Tomás, and N. Roma, “Positnn: Training Deep Neural
Networks with Mixed Low-Precision Posit,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7908–7912, IEEE, 2021.

[7] P. W. Group, “Posit Standard Documentation,” Release 4.12-draft, Jul.
2021.

[8] F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: the
good, the bad and the ugly,” in Proceedings of the Conference for Next
Generation Arithmetic 2019, pp. 1–10, 2019.

[9] L. Forget, Y. Uguen, and F. De Dinechin, “Hardware cost evaluation of
the posit number system,” in Compas’2019 - Conférence d’informatique
en Parallélisme, Architecture et Système, pp. 1–7, Jun 2019.

[10] D. Mallasén, R. Murillo, A. A. Del Barrio, G. Botella, L. Piñuel,
and M. Prieto-Matias, “Percival: Open-source posit risc-v core with
quire capability,” IEEE Transactions on Emerging Topics in Computing,
vol. 10, no. 3, pp. 1241–1252, 2022.

[11] L. Crespo, P. Tomás, N. Roma, and N. Neves, “Unified posit/ieee-754
vector mac unit for transprecision computing,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2478–2482,
2022.

[12] N. N. Sharma, R. Jain, M. M. Pokkuluri, S. B. Patkar, R. Leupers,
R. S. Nikhil, and F. Merchant, “Clarinet: A quire-enabled risc-v-
based framework for posit arithmetic empiricism,” Journal of Systems
Architecture, vol. 135, p. 102801, 2023.

[13] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pp. 1–12, IEEE, 2017.

[14] N. Neves, P. Tomás, and N. Roma, “Reconfigurable Stream-based Tensor
Unit with Variable-Precision Posit Arithmetic,” in 2020 IEEE 31st
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 149–156, IEEE, 2020.

[15] P. W. Group, “Posit Standard Documentation,” Release 4.3-draft, Jun.
2018.

[16] Y. Nakahara, Y. Masuda, M. Kiyama, M. Amagasaki, and M. Iida, “A
posit based multiply-accumulate unit with small quire size for deep
neural networks,” IPSJ Transactions on System LSI Design Methodology,
vol. 15, pp. 16–19, 2022.

[17] E. T. L. Omtzigt, P. Gottschling, M. Seligman, and W. Zorn, “Universal
Numbers Library: design and implementation of a high-performance
reproducible number systems library,” arXiv:2012.11011, 2020.

[18] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1051–1056, IEEE, 2018.

[19] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A
transprecision floating-point architecture for energy-efficient embedded
computing,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5, 2018.

[20] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[21] U. Kulisch, Computer arithmetic and validity. de Gruyter, 2013.

[22] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 7686–7695, 2018.

[23] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkatara-
mani, K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, “Ultra-
low precision 4-bit training of deep neural networks,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[24] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney,
and K. Keutzer, “Q-bert: Hessian based ultra low precision quantization
of bert,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, pp. 8815–8821, 2020.

[25] M. K. Jaiswal and H. K.-H. So, “Pacogen: A hardware posit arithmetic
core generator,” IEEE Access, vol. 7, pp. 74586–74601, 2019.

[26] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized posit arithmetic
hardware generator,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD), pp. 334–341, IEEE, 2018.

[27] R. Murillo, A. A. Del Barrio, and G. Botella, “Customized posit
adders and multipliers using the flopoco core generator,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
IEEE, 2020.

[28] H. Zhang, J. He, and S.-B. Ko, “Efficient posit multiply-accumulate unit
generator for deep learning applications,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2019.

[29] M. Arunkumar, S. G. Bhairathi, and H. G. Hayatnagarkar, “Perc: Posit
enhanced rocket chip,” in Proceedings of Fourth Workshop on Computer
Architecture Research with RISC-V (CARRV 2020), 2020.

[30] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “Peri: A configurable
posit enabled risc-v core,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 18, no. 3, pp. 1–26, 2021.

[31] S. Jean, A. Raveendran, A. D. Selvakumar, G. Kaur, S. G. Dharani,
S. G. Pattanshetty, and V. Desalphine, “P-fma: A novel parameterized
posit fused multiply-accumulate arithmetic processor,” in 2021 34th
International Conference on VLSI Design and 2021 20th International
Conference on Embedded Systems (VLSID), pp. 282–287, IEEE, 2021.

[32] R. Murillo, D. Mallasén, A. A. Del Barrio, and G. Botella, “Energy-
efficient mac units for fused posit arithmetic,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD), pp. 138–145,
IEEE, 2021.

[33] N. Neves, P. Tomás, and N. Roma, “Dynamic Fused Multiply-
Accumulate Posit Unit with Variable Exponent Size for Low-Precision
DSP Applications,” in 2020 IEEE Workshop on Signal Processing
Systems (SiPS), pp. 1–6, IEEE, 2020.

[34] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18–
27, 2011.

[35] S. H. Leong, “Softposit,” Mar. 2020. https://gitlab.com/cerlane/SoftPosit.
[36] E. Ruffaldi and F. Rossi, “cppposit,” 2020.

https://github.com/federicorossifr/cppposit.
[37] H. F. Langroudi, Z. Carmichael, J. L. Gustafson, and D. Kudithipudi,

“Positnn framework: Tapered precision deep learning inference for the
edge,” in 2019 IEEE Space Computing Conference (SCC), pp. 53–59,
IEEE, 2019.

[38] H. F. Langroudi, V. Karia, J. L. Gustafson, and D. Kudithipudi, “Adap-
tive posit: Parameter aware numerical format for deep learning inference
on the edge,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 726–727, 2020.

[39] H. Zhang, D. Chen, and S.-B. Ko, “Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support,” IEEE Transac-
tions on Computers, vol. 68, no. 7, pp. 1035–1048, 2019.

[40] H. Zhang and S.-B. Ko, “Efficient multiple-precision posit multiplier,” in
2021 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, IEEE, 2021.

[41] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand, and
N. Wehn, “The transprecision computing paradigm: Concept, design, and
applications,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1105–1110, IEEE, 2018.


