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Abstract—Adaptive Mesh Refinement (AMR) is a widely
known technique to adapt the accuracy of a solution in critical
areas of the problem domain instead of using regular or irregular
but static meshes. The MARE2DEM is a parallel application that
employs the AMR technique to model 2D electromagnetics in oil
and gas exploration. The modeling consists in iteratively applying
a data inversion based on a set of measurements collected and
registered by a survey on an area of interest. The parallelism
of the MARE2DEM works by dividing the workload into a
set of refinement groups that represent overlapping areas of
the problem domain. Each refinement group can be computed
independently of the others by a set of workers, carrying out
the AMR in the meshes when necessary. The shape and compute
performance of the refinement group depend directly of a set of
user-defined parameters. In this article, we provide a method to
estimate the MARE2DEM performance for all possible values
that can be used in the influencing parameters of the application
for a given case study. Our relatively cheap method enables the
geologist to configure MARE2DEM correctly and extract the best
performance for a given cluster configuration. We detail how
the method works and evaluate its effectiveness with success,
pinpointing the best values for the creating refinement groups
using a real case study from the Marlim field on the coast of Rio
de Janeiro, Brazil. Although we demonstrate our evaluation with
this scenario, our method works for any input of MARE2DEM.

Index Terms—Marine CSEM, Performance Modeling,
MARE2DEM, Adaptive Mesh Refinement

I. INTRODUCTION

Electromagnetic (EM) survey techniques have been standard

for the offshore exploration of oil and gas in the recent past.

An example of EM survey is the marine Controlled-Source

Electromagnetic Method (mCSEM) [1]. The technique works

by placing electromagnetic receivers in the ocean floor and

moving a strong emitter close to the seabed in a predetermined

area of interest. The collected information, comprising several

data points of electromagnetic fields, must then be processed

through a data inversion method to compute the most likely

rock resistivity to explain those data points. Since oil and gas

have known resistivity signatures compared to other materi-

als, this valuable complements the knowledge provided by

traditional seismic methods [2] [3]. The mCSEM method is

also beneficial in regions where the application of the seismic

method needs additional satisfactory answers [4].

The MARE2DEM stands for Modeling with Adaptively

Refined Elements for 2D Electromagnetics and is an open-

source and scalable parallel application that employs the

Adaptive Mesh Refinement (AMR) technique to model 2D

electromagnetics [5] [6] through data inversion. The modeling

consists of costly operations based on the electromagnetism

equations proposed by Maxwell [7]. In each iteration, the

application carries out four steps. (1) It calculates the elec-

tromagnetic fields from the current resistivity model; (2) It

determines the difference between the calculated fields and

the fields from the mCSEM survey. This difference depends

on the Jacobian and Smoothing phases to compute the error of

the current model for each of the triangles in the mesh, called

the misfit; (3) It then applies the Adaptive Mesh Refinement

(AMR) method, refining the triangles with a large misfit, and

in this way, breaking them down into smaller triangles using

the Delaunay algorithm [8] using the Triangle software [9]; (4)

It computes the global misfit after the AMR procedure, and a

new resistivity model to be used in the next iteration. The data

inversion continues until it meets the maximum allowed error

(the target misfit) or reaches a specific number of iterations.

The MARE2DEM application requires the following inputs

to carry out these four steps: (a) the geometry of the region

of interest, (b) an initial resistivity model, (c) the collected

mCSEM data, and (d) a set of user-defined parameters that

control the level of parallelism. The region’s geometry consists

of a mesh of polygons to determine areas such as air, marine

water, soil, and marine subsoil. The initial resistivity model

breaks the inner regions of each polygon into triangles, thus

defining a mesh of triangles. Each of these triangles receives an

initial resistivity value for each of the described regions. Values

can be arbitrary or defined by technical criteria from previous

studies. The CSEM data contains the measurements of the

survey consisting of the number of emitters (Tx), receivers

(Rx), and frequencies (Fq). The last input is a set of user-

defined parameters, including the target misfit, the maximum

number of data inversion iterations, and a configuration di-

rectly influencing the maximum degree of parallelism.

The parallel architecture of the MARE2DEM application

consists of one coordinator and a set of workers. During

the initialization phase, the coordinator creates the work

units consisting of a set of refinement groups based on the

mCSEM survey data and the position of the receivers and

emitters. The refinement group creation is dictated by the

user-defined configuration determining the maximum number

of emitters, receivers, and frequencies that should belong to



each refinement group. Throughout this work, we identify such

configuration with the following triple term: Txmax-Rxmax-

Fqmax. The application employs such limits to instantiate

groups with a certain number of valid Tx-Rx pairs, according

to the distance between the emitter and receiver [1]. As a

result, we can have a different amount of refinement groups

and several Tx-Rx pairs per group. The number of pairs

per refinement group is known impact the computational

performance [5] [6]. The application’s coordinator process

dynamically distributes the refinement groups among workers

on demand whenever a worker becomes idle to tackle such

compute diversity.

The user choice of a Txmax-Rxmax-Fqmax configuration is

commonly used to instantiate many refinement groups whose

total is at least equal to the same amount of workers. Very

frequently, the user needs to be made aware of the performance

impact of such a choice, despite similar choices being capable

of generating completely different workloads. The Figure 1

provides an overview of how different the makespan can be

in the same computing platform depending on the user choice

of these parameters, ranging from 18 minutes to 3.5 hours

here. We depict 50 configurations of our main case study

for varying maximum numbers of emitters and receivers for

the refinement groups, ordered from the faster to the slower

configuration. The user generally has very little information to

discern configurations that would lead to better performance.

Fig. 1. The real execution time (Y-axis, in hours) of 50 user-defined possible
configurations (on the X-axis, order from faster to slower).

Related Work. Predicting what would be the application

performance involves both creating performance models of

the fundamental arithmetic operations but also understanding

how the AMR behaves, particularly for this type of mesh,

where the errors tend to be greater closer to where emitters

and receivers are positioned in the mesh of the mCSEM

data. The authors have initially presented the performance

modeling of the MARE2DEM [10], where the performance

model indicates that the makespan is influenced by the number

of vertices in the mesh and emitters (Tx). They also assess the

scalability of the application in parallel computing systems.

When generalizing the obtained performance model, they

assume that a) any mesh needs four refinement operations

to reach a good resistivity approximation and b) the mesh

refinement doubles the number of vertices present. From this,

the authors conclude that the best makespan appears when the

number of processors is large enough to process the mesh for

each emitter (Tx) separately.

Anticipating the AMR time is the most challenging task

since the level of refinement required by each group de-

pends on several characteristics such as group composition,

frequency used, conductivity of the mesh regions, and distance

between Tx and Rx, among others. Furthermore, exhaustively

testing all configurations is unfeasible since there may be too

many possible configurations as the space equals the product

of Tx, Rx, and Fq present in the CSEM survey data. As far as

we know, no methods attempt to predict the performance of

mCSEM data inversion when AMR is part of the application.

Existing methods [11] present predictions for regular meshes

without refinement only. Consequently, a method capable of

estimating the makespan for a given configuration is vital so

the users of MARE2DEM may better choose initial parameters

to control the parallelism.

Contribution. In this article, we describe our method to

estimate the makespan of MARE2DEM with minimal cost.

We detail the following contributions: (1) the characterization

of the MARE2DEM performance, (2) a method for estimating

mesh refinement and its compute performance, (3) estimating

the execution order of several configurations at a cost much

smaller than actually executing all configurations possibilities

for a given case study. These contributions are possible through

the combination of several steps involving the characterization

of the application through the acquisition of execution traces,

analysis of the traces using performance visualization methods

[12], characterization of the refinement groups, and model-

ing of the primary operations present in the MARE2DEM

application code. Estimating the refinement of the meshes

made in each of the refinement groups is the critical point to

determining the execution time of each configuration since it is

expected that meshes that demand further refinement require a

higher processing cost. We detail how the method works and

evaluate its effectiveness with success, pinpointing the best

values for the refinement groups creation, using a real case

study containing the geoelectric model of the Marlim field in

the state of Rio de Janeiro, Brazil [13].

The open-source MR3D (Marlim R3D) dataset [14] has

been considered one of the essential standards for evaluating

mCSEM data inversion methods because of the widespread

knowledge about the oilfield characteristics. It possesses 25

horizontal lines (west-east) and 20 vertical lines (north-south)

in which the emitter has evolved, capturing six frequencies

ranging from 0.125Hz to 1.25Hz. We use one arbitrary line for

our evaluation since the MARE2DEM application process a

single line at a time, and the lines have similar characteristics.

The Figure 2 depicts the chosen inline referenced as line

04Tx013a. We show the model height and length on the

Y and X axis. The A plot shows the initial mesh refinement

with a heavily refined rectangular area with 64 Km of length

and 6 Km of depth. The B plot shows a smaller area closer

to the transmitters and receivers. The blue points identify

the 206 transmitters, and the red triangles identify the 20

receivers placed on the irregular seafloor. Although we use
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Fig. 2. Line 04Tx013a of the MR3D dataset with the initial mesh (A), and
the rectangular Rx/Tx area (B), where the numbered red triangles represents
the 20 receivers, and the blue points represents the 206 transmitters.

this dataset, we expect that our method works for any input

for the MARE2DEM application.

The rest of the paper is structured as follows. Section II

presents our method to estimate the MARE2DEM’s mesh

refinement behavior and the application makespan, for a set

of user configurations. Section III presents the experimental

evaluation of the proposed method, including the makespan

estimation for multiple configurations, enabling one to select

the best possible configuration for a given computational

platform, and considerations on the generality of the model

definition. Finally, Section IV concludes this paper with a

discussion and further considerations of investigation. A public

companion1 contains the software modifications, data, and

instructions to reproduce our analysis.

II. METHOD: AN ESTIMATE FOR MARE2DEM’S MESH

REFINEMENT AND APPLICATION MAKESPAN

The general goal is to determine which MARE2DEM’s

configuration is best for a given computing platform before the

actual execution of the application. We describe the method

to predict the MARE2DEM’s makespan for different configu-

rations. The Figure 3 depicts the method with its three main

phases: (A) Performance Characterization (in blue, top box),

(B) Makespan Estimative (in red, middle box), and (C) Method

Evaluation (in green, bottom box). Each phase contains a set of

subphases identified as the areas divided by the dashed lines,

and each subphase contains the steps (rounded corner gray

boxes) done to process the inputs (rectangular white boxes).

The first phase describes the process of understanding the

behavior of the application and its performance. The second

phase is the core of our contribution, and it contains the effort

to predict the application’s makespan at a reasonable cost.

Finally, the third phase consists of evaluating the proposed

prediction against real executions in an HPC cluster. These

three phases are the skeleton of this work, which has been

1https://gitlab.com/Alves_Bruno/companion-sbac-pad-2023

stable throughout its development. The depicted subphases

and steps within each phase result from iterative refinements

over the method and represent our research’s current and final

state. The following subsections (Section II-A, Section II-B,

and Section II-C) describe in detail each of the phases and the

processes adopted in the method.

A. Performance Characterization

The performance characterization phase of our method is

where we identify the MARE2DEM’s behavior and perfor-

mance when running the data inversion. We adopt a sim-

ilar strategy [15] for the performance characterization of

MARE2DEM. However, we extend the earlier work by con-

sidering a list of configurations for trace acquisition, and

not just one. Understanding the application’s behavior from

a broader perspective is essential since different configura-

tions provide different workloads to be distributed among the

parallel workers. The first phase of the method contains two

subphases: Data Acquisition and Model Definition. We collect

data for the Model Definition during the Data Acquisition

subphase. Then, during the Model Definition, we determine the

performance models for the relevant MARE2DEM operations

when computing the CSEM data inversion.

The first subphase of Data Acquisition has three inputs:

the MARE2DEM instrumented code, the MARE2DEM input

files, and a list of configurations. After a profound inspection,

we have manually instrumented the MARE2DEM source code

to identify the code’s relevant operations. We then mark

those operations’ scope to obtain the execution traces with

performance-related parameters. Besides the operations instru-

mentation, we identify relevant factors within each region to

also record them in the traces associated with each regions’

scope. The MARE2DEM input files describe the application

workload and consist of the region’s geometry, the initial resis-

tivity model, and the collected CSEM data of the survey. The

last input is a list of configurations where each configuration is

a triple integer value Txmax, Rxmax, Fqmax that controls the

workload parallel division as described in the Section I. The

final step of this subphase is the MARE2DEM’s execution

for each of the listed configurations, gathering traces with

substantial information for performance modeling.

The Figure 4 depicts one of the traces collected during the

Data Acquisition. It shows the second refinement group of the

configuration 1-1-1. We show the application’s execution time

at the X-axis and the function call stack level at the Y-axis.

The first stack level shows the operation that processes the

refinement group. The second stack level shows the subsets

of the given refinement group, where we can observe that the

groups are split into 30 subsets. The third and last stack level

shows the smaller operations invoked for each subset. We refer

to them as microkernels. The application applies the AMR

during the local_refinement and estimate_error.

The AMR algorithm refines the triangles surrounding the

Tx and Rx during the local_refinement, while in the

estimate_error it refines 10% of the mesh’s triangles

with the highest errors. The em_derivs and em_primal



Fig. 3. Our method’s three phases (A, B, and C) to estimate the MARE2DEM’s makespan for different configurations.

are the microkernels that process the refined meshes. Besides

that, the AMR only happens in the subsets 1, 6, 11, 16, 21, and

26. The subsets in between those groups reuse the previously

refined meshes. The bottom facet of Figure 4 shows a zoom

covering only the first five subsets of the same refinement

group. It shows that each local_refinement is followed

by the em_primal and estimate_error microkernels.

The iteration can repeat many times depending on the neces-

sary mesh refinement to reduce the data inversion error. The

in-between subsets (2 to 5) always have an em_primal oper-

ation followed by an em_derivs operation. Those operations

describe the application’s behavior during the Jacobian phase.

This behavior is similar to the other refinement groups, but

the em_derivs operation is absent in the Smoothing phase.

The refinement groups in other configurations replicate this

same behavior. However, the number of refinements needed

per subset may change depending on the characteristics of the

pairs present in each group.

The Model Definition subphase receives the previously

collected traces as the input to determine the code’s behavior

through a series of analyses. The goal is to determine a

model for each relevant region identified earlier during the

code inspection. In this subphase, we explore performance

visualization techniques to fully characterize the application as

it has proven its value in different scenarios [12], including the

geophysics context [16]. Then, we conclude the performance

characterization phase by creating a performance model for

each relevant code’s region. We have considered the following

Fig. 4. Trace visualization of the second refinement group of the configuration
1-1-1. The top facet shows the Jacobian’s phase refinement group, subsets
and microkernels. The bottom facet shows a zoom into the X and Y axes by
showing the first five subsets and the stack levels 2 and 3.

configurations 1-1-1, 2-1-1, 4-1-1, 1-2-1, 1-4-1, and 10-10-1.

Our evaluations using these configurations have shown that

the operations’ duration mainly depends on the number of

triangles present at each mesh. We consider those specific sets

of configurations because they can represent the application’s

behavior when varying the maximum number of Tx (2-1-1,

4-1-1), the Rx (1-2-1, 1-4-1), and both (10-10-1).

Table I shows the best models (the second column) we were

capable of obtaining after the trace analysis and visualization



for each of the traced operations (the first column). The

explanatory variables used on the multiple linear regression

models to estimate the operation’s duration consists of static

information, such as the input parameters (nTx, nRx, nP),

and dynamic information, such as the number of triangles in

the mesh (nTri). The nTri parameter is the number of mesh

triangles, while the nTx, nRx, and nP are the number of Tx,

Rx, and pairs on each refinement group. The third column

shows the quality of these models R2, which can vary from

0 to 1, and values close to 1 are usually a good indicator that

the model fits the data. Further details about the operations’

models are given in Section III.

TABLE I
THE BEST PERFORMANCE MODEL FOR EACH MICROKERNEL.

Microkernel Model R
2

em_primal duration ∼ nTri * nTx 0.994
em_derivs duration ∼ nTri * nP + nTx + nRx 0.987
estimate_error duration ∼ nTri * nTx 0.994
local_refinement duration ∼ nTri * nTx * nRx * nP 0.835

B. Makespan Estimation

The models obtained in the previous phase showed that

duration mainly depends on the number of triangles of the

meshes. Therefore, predicting the mesh refinement algorithm

is crucial to determine the duration of each MARE2DEM’s

configuration. In this way, this phase first addresses the

AMR prediction during the Data Acquisition and Meshes’

Refinement Estimation subphases, and then based on that, it

calculates the makespan estimation during the Performance

Estimation subphase. As mentioned, the refinement groups

have a set of Tx-Rx pairs, and each of those pairs impacts

the AMR by demanding a deeper refinement of the areas

surrounding the Tx and Rx. Our solution to predict the AMR

explores combining refinement from each pair of Tx-Rx.

The Figure 5 details the proposed solution by showing

the first refinement group of the configuration 4-1-1 (top

left image). This refinement group has four pairs of Tx-Rx,

with 4 Tx and 1 Rx. The top right image shows the mesh

state after the AMR for the area surrounding the Tx, and

our solution aims to estimate such a final mesh refinement

state. We only show this small region due to visualization,

and for the sake of this explanation, however, this solution

needs to consider the hole mesh. Then, the next step is to

decompose the refinement group in its pairs and calculate

the mesh refinement separately for each pair. We modify

the MARE2DEM source code to write the meshes to binary

files after each refinement operation during the CSEM data

inversion. Then, we select the elemental configuration (1-1-

1), which is the one with only one pair of Tx and Rx for

each of the available CSEM frequencies. We then run the

application and store the captured pair’s meshes during the

Data Acquisition. Figure 5 (middle) shows the meshes for the

decomposed pairs of the select example group. The rectangles

A to D show the mesh refinement demanded by each Tx,

and the solution to replicate the AMR relies on composing

those meshes together, as shown in Figure 5 (bottom). This

solution can estimate the AMR for the refinement groups of

any configuration with the cost of running only the elemental

configuration and the costs of composing the pairs into more

complex groups.

Fig. 5. An example of the proposed solution for mesh refinement estimation.
We select the first refinement group of the configuration 4-1-1 and show its
refined mesh on the top facet. The middle facet shows how the given group
can be decomposed with refinement groups from the elemental configuration.
The bottom facet shows the combination of elemental pairs to estimate the
mesh refinement.

The composition of the refinement groups would take too

much time to do by manually inspecting the meshes and

grouping them. To tackle this issue, we need to automate

the process. The Figure 6 depicts how we use dynamic grids

for such automation. First, we create a grid for each of the

pairs’ meshes. This step dynamically divides the grid until

all quadrants have only one triangle midpoint. With that,

we compose the grids by searching for the most refined

quadrant among the input grids. Figure 6 at Grid Composition

(middle) shows an example of the composing algorithm used.

Each graph node represents a quadrant, where the root node

represents the main quadrant with the mesh’s size. In blue, we

visually represent the grids A, B and the resulting composed

grid A+B. In the Result Check (bottom), we can see the final

composed grids and a comparison of our estimation against the

reference goal. Despite the minor differences, our estimation

can even replicate the areas where the refinement is intense. If

we compare the number of triangles on each grid (at the facet

label), the estimation overestimates the number with a slight

difference of ≈0.27% from the goal.

The Meshes’ Refinement Estimation subphase receives as



Fig. 6. The implementation of the proposed solution to estimate mesh
refinement. The top facet shows the grid creation from the acquired meshes
of the elemental configuration. The middle facet depicts the algorithm used
to compose the given grids into one. We show the grids (in blue) and the
quad-trees that represent the grids. The bottom facet compares the obtained
grid with the grid created from the calculated mesh. The facet label shows
the number of triangles on each grid.

input the previously captured meshes, a list of configurations

to estimate the makespan, and the pairs of Tx-Rx present

on each refinement group of the list of configurations. For

example, the 7 depicts the Meshes’ Refinement Estimation

of a specific refinement group of the configuration 4-1-1.

Our method generalizes for any refinement group at any

configuration. The top facet shows the trace collected for the

refinement group 1818, and the final goal is to estimate the

duration of each microkernel as registered in the application

traces. The first step for the duration estimation is the grid

creation and composition, where we estimate the number of

triangles on the meshes refined by the local_refinement

and estimate_error microkernels. In the example, we

focus on the subsets 1 to 5, and show the grid created from the

mesh defined by the last estimate_error done in those

subsets. The local_refinement and estimate_error

microkernels refine the meshes differently. The first operates

around the Tx and Rx, and the second operates in a broader

area by refining the triangles with the highest errors. In order

to represent the mesh refinement done by each microkernel,

we select a smaller area for the local_refinement and

a larger area for the estimate_error, as shown in the

first grid. We show the grids of the pairs A, B, C, and D

that composes the refinement group 1818. We also show the

refinement iteration that occurred on each microkernel as it

can repeat N times depending on the refinement demanded

by the application. The A + B + C + D facet shows the

composed grids on each microkernel and iteration. Pairs in

the same group can have different iterations, as shown in

iteration 2 of the estimate_error. In those cases, we do

the composition by adding the present grids with the grids

from previous iterations, as depicted by the blue arrows. Then,

we output the mesh refinement estimation, as the orange and

blue blocks show with the respective number of triangles.

After the mesh estimation, the subsets’ structure repli-

cation begins, as shown in Figure 7. We first repli-

cate the subset structure of the goal trace by adding

the remaining microkernels. We add the em_primal af-

ter the local_refinement iterations and after each

estimate_error. Then, we add the em_derivs as the

last microkernel. In order to replicate the subsets from 2 to 5,

we copy the last em_primal and em_derivs microkernels.

This procedure concludes the estimation for the first five

subsets, and we repeat this process for the subsets 6 to 10,

11 to 15, 16 to 20, 21 to 25, and 26 to 30. At the end of

the Meshes’ Refinement Estimation, we output the number of

triangles used as input for each of the microkernels present at

the refinement groups of the list of configurations.

The last subphase is Performance Estimation, where we

apply the previously defined models and estimate the duration

of each microkernel. The number of triangles in the meshes

previously estimated, the number of Tx-Rx pairs, and the

number of Tx and Rx are the parameters used to estimate

the duration with the performance models. After that, we

aggregate the microkernels by combining operations from the

same refinement groups. This step outputs a makespan for each

of these groups. Finally, we define the configuration makespan

by replicating the MARE2DEM’s workload distribution algo-

rithm for a predefined number of parallel workers of the target

computing platform we intend to use.

C. Method Evaluation

This phase evaluates the makespan prediction obtained by

comparing it to a list of configurations that have been actually

executed. For the data acquisition, we define a sample of

configurations to run the application since running all possible

configurations demands a tremendous cost, even considering

the execution of only one application iteration. We then collect

the traces for each configuration and save the makespan.

Then, the subphase of evaluation begins, where we compare

our estimation to the execution. This phase outputs a final

evaluation of the method that can be used as a new starting

point to refine the method’s subphases.

III. EVALUATION AND RESULTS

We present the software and hardware environment config-

uration of our experiments. Then, we present the main results,

including the makespan estimation and validation. The last part

of our results includes a discussion involving considerations

of our model definition.

A. Experimental Setup: Software & Hardware

We used a series of software tools in the development of

this work. The Score-P-7.0 tool [17] captures the traces of the



Fig. 7. The Meshes’ Refinement Estimation subphase. We show the
created grids and the composition for the local_refinement and
estimate_error microkernels. We show regions with different areas due
to the impact of each microkernel refinement. The areas are depicted in green
and red. Then, we show the grids for each elemental group (A, B, C, and
D) and the iterations of each microkernel. The A+B+C+D facet shows the
composed grids. The orange and blue blocks show the number of quadrants
on each composed grid. At the bottom, we show how we replicate the traces
and each refinement group.

MARE2DEM application using the OTF2 format (Open Trace

Format Version 2). The OTF2 files are then converted to CSV

(Comma Separated Values) files with the otf2csv 2 tool. We

improved the otf2csv tool to correlate the factors with the

regions encapsulating each recorded factor. Furthermore, we

incorporate routines into the MARE2DEM code to write the

refined meshes into binary files. We develop the Rdgrid 3 tool

for dynamic grids creation and composition. Finally, the ex-

periments’ creation, analysis, interpretation, and visualization

heavily used of reproducible notebooks in org-mode format

with the R language and the Tidyverse package. We made

available a reproducible companion that contains the data and

visualizations codes used to present the results. In order to run

MARE2DEM, we use three computing nodes from our local

2otf2csv: https://github.com/schnorr/otf2utils
3Rdgrid: https://github.com/Alves-Bruno/rdgrid

cluster 4 . Each node has 2 Intel Xeon E5-2650v3 processors

(20 cores, 40 threads) running at 2.3 GHz with 128GB DDR4

RAM. The nodes run the Debian 10 (buster) operating system

with the Linux kernel 4.19.0-20-amd64 and are interconnected

with a 1 Gbit/s local network. We tell OpenMPI 3.1.4 to use all

cores of each node, leading to 20 processes per node that were

mapped into 59 MARE2DEM workers and one coordinator.

The MARE2DEM can take up to 4 hours to run a single

iteration in the platform for the given input configuration. At

the same time, we need a representative set of experiments

to evaluate the effectiveness of our method for the makespan

estimation. In this way, we select a sample of 50 configurations

from the 8240 available options. We apply the Latin Hyper-

cube Sampling (LHS) [18] method to generate a near-random

sample that can cover a significant area when considering the

configurations that use one CSEM frequency. The Figure 8

shows the configurations adopted for validating our method,

with the number of Tx in the X-axis and the number of Rx

in the Y-axis. We used those configurations to run and trace

the MARE2DEM and as input for the makespan estimation.

Fig. 8. The sample of configurations used for the method validation. We
apply the Latin Hypercube Sampling (LHS) method to generate the near-
random sample.

B. Makespan estimation for multiple configurations

The performance estimation provided by our method allows

one to estimate the makespan for any given configuration.

However, the estimation comes with the cost of: (A) obtaining

the elemental meshes for each CSEM Tx-Rx pair; (B) estimat-

ing the meshes’ refinement with the creation and composition

of the grid; (C) defining the microkernels model; and (D)

applying the model for each microkernel to later estimate

the makespan. The makespan estimation spends most of the

time on A and C, since those steps involve the execution of

MARE2DEM. In C, we need to calibrate the microkernels’

model with a representative application trace. The time spent

in B is relatively low since we can run the grid creation

and composition in parallel workers for each subset in the

refinement groups. Furthermore, we use a caching system by

reusing the already composed grids shared among different

configurations. Despite the involved costs, we assume our

4UFRGS-PCAD cluster: http://gppd-hpc.inf.ufrgs.br/



method has a low cost since we only need to run two instances

of the MARE2DEM in order to estimate the makespan for any

of the 8240 possible configurations.

We apply our method to estimate the makespan of the 50

sample configurations. In Figure 9, we compare the makespan

estimation against the real makespan of MARE2DEM for the

configurations detailed in the X-axis. The execution makespan

determines the order of the configurations from the fastest

to the slowest. The gray bars show the error of the esti-

mation. One can observe that the estimation error grows as

the execution makespan grows. The estimation achieves its

best results when the execution is faster, as in the first 16

configurations. However, estimating precisely the makespan

of each configuration is nonessential since we only want to

indicate the fastest configuration to the geologist in charge of

running the application. In this sense, we classify the estimate

as reasonable if it can able to represent the order of growth

of the execution makespan.

Fig. 9. Makespan estimation compared with running each configuration.
Despite the differences in the absolute values, our method can indicate the
order of growth for the configurations makespan.

The Figure 9 shows the makespan estimation for the 50

sample configurations. It shows the makespan estimation in

red and the execution makespan in blue. The X-axis shows

the configurations ordered by the makespan of the execution,

and the Y-axis shows the makespan obtained in hours. The

first ten faster estimations achieve similar makespan values

compared to the execution. One can observe that our method

overestimates the makespan for all configurations. Despite

the differences in the makespan estimation, our method can

indicate the order of the makespan. Successfully indicating

the order of the configuration’s duration is considered more

important than obtaining an exact estimation, as the order

determines which configuration the geologist should consider

to extract the best performance of the cluster. To depict how

good we are from the order perspective between the select

configurations, the Figure 10 shows the order of growth of

the estimation. The X-axis shows the execution order, and

the Y-axis shows the estimation order. The blue diagonal line

represents the best estimation, which got the order of all con-

figurations right. The red line represents the estimation order.

In general, our estimate manages to capture the makespan

behavior. The estimation order is better for the first ten and the

last 15 configurations, closely matching the execution order.

Fig. 10. The makespan estimation order compared to the execution order.
The blue line represents the best estimation. The cases where the red line can
closely match the diagonal line is considered a good estimation.

C. Considerations on the performance model definition

The makespan estimation relies on the mesh refinement esti-

mation and the microkernels’ performance models. The model

receives the traces from a given configuration to instantiate it.

Different inputs to the model can lead to different calibrations

since the configurations can lead to refinement groups with

particular characteristics. In this section, we evaluate if the

trace used to instantiate the model can impact the quality

of our estimation. We investigate by calibrating the micro-

kernels’ models with each of the 50 available traces. Then,

we estimate the makespan with the 50 obtained models, and

each estimation produces a result similar to the one shown in

Figure 9. The Figure 11 summarizes the quality of the obtained

estimation for each of the 50 models. The points in the figure

represent each of the traces used to calibrate the models, while

the number of Tx and Rx of those traces are used to position

each point in the X and Y axes. The points’ colors depict

the quality of the estimation by showing the order error. The

order error measures the estimation quality by aggregating the

distance from the execution order to the estimated order for

each configuration. In summary, the blueish points represent

reasonable estimations, which can indicate the order of the

execution. The black circles highlight the cases where we

could not indicate the execution order with good precision.

The cases in which the estimation fails are related to the

calibration of the model with traces of configurations with

only a few emitters or receivers. The blue rectangle shows the

area where we believe configurations should be selected from,

especially for model calibration because there are no cases

where the estimation fails inside this region.

We depict the problematic estimations in Figure 12. The



Fig. 11. The quality of the estimation when using different traces for
the model instantiation. The blueish points represent the cases where the
estimation successfully indicates the order of the execution. The black circles
highlight the cases where the estimation fails.

estimations 2, 3, and 4 present similar behavior, where our

result underestimates most of the configurations’ makespan by

assigning an estimation value closer to 0. In those cases, the

configuration used to calibrate the model only had 2 Tx, re-

sulting in a model that could not extrapolate the duration of the

microkernels from configurations with a higher number of Rx.

The estimations 5, 7, 10, 11, and 12 also use configurations

with fewer Rx. However, in those cases, the estimations for the

first 35 configurations are better against the models with only 2

Rx (facets 2 to 4). The estimation for the slower configurations

could be more capable of achieving good results. Finally, the

last two cases, numbers 29 and 36, have more Rx but the

limitation factor is the number of Tx.

The results show that our method can successfully indi-

cate the execution order when using most of the executed

configurations for model calibration. However, the Figure 11

shows that most failed estimation relies on calibrating the

model with a configuration that has less than 5 Rx. In this

way, we conduct another set of estimations by removing

the local_refinement microkernel from the duration

estimation since the duration of this microkernel is influenced

by the number of Rx. The number of Rx also influences

the em_derivs’s duration, but we do not remove this mi-

crokernel because the number of CSEM pairs is the most

impacting factor after the number of triangles at the mesh.

The Figure 13 shows the estimated order when using each

available trace for model calibration, but now considering only

the local_refinement, em_primal, and em_derivs

operations. We show that all configurations can be used for the

model calibration without impacting the estimation quality, as

the red line follows the behavior of the best estimation case.

IV. CONCLUSION AND FUTURE WORK

This work presents a performance characterization and

modeling study for the MARE2DEM, an oil and gas explo-

ration application that uses the established CSEM method for

data inversion. We developed a low-cost method to estimate

the MARE2DEM’s makespan for different configurations.

We aim to provide a tool for helping the geologist decide

which configuration can extract the best performance for a

given cluster configuration. Our method includes three main

phases: Performance characterization, Makespan estimation,

and Method evaluation. In the first phase, we investigate

the application’s performance by analyzing and visualizing

traces collected during the data inversion. We identify that

the application’s configuration determines the workload’s size

and characteristics by defining the maximum number of Tx,

Rx, and Fq that each workload, called refinement groups, can

have. We identify four operations of the refinement group’s

processing, which we call microkernels because they represent

the building blocks to calculate the CSEM data inversion on

each refinement group. Then, in the second phase, we present

the core of our contribution, where we detail the process

to obtain the makespan of any configuration (8240 options

for our case study) by paying the cost of running only two

configurations: 1) the elemental configuration used to obtain

the refined meshes, and 2) a representative configuration used

to calibrate the models established during the first phase. Then,

in the third phase, we validate our model with a sample of 50

configurations from the LHS method to cover a representative

area of the configuration space with one CSEM frequency.

The presented results show that our method can effectively

estimate the order of the makespan for the chosen sample of

configurations. The estimations show that the error is smaller

for the faster configurations and more significant for the

slowest ones. Our investigation shows that this error results

from the mesh refinement estimation error, as the lowest

configurations demand a higher mesh refinement that our

grid estimation procedure cannot replicate. As a consequence,

further investigation into this topic is needed. However, the top

priority of our work is to indicate the order of the configura-

tion’s duration and not the duration precisely. We also show

that the configuration used to calibrate the method can impact

the quality of the order estimation. However, we overcome this

issue by removing the local_refinement microkernel

from the performance estimation subphase. We also consider

that the sampling size and filter for the configuration with

one CSEM frequency may represent a limitation of our work.

However, we were limited by the execution time demanded

by each configuration. The presented method also is limited

to homogeneous computing platforms. Thus, as future work,

we intend to validate and extend our method in heterogeneous

platforms to explore a more extensive case study.
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Fig. 12. The makespan estimation for the cases where the order error indicates a wrong estimation.

Fig. 13. The estimation order considering only three operations and just one trace out of the 50 for model calibration (facets). We can see that no matter
which trace is used for calibration, our performance model captures the order with sufficient precision.
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