
A Practical Approach For Workload-Aware Data
Movement in Disaggregated Memory Systems

Amit Puri, Kartheek Bellamkonda, Kailash Narreddy, John Jose, Tamarapalli Venkatesh
Dept. of CSE, IIT Guwahati, Assam, India

email: {amitpuri, bkartheek, n.kailash, johnjose, t.venkat}@iitg.ac.in

Abstract—Memory disaggregation is a solid alternative to
traditional server systems that can overcome memory scalability
issues in next-generation HPC data centers. In a rack-level
disaggregated system, multiple compute nodes with small local
memory rely on remote memory pools (memory nodes) to
fulfill their memory demands. An in-network memory manager
manages remote memory address space and allocates it to
compute nodes which can access the memory at cache-line
granularity using coherent interconnects such as CXL (or GenZ).
However, the memory access cost is significantly increased due
to the presence of the network. Even though a page migration
system can exploit the locality of memory accesses, accessing
a remote page starves the block-level requests. Further, page
migrations introduce additional overheads which combined with
starvation may even degrade the performance. All these issues
require systematic evaluation of disaggregated memory systems
to achieve improved designs.

This paper presents a hardware mechanism for workload-
aware data movement between compute and memory pools
that significantly reduces the memory access cost. Firstly, our
design enables centralized hot-page migration in a multi-tiered
disaggregated memory that is aware of access patterns for
individual compute nodes. Secondly, we analyze the complexities
of accessing a remote memory page and propose a novel solution
to eliminate starvation by serving all the remote memory requests
at cache block granularity and by sharing bandwidth between
page and block memory requests. Lastly, we add extra hardware
support to get rid of additional overheads in a page migration
system. We evaluate our designs over a variety of multi-threaded
benchmarks using a cycle-level simulator which is specially
designed to simulate a disaggregated memory system. Our
design performs 10% to 100% better than traditional RDMA-
based disaggregated systems that access remote memory at page
granularity and 5% to 35% better than baseline disaggregated
systems that use coherent interconnects for block-level access.

Index Terms—Data centers, Page migration, Memory disag-
gregation

I. INTRODUCTION

The memory capacity wall has introduced scalability chal-

lenges to the data center servers which run large in-memory

applications such as AI, Big-data, and video/graph analytics

[23]. Even though enough computing power is available in

large multi-core systems, ever-increasing memory footprints

of data-centric workloads fail to utilize the available memory

resources [34], which remains stranded in different server units

and presents issues like memory under-utilization. Memory

disaggregation has recently gained the interest of the research

community due to its ability to address scalability and under-

utilization issues [22], [31]–[33]. A bigger motivation is

the availability of coherent interconnects, such as CXL or

Fig. 1. Server Resource Disaggregation

GenZ(merged with CXL) [10], [25], that allow high-bandwidth

and low-latency access to on-network memory resources. With

disaggregation, the server resources are decoupled into multi-

ple resource pools, as shown in Fig. 1, allowing on-demand

resource allocation. The resources from different pools com-

bine to create virtual server units, improving scalability and

utilization. Unlike the traditional server nodes, the compute

nodes have a small amount of local memory and rely on

memory pools for most of their memory requirements, due

to which the memory access cost is increased 2 to 3 times

that of local memory.

A typical disaggregated memory system (software disag-

gregation) accesses remote memory at page-level granularity

over an RDMA-enabled network. These systems swap out

the memory pages to remote memory borrowed from other

server nodes rather than swapping to slow disks. In hardware-

based disaggregated systems, the memory-binding intercon-

nects allow block-level access to remote memory on a cache

miss, where local and remote memory (in memory pools)

is organized linearly. Further, disaggregated systems feature

multi-tiered memory management where a global memory

manager manages the address space of memory pools beside

a memory manager at compute nodes. The primary challenge

in disaggregated memory systems is the high access cost to

access remote memory blocks on a cache miss, significantly

impacting performance. Like in other hybrid memory systems

(such as DRAM-NVM), there is a scope for exploiting spatial

locality in the workloads by migrating hot memory regions in

slower memory to the faster memory [17], [29], [35], [44],

[46]. However, moving pages in disaggregated memory sys-

tems have multiple challenges. Firstly, no centralized memory

management exists in disaggregated systems like the one in

a DRAM-NVM hybrid memory system, where a memory

manager or TLB can predict hot memory pages in slower



NVM. Secondly, data-centric workloads with large memory

footprints expand to tera-bytes of memory, and significant

metadata is required to track all the memory pages. Third and

most importantly, accessing a remote memory page requires

more network/memory bandwidth that starves the subsequent

cache line accesses in their critical path, significantly im-

pacting the system’s performance. Further, workloads show

a range of friendliness to page migration [7], and it is crucial

to set the migration threshold based on the memory access

patterns of each compute node. All these issues require careful

investigation of disaggregated memory systems to be able to

exploit the locality in remote memory pages. With efficient

multi-granularity memory access, frequent block accesses to

remote memory can be supported by occasional page access,

reducing the memory access cost.

This paper proposes a hardware mechanism for workload-

aware data movement in a disaggregated memory system that

implements an epoch-based hot page migration to reduce

memory access latency. Our approach is based on a centralized

page migration system that supports rack-level disaggrega-

tion, where multiple compute nodes run simultaneously, each

running a workload with distinct memory access patterns.

The hardware support comes through an in-network memory

manager [8], [22], which is extended to perform workload-

aware page migration. Next, accessing a remote page takes

around 1.2-1.5μs, 5 to 7 times more than a block access

latency. However, it brings multiple blocks to local memory to

complete future remote memory access locally. Also, reading

a remote memory page (assuming a 4KB page) and sending

its response back to the compute node increases the memory

access cost of the subsequent block accesses and also starves

them of memory/network bandwidth. Our mechanism for re-

mote page access ensures that the starvation to block accesses

is eliminated while also reducing the response time for the

page access, which is now completed at block-level granularity

rather than accessing a complete page altogether. Further, page

migration systems (epoch-based [21] and on-the-fly [19]) have

specific limitations that may even degrade the performance in

a disaggregated memory system. Therefore, we add hardware

support that takes advantage of both approaches to improve

the performance further. Finally, we offer software support

for centralized page migration that requires carefully selecting

the migration parameters for each compute node based on its

memory access patterns. A learning-based page migration pol-

icy is implemented that initially learns the workload behavior

for each node and fixes the migration parameters. To evaluate

our proposed design, we design a cycle-level disaggregated

memory simulator that simulates multiple compute nodes and

memory pools, a global memory manager, and remote memory

access over the network interconnect. We extensively validate

our simulator for measuring system performance (with one

node having 100% local memory) against gem5 with good

enough accuracy and integrate a standard DRAM simulator to

simulate memory access. We summarize our contribution in

this paper as follows:

• We propose a novel hardware mechanism for workload-

aware data movement in rack-level disaggregated mem-

ory systems that occasionally fetch hot pages while

performing frequent block accesses to remote memory.

• We build a cycle-approximate simulation framework to

model a multi-node disaggregated memory system and

implement our data movement mechanism on top of it.

• We analyze the major hurdles of multi-granularity remote

memory access in a disaggregated system and implement

an approach to neutralize the extra overheads and delays

due to page access and migrations.

• Finally, we evaluate our proposed mechanism over vari-

ous multi-threaded HPC workloads and mini-applications

and shows a significant improvement in the system per-

formance.

II. BACKGROUND AND MOTIVATION

Baseline Disaggregated Memory Systems: Typical dis-

aggregated memory systems access remote memory at page

granularity and uses RDMA as the underlying mechanism.

These systems utilize free memory available in other server

nodes (virtual disaggregation) and swap out pages to remote

memory rather than disks, speeding up future page faults to

those pages. On the other hand, hardware memory disaggre-

gation allows block-level access to remote memory, which is

managed as separate pools. These systems use remote memory

as an extension to local memory rather just as a swap device.

Remote memory address space can be made visible to compute

nodes using a shared or distributed memory approach. With a

shared approach, all the remote address space is transparent

to OS at compute nodes, as shown in Fig. 2(a), and a memory

page can be allocated at any address. However, multiple

compute nodes may try to allocate a page concurrently, causing

a conflict. Thus, an in-network global memory manager must

allocate a remote page on behalf of compute nodes, which

may also face a bottleneck due to frequent page requests. But

the approach makes it easy to share pages between nodes.

Alternatively, a distributed approach may be implemented

to add or remove the remote memory at run-time in larger

chunks (using memory hotplug), as shown in Fig. 2(b). Once

the memory is reserved and added to the compute node, it

may allocate memory pages without conflict using its local

memory manager. This approach removes the page allocation

bottleneck at the global memory manager and significantly

reduces the metadata overhead at compute nodes but requires

another layer for address translation. Further, the in-network

global memory manager is implemented at a programmable

central switch to provide memory allocation and protection.

Our approach utilizes caching structures and DRAM (to store

metadata) at the switch as also has been proposed in the

past for disaggregated memory [1], [2], [6], [8], [22], [39],

shown in Fig. 3. Additionally, compute nodes have an address

translation unit to convert between local and remote physical

addresses and a network interface for remote memory access

(also present at memory pools).



(a) (b)

Fig. 2. Memory Management in Fully Disaggregated Memory Systems (a)
Shared Memory Approach (b) Distributed Memory Approach

Fig. 3. Baseline Hardware Disaggregated Memory System

Our hardware support for efficient workload-aware data

movement comes through the global memory controller at

the centralized switch. The proposed mechanism works for

both shared and distributed remote memory organizations.

However, in our experimentation, we assume no page sharing

among multiple nodes. Most data-centric workloads hardly

share pages [16], [38], and even if application threads spread

across multiple compute nodes, they follow different work-

flows. Further, with a large multi-core system, applications

mostly fall short of memory rather than computing power

and will not require shared memory access, especially with

disaggregated memory.

Page Migration Overheads and Parameters: Migrating

pages requires updating address translations in the page table

entries (PTEs) with new mappings. While updating the PTEs,

TLBs are locked to perform invalidation of migrated page en-

tries (known as TLB shoot-down), during which OS interrupts

the user application and issues an inter-processor interrupt

(IPI) [28] to other cores with the same page entry (also to

other compute nodes, in shared memory approach ). Similarly,

cache invalidation is required for the blocks with old physical

tags. Performing invalidation is expensive that introduces long

CPU stalls until it is performed and acknowledged by all the

cores. Further, migration generates extra TLB misses for re-

accessing invalidated entries, taking 60-80 cycles per page for

TLB-miss on average [30]. Lastly, each page transfer from

remote to local memory takes around 1.2-1.5 μs and delays the

subsequent block access while the page is read from memory

transferred to compute node.

Epoch-based page migration primarily requires three param-

eters. Firstly, an epoch length decides how often the pages

should be migrated. If it is small, frequent page migrations

introduce continuous CPU stalls and excessive overhead. If it

is large, all the future accesses to hot pages will be complete

at slower memory even before the migration. Secondly, the

hotness threshold describes the minimum criteria for a page

to be migrated that can be identified in various ways, such

as access count/frequency to a page or other ways. If the

threshold is strict, it will not migrate many probable hot pages.

If it is lenient, many pages will become eligible for migration,

increasing the network traffic and causing more starvation

to block-level accesses. However, the threshold varies for

different workloads, and the decision for migration should be

taken based on the expected benefits from migration rather

than a compulsion. Migrating useless pages also means the

system is trying to overkill the benefits of page migration.

Many pages might not even be accessed after migration,

evicting more local victim pages in turn. Lastly, the number

of pages to migrate (NPM) describes how many pages should

be migrated together. If NPM is less, there will be frequent

interrupts with CPU stalls which also invalidate TLB entries

for each batch of page migration. If the batch size is large,

the benefits of migration will be lost due to extra wait before

the pages are brought to local memory.

Considering all the trade-offs of page migration in disag-

gregated memory systems, it is essential to choose migration

parameters wisely for a centralized page migration system,

which may only rely on small caches to track pages and can

not afford to track all the pages in memory due to architectural

restrictions.

III. SYSTEM DESIGN

Overview: This section discusses the proposed hard-

ware structures to support a centralized Page-migration with

workload-aware data movement that eliminates the bandwidth

and starvation issues. Firstly, the central switch differenti-

ates the memory accesses of individual nodes by reading

the access packets and pass this information to the global

memory controller. This allows the controller to characterize

the access pattern for each node separately and fix the page

migration parameters and access priorities. The global memory

controller holds multiple new hardware structures whose sizes

can be scaled to support any number of nodes. However,

a limited number of compute nodes (C) and memory pools

(M) are expected to be grouped inside a rack with specific

configurations (say, at a fixed ratio of 1C:2M or 1C:4M).

These configurations are unknown, as continuous research is

being done in disaggregated memory space, while we assume

support for a maximum of 16 nodes. The overview of the

design of the global memory controller can be seen in Fig.

4. The new hardware structures are 1) Hot-Page Tracker, 2)

Access Controller, 3) Pending Blocks Accesses queues, and

4) Page Buffers to store accessed memory pages



Fig. 4. Centralized Page Migration Support with Workload-Aware Efficient Data Movement, ’R’ represents a Request Selector

(a) (b)

Fig. 5. (a) Hot Page Tracking Table structure (b) Page Buffer structure

A. Hot Page Tracking

The controller supports predicting hot pages by tracking

access count and frequency to remote pages. The hot-page

tracker (HPT) consists of a table to store information on

the most recently accessed pages with a maximum of 100

entries per node (also limits the number of pages migrated

together). Each entry consists of the page address (32-bit),

access count (16-bit), first access time (32-bit), and Access bit
(1-bit). However, there could be more active pages at a time

that will not fit in the cached table. In that case, a new entry

will be created by replacing the old one with minimum access

count and oldest access time. The evicted entry is kept in

a similar table at the switch DRAM and loaded back when

that page is re-accessed. A page is identified as hot when it

crosses the hotness threshold (explained later) and is based

on access count and reuse frequency. The reuse frequency can

be calculated using the page’s access count and first access

time. On identifying a hot page, a request is added to the

page request queue (inside Access Control block) with its

page address, and the Access bit is set to 1 and remains

set until it is migrated to compute node. The future memory

accesses to the same page are not sent to the memory pool

and are completed at the global memory controller (described

in subsection III-D). However, if the page is not hot yet and

Access bit is ’0’, the block request is added to the block access

queues (shown in yellow in Fig. 4).

B. Performing Migration and Using Page Buffers

Once the number of hot pages in the HPT becomes equal to

NPM, the migration will be performed by swapping the same

number of local victim pages at compute node to the address

of migrated remote pages. One limitation of the epoch-based

page migration is that many benefits are lost until the batch

of hot pages is ready, especially for workloads with a high

temporal locality. This can be eliminated with on-the-fly page

migration, which instantly migrates a page as it is identified as

hot, but has high overhead due to frequent TLB shoot-downs.

We take a middle path by using page buffers (as cache) at the

global memory controller with space for 100 pages per node.

The page is instantly accessed as it becomes hot and kept in

this cache until the whole batch is ready to migrate. When

memory access to any of these pages arrives, it is completed

at the controller itself through page buffers (costing less than

half of a remote memory access cost), getting the best of two

techniques. Further, keeping this buffer at a central controller

also allows clean access to shared pages between nodes (in

the case of a shared memory approach).

C. Access Controller

1) Handling Page Access: Once a page is identified as

hot, its request is added in the Page Request Queue but

is not send to memory queue as it is. Firstly, remote page

access latency is high, which delays the pending block-level

accesses to the same page. Secondly, page access occupies

the available memory/network bandwidth and obstructs subse-

quent block accesses to other pages, adding long delays again.

We overcome this problem by servicing page requests at a

finer granularity and responding as soon as a block request

within a page completes at the memory pool. Fig. 6 shows

the detailed mechanism by which Access Controller handles

the page and block-level requests. A page request eventually

accesses 64 contiguous memory blocks (4KB page with 64B

block). Rather than completing page access in one go, it can

be accessed block-by-block. The access generator will pick

a page address from the front of the page request queue and

generates 64 block accesses to that page from block-0 to block-

63 (using a fixed-size queue at the access generator). Access



Fig. 6. Access Controller to control Multi-granularity Access

control has separate hardware structures for each node where

its request selector forwards the chosen request to the network

queues.

2) Handling Block Accesses and Bandwidth Allocation:
When block accesses do not belong to a page request (the

page is not hot), they are treated as regular requests and kept

in block access queues (one for each node). Like page queues,

each node has separate block access queues. We implement

bandwidth partitioning between the page and block-level ac-

cesses to eliminate starvation and reduce waiting times for

all types of access. In each cycle, the request selector will

choose one of the requests either from the block access queue

(for regular block access) or from the access generator queue

(part of page access). Further, each queue can be allocated

different priority levels to prioritize one type of request over

another. The controller adds extra information to the packet

header of selected requests before forwarding them to network

queues to differentiate between regular block requests and

those belonging to the page access. The response packet from

the memory pool also includes the same information in its

header, allowing the controller to take appropriate action when

a response is received. If the response packet belongs to page

access, it stores the block in the appropriate page buffer by

matching the destination compute node and page address. If

the response belongs to regular block accesses, it is directly

forwarded to the destination compute node.

D. Pending Block Accesses

Once a page access request is sent and the page is under-

going access or is present in the page buffer, all the block

accesses to that page are halted at the controller and directed

to Pending Block Access queues, as shown in Fig. 4. The

response is instantly sent to the compute node if the block is

available in the page buffer. However, the block request waits

in the queues if it is not there. The queues have separate buffers

for storing reads and write. Reads queues store page address

and page offset, whereas write queues also have space to store

a block of data. When a new block arrives in the page buffer,

it checks for a pending block access with the same address

and completes the access by sending a response back to the

source node. In case of a pending write request, the data block

inside the page buffer (fetched from the memory pool and is

dirty now) is updated with the data in pending write queues.

E. Remote Memory Access Data Path

Whenever a block request of a compute node arrives at

the global memory controller, it will update the page tracking

parameters. If the page becomes hot, a page access request is

created using access generators, and access bit is set, while the

current block request is also added to pending block queues.

However, the request is added to regular block access queues

if the access bit is ’0’. The regular memory accesses will

complete as usual by sending their response to the requesting

compute node. On the other hand, if the response packet

belonging to the page request arrives (identified by the packet

header), the response is stored in the page buffer of the

respective node buffer at an entry matching the page address.

The pending block accesses to that page are also served if the

page address matches. However, the pages are only migrated

when a whole batch of hot pages is available in the page

buffer. The global memory controller will then notify the

respective compute node to perform page migration, for which

the OS at compute node evicts an equal number of local

pages. The eviction can be performed using basic memory

page replacement policies such as LRU, clock replacement,

or finding cold pages using access counters.

F. Hardware Overheads

We discuss the overhead of proposed hardware cache struc-

tures at the global memory controller to support a maximum

of 16 nodes in any node-to-memory pool configuration. The

HPT has 100 entries per node with 71 bits for each entry,

approximately 14KB for 16 nodes. The page request queue

inside Access Controller has only four entries per node, which

is the maximum number of on-flight page requests. Each entry

stores a page address (32-bit). The access generators have 64

entries (one for each page block) with a 32-bit page address

and a 6-bit block address. The access controller requires 5KB

in total for 16 nodes. The size of regular and pending block

access queues will depend on the MSHR size of the last-

level cache at the nodes. The memory requests will also be

distributed among these queues, many of which are served

instantly without delay. For a node with a 32-core system and

256 entries in MSHR, we assume 96 entries in the regular

block access queue and only 32 entries for the pending block

access queue (equally divided for pending reads and writes),

as only a few on-flight page requests can be there. Each entry

stores the page address (32-bit), block address (6-bit), and

source node-id (4-bit) for memory access. The pending block

queues additionally have 64B of data for write requests. The

total size of all these queues is around 26.5KB for 16 nodes

for both of these queues. Finally, the page buffers store 100

pages of size 4KB per node with its 32-bit address. This will

require a slightly bigger cache of around 6.25MB but provides

significant benefits by using positives from both on-the-fly and

epoch-based migration.



G. Characterizing Workloads with Training

1) Setting Migration Parameters: We analyze the memory

access pattern for each compute node to set the hotness

threshold. An epoch-based page migration policy requires

setting three migration parameters. However, if pages and

hotness threshold is known, then a fixed epoch length is not

required, as the system will reach a stage when the other two

conditions are met. We also do not fix the NPM parameter and

start migration with a small NPM (say 25) while changing

it dynamically based on the feedback from the compute

node, which is a more practical approach than fixed values.

The hotness threshold is set using the collected information

during training. When a process starts, page migration is

kept off initially for a few million cycles, during which the

global memory controller collects the access count and reuse

frequency of all the touched pages in its DRAM (in the same

way as during hot-page tracking). At the end of this phase, the

pages are sorted by access count, and filtration is performed

to remove less significant entries. The page entries with an

access count lesser than the mean are removed. The filtration

may be repeated to set a more conservative threshold until the

list does not get too small (20-30% of the initial size). Finally,

threshold parameters are calculated using the mean of access

count and reuse frequency of the leftover page entries.

2) Migration Feedback: The OS at compute node can run

a daemon program in the background to evaluate the benefits

and the overheads of page migration. We track accesses to

migrated and victim pages for each migration batch and

evaluate it after every few batches. Based on this evaluation, a

feedback score is generated and shared with the global mem-

ory controller. System overheads not only involve tlb shoot-
down (or invalidation) time but also the time to copy pages,

time to re-access invalidated TLB entries (NPM multiplied by

TLB miss time), and time to access victim pages in remote

memory, in eq. 1. The benefits are calculated by multiplying

total memory accesses to migrated pages with the difference

in remote and local memory access time, in eq. 2. Finally, a

migration score is produced using eq. 3, normalized on a scale

of -100 to 100 and sent to the global controller. The controller

modifies the NPM of a compute node based on its feedback

score, which is either positive or negative according to the

overheads and benefits of page migration. If the overhead is

negative continuously or NPM falls below a certain threshold,

re-initialization is done to reset parameters.

Overheadmig = Tinv + Ttlb miss + Tcopy pages + TV page acc

(1)

Benefitmig = Acc Count×MATRemote−Local (2)

%Scoremig
lim(−100→100)

=
(Benefitmig −Overheadmig)

Overheadmig
× 100 (3)

NPMnew = NPM +NPM × Scoremig

100
(4)

TABLE I
SIMULATION PARAMETERS

CPU 3.6GHz, 4-core, 2-width
64-InsQ, 64-RS, 192-ROB, 128-LSQ

L1 Cache 32KB(I/D), 8-Way, 2-Cyc
L2 Cache 256KB, 4-Way, 20-Cyc
L3 Cache 2MB per core shared, 16-Way, 40-Cyc
Cache Type Write-Back/Write-Allocate, Round-Robin
Memory (Local/Remote) 1200x2MHz DDR4 DRAM (19.2GB/s)
Switch 100/400Gbps, 4MB port Buffer

5ns for processing/switching
Network Interface (Nodes) 40/100Gbps, 1MB buffer

10ns (de)packetization/processing

TABLE II
BENCHMARKS

SimpleMOC(s) [15] Light Water Reactor Simulation
miniFE [9] Unstructured Implicit Finite Element Codes
Lulesh [20] Unstructured Hydrodynamics
XSBench(l) [42] Monte Carlo Neutron Transport Kernel
Testdfft [26] Fast-Fourier Transform for HACC
Pennant [11] Lagrangian staggered-grid hydrodynamics
NPB (bt, dc, ft, mg) [13] Computational fluid dynamics

IV. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Methodology

In the absence of a standard simulator, it is important and

challenging to experiment with the new designs over a reliable

platform. Therefore, we build a cycle-level disaggregated

memory simulator that supports the simultaneous running of

multiple compute nodes and memory pools. It includes a local

memory manager at compute nodes to decide a page allocation

between local and remote memory and a global memory man-

ager that allocates remote memory to compute nodes from one

of the memory pools in 4MB chunks. Lastly, an interconnect

is modeled to simulate remote memory accesses in memory

pools. 1. We model our proposed hardware mechanism for

the centralized page migration on our disaggregated memory

simulator.

For the reliability of results, we extensively validate the

performance of out-of-order CPU cores at compute node and

cache miss results at the LLC for up to 4-cores (for 1 compute

node and 100% local memory) against gem5 by using multi-

threaded Splash3 benchmarks [37]. We encountered a mean

error of 12% for IPC and 2% for LLC misses for all workloads.

A small variation is expected due to implementation details, as

pointed out by the past research work in simulator design [3],

[4]. We use a simple queue modeling for the interconnect and

show its impact in the result section by evaluating different

network configurations.

We use Intel’s PIN [24] platform to generate instruction-

level traces at the front end. The thread-wise traces are passed

to the back end to simulate an out-of-order x86 CPU and

a multi-level cache hierarchy (at compute node). The local

1code is available at https://github.com/Amit-P89/-
DRackSim/tree/main/DRACKSim-Detailed



Fig. 7. Performance Slowdown for all the workloads with different data movement policies

memory manager manages address space at compute nodes

and sends requests to the global memory manager on page

fault if it requires more remote memory to allocate a new

page. The interconnect includes a network interface at compute

nodes and memory pools and a central switch for sending

remote memory access. Further, we use a two-level arbitrator

at the switch to select a packet from multiple input ports and

virtual queues within a selected port. To simulate the memory

accesses at different compute nodes and memory pools, we

use cycle-accurate DRAMSim2 [36] and initialize multiple

instances of DRAM units for local memory at compute node

and remote memory at memory pools. At compute nodes,

LLC misses belonging to remote memory are forwarded to

the network interface as a network packet. The packets are

pushed to the central switch queues after adding packetization

delays which reach the memory pool to simulate the memory

access. A response packet is generated and returned to the

requesting compute node (once notified by DRAMSim2 for

memory access completion). We model different latency pa-

rameters for the interconnect (packetization time, NIC delay,

switch processing delay, propagation delay) and bandwidth

(for transmission delay) at compute/memory nodes and the

switch.

Disaggregated memory systems are to be used with multiple

compute nodes and memory pools that significantly impact the

performance due to memory access traffic on the network and

contention at memory queues of shared memory pools. So,

we design a simulator from the top down to perform multi-

node simulations (with no page-sharing across nodes). We use

multiple instances of Pintool to produce multiple instruction

traces simultaneously at the front end (one for each node) and

process them in parallel with multiple simulation threads.

Finally, we use various HPC applications and workloads

that mimic different scientific applications and have a variety

of memory access patterns and footprints (ranging from 50MB

to 830MB). Table II mentions all the selected workloads with

their functionality. We skip the initial single-threaded regions

for each workload and simulate 200 million instructions

only for the multi-threaded region. Table I mentions all the

simulation parameters at the compute nodes, memory pools,

and the interconnect. We evaluate our proposed design over

two network configurations, one with 100Gbps and 400Gbps

bandwidth at NIC (compute node and memory pool) and

switch, respectively. The other one uses 40Gbps and 100Gbps

of bandwidth.

B. Results

We evaluate our page migration system with other data

movement scenarios. Page represents a traditional disaggre-

gated memory system where data is only transferred at page-

level granularity. However, these systems are inherently slow

compared to hardware disaggregated memory systems. So we

use similar page buffers (as in our design) to delay the page-

table updates. Block represents a baseline hardware memory

disaggregation with all the remote memory accesses at block-

level granularity. OTF is an on-the-fly page migration on the

same system without extra hardware support. E25 and E100
represent epoch-based page migration in batches of 25 and 100

pages, respectively. PB is the same as our proposed design,

but the remote page access is made all together without any

bandwidth partitioning, and the response is sent as a 4KB

packet. Also, there are no pending memory access queues

for in-flight page requests at the global memory controller.

Finally, CPM is our proposed centralized hot page migration

system with all its features enabled. Further, we use the same

hot-page identification mechanism for OTF, E25, and E100.

The memory page allocations are performed across local and

remote memory at a fixed ratio of 50:50 using a round-robin

policy (unless mentioned otherwise). To keep the memory

ratio constant, we pre-evict the same number of victim pages

from local memory for every page migration using a clock-

replacement policy.

1) Impact on System Performance: We first evaluate the

slowdown in system performance compared to a system using

entirely local memory. We run each workload in a single

node configuration using one remote memory pool. As shown



Fig. 8. Increase in memory access cost for all the workloads with different data movement policies

Fig. 9. Percentage of memory access at local memory due to migration of pages

in Fig. 7, CPM experiences the minimum slowdown among

all the data movement schemes for all workloads at both

network configurations. With 100/400Gbps bandwidth, the

performance for XSBench, NPB:bt, and NPB:dc is very close

to the system with 100% local memory even with 50% of

memory footprint at local memory. As expected, PAGE suffers

the maximum slowdown as it has to access all the remote

pages at 4KB granularity, which increase the waiting times

of pending memory accesses to those pages. Epoch-based

page migration, such as E25, and E100, improved performance

compared to PAGE but does not always perform better than the

baseline BLOCK, as it misses out on many benefits due to the

long waiting time before a batch of pages is ready to migrate.

Only in a few cases, when a workload has good spatial local-

ity, epoch-based migrations perform better than the baseline.

On the other hand, OTF suffers severe slowdowns in some

Fig. 10. Performance slowdown on changing the local memory footprint

cases (miniFE, NPB:ft and NPB:mg), when more pages are

migrated. As there are no page buffers with OTF, it performs

worse or equivalent to PAGE in these cases due to regular

CPU stalls during TLB shoot-downs. PB could eliminate the

CPU stalls by using page buffers, not miss out on the migration

benefits due to instant migration, and improve the performance

for all workloads compared to baseline BLOCK. Finally, CPM

further improves the performance of PB by proper bandwidth

allocation to page and block requests and eliminates starvation.

Further, CPM managed good enough performance even with

40/100Gbps for most workloads except miniFE, NPB:ft and

NPB:mg, as they have the maximum number of cache misses.

2) Impact on Memory Access Cost: Fig. 8 shows the in-

crease in memory access cost for all the above data movement

schemes over two network configurations. As depicted by the

system performance, CPM has the lowest increase in overall

memory latency and averages around 1.25 times compared to

local-only memory latency over a 100/400Gbps network. In

the case of a 40/100Gbps network, the average increase in

memory cost is around 2.25 times the local memory access

latency. The baseline BLOCK and OTF suffers the most

in their memory access latency. However, memory latency

does not reveal the performance slowdown for page migration

systems, especially for OTF, as it hides the long CPU stalls

after the migration. We do not show the results for PAGE

because page requests are queued up at remote memory due

to significantly high page access times that could not correctly

represent the waiting times for last-level cache misses.



(a) (b)

Fig. 11. Performance slowdown on using multiple memory pools

(a) (b)

Fig. 12. Performance Slowdown with Multiple Compute and Memory Nodes

3) Impact on Hit-ratio at Local Memory: Fig. 9 shows the

percentage of memory accesses completed at local memory

as the consequences of page migration. For all the workloads,

CPM has most of the memory accesses at local memory. The

results for PB and CPM also include a few percentages of the

pending memory accesses completed at the global memory

controller using page buffers until a batch of pages gets ready

to migrate. OTF experiences a similar percentage of local

memory accesses compared to CPM, but the overheads did not

allow them to experience similar performance gains. Further,

CPM and PB have a significant difference in local memory hit

ratio, that is because the pages are accessed at 4KB granularity

in PB, which takes more time, and many block accesses

to those pages are completed at remote memory before the

migration.

C. Sensitivity Analysis

We further experiment by changing the memory-related pa-

rameters and different deployment configurations by changing

the number of compute nodes and memory pools.

1) Local-to-Remote Memory Allocation Percentage: First,

we change the memory allocation percentages at the local and

remote memory by allocating pages in the same percentage

(1 out of every 5 pages is allocated local memory to maintain

20% local footprint). Fig. 10 shows the performance slowdown

with 20%, 40%, and 60% of local memory compared to a

system with completely local memory. For XSBench, Sim-

pleMOC, NPB:bt, and NPB:dc, the performance with even

20% of the local memory is around 80% of the local-only

systems due to the high spatial locality in these workloads.

Once the pages are migrated, most of the memory accesses

are completed in local memory. With the novel hardware

mechanism of CPM, even during page access and migrations,

the overall impact of using remote memory is minimal. On

the other hand, miniFE, NPB:ft, and NPB:mg faces more

slowdown due to a decrease in application footprint on the

local memory.

2) Multiple Memory Pools: Next, we evaluate the per-

formance improvement when a compute node uses multiple

memory pools rather than a single one. This results in an

overall increase in the memory bandwidth and improves the

memory access latency by reducing contention at the remote

memory queues. Fig. 11 shows the performance slowdown

for each workload compared to the local-only system when

the remote memory pages are spread across multiple memory

pools. As we can see, in both network configurations, the

workloads face lesser slowdowns when the pages are spread

across two memory pools compared to a single memory pool.

The slowdown is more significant in the case of a 40/100Gbps

network.

3) Multiple Compute Nodes and Memory Pools: Finally,

we evaluate different configurations of multiple compute nodes

and memory pools, which is the expected way of deployment

for the hardware disaggregated memory systems. We consider

8-compute nodes and configure them in a 4:1 or 2:1 ratio

with memory pools. The local-to-remote memory allocation

ratio is fixed at 50:50, and the memory pool selection is done

using a round-robin policy (to allocate a 4MB chunk on each

request by the compute nodes). Fig. 12 shows the performance

slowdown for all the workloads (one on each node) running

together with different network configurations and node-to-

pool ratios. As we can see, the performance impact is minimal

with four memory pools, making it an optimal choice for

a node-to-pool configuration ratio. Whereas, over a slower



network and a 4:1 ratio, the slowdown is significant and is

around 9.6x of the local-only system.

V. RELATED WORK

Page migration has been used for hybrid DRAM-NVM

[5], [18], [35], [41], [44], [45] memory systems to bring

frequently accessed pages. Taekyung et al. [18] proposed a

system to migrate huge pages targeting the tired memory

systems which suffer from excessive misses in translation

look-aside buffers (TLB). Wang [44] proposed a system to

support super-pages in NVM but still perform the migrations

in light-weight pages to the DRAM. Shuang et al. [45] apply

hot-page migration to cloud computing platforms and devise

a hot-page capturer for virtual machine migration to reduce

the remote page faults during a restart at the remote node.

Yujuan et al. [40], [41] proposed ’UIMigrate’ that selects hot

pages from NVM and dynamically adjusts the hotness for

page migration using access counters. These techniques do

not work for hardware disaggregated memory with a multi-

tiered memory system making tracking pages difficult. Further,

data-center applications expand to tera-bytes of memory and

without a centralized manager, require a dedicated hot-page

tracker which uses the least amount of meta-data. Page migra-

tion has also been proposed for systems with software/virtual

disaggregated memory [5], [12], [14], [27], [43], which allow

only page-based remote memory access and does not support

cache-based access. These systems use RDMA to exploit the

free memory in other server nodes and replace slow disk

paging with comparatively faster remote memory paging and

are not a replacement for hardware disaggregation and are just

the older solutions to improve memory scalability. Komareddy

et al. [21] proposed a global memory controller hosted at

the rack switch. Although page migration in disaggregated

memory was proposed for the first time, the controller delays

the migrations to miss out on the potential benefits and

uses fixed parameters for migration without any intelligence.

Finally, there is little opportunity to translate the available

designs for page migration in hybrid memory, or software

disaggregated systems to fully disaggregated memory systems

that support multi-granularity memory access

VI. CONCLUSION

Disaggregated memory systems solve the problem of the

under-utilization problem and improve memory scalability

by allowing on-demand memory allocation from the remote

memory pools. However, coherent interconnects allow cache-

based to remote memory, the high memory latency in such

a system is the real concern that largely impacts the per-

formance. A page-migration system may bring down the

latency but has multiple issues and cannot be implemented as

such in disaggregated memory. Firstly, hot page migration is

difficult in multi-tiered disaggregated systems. Secondly, page

access introduces long delays, consumes more bandwidth, and

starves block-level accesses. This paper proposes a centralized

hot-page migration system that eliminates those issues by

accessing remote memory at block granularity, even for page

requests. We further reduce the waiting times for both page and

regular block accesses by bandwidth partitioning between dif-

ferent types of requests to give them equal opportunities. Our

proposed design improves the system performance between

10% to 100% compared to traditional disaggregated systems

(page sharing) and 5% to 35% compared to the baseline

hardware disaggregated systems.

REFERENCES

[1] [Online]. Available: https://www.juniper.net/us/en/products/switches/ex-
series/ex9200-programmable-network-switch.html

[2] [Online]. Available: https://www.intel.com/content/www/us/en/products-
/network-io/programmable-ethernet-switch.html

[3] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “Mcsima+: A manycore
simulator with application-level+ simulation and detailed microarchitec-
ture modeling,” in 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2013, pp. 74–85.

[4] A. Akram and L. Sawalha, “A survey of computer architecture simu-
lation techniques and tools,” IEEE Access, vol. 7, pp. 78 120–78 145,
2019.

[5] H. Al Maruf and M. Chowdhury, “Effectively prefetching remote
memory with leap,” in Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX ATC’20. USA:
USENIX Association, 2020.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[7] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, “Characteristics
of workloads used in high performance and technical computing,”
in Proceedings of the 21st Annual International Conference on
Supercomputing, ser. ICS ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 73–82. [Online]. Available:
https://doi.org/10.1145/1274971.1274984

[8] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda,
and T. Edsall, “Drmt: Disaggregated programmable switching,” in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1–14. [Online].
Available: https://doi.org/10.1145/3098822.3098823

[9] P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C.
Edwards, E. R. Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler,
and M. A. Heroux, “Improving performance via mini-applications.” 9
2009. [Online]. Available: https://www.osti.gov/biblio/993908

[10] C. Express. (2023, May) Compute express link: The
breakthrough cpu-to-device interconnect cxl. [Online]. Available:
https://www.computeexpresslink.org/

[11] C. R. Ferenbaugh, “Pennant: an unstructured mesh mini-app for
advanced architecture research,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 17, pp. 4555–4572, 2015. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3422

[12] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16, USA,
2016, p. 249–264.

[13] D. Griebler, J. Loff, G. Mencagli, M. Danelutto, and L. G. Fernandes,
“Efficient nas benchmark kernels with c++ parallel programming,” in
2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 2018, pp. 733–740.

[14] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in Proceedings of the 14th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’17. USA: USENIX Association, 2017, p. 649–667.

[15] G. Gunow, J. Tramm, B. Forget, K. Smith, and T. He, “SimpleMOC –
a performance abstraction for 3D MOC,” in ANS & M&C 2015 - Joint
International Conference on Mathematics and Computation (M&C),
Supercomputing in Nuclear Applications (SNA) and the Monte Carlo
(MC) Method, 2015.



[16] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
417–433. [Online]. Available: https://doi.org/10.1145/3503222.3507762

[17] A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Energy-
efficient hybrid dram/nvm main memory,” in 2015 International Con-
ference on Parallel Architecture and Compilation (PACT), 2015, pp.
492–493.

[18] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page
migration policy with huge pages in tiered memory systems,” IEEE
Transactions on Computers, vol. 71, no. 1, pp. 53–68, 2022.

[19] M. Islam, S. Adavally, M. Scrbak, and K. Kavi, “On-the-fly
page migration and address reconciliation for heterogeneous memory
systems,” J. Emerg. Technol. Comput. Syst., vol. 16, no. 1, jan 2020.
[Online]. Available: https://doi.org/10.1145/3364179

[20] I. Karlin, J. Keasler, and J. R. Neely, “Lulesh 2.0 updates and changes,”
7 2013. [Online]. Available: https://www.osti.gov/biblio/1090032

[21] V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and
A. Awad, “Page migration support for disaggregated non-volatile
memories,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 417–427. [Online]. Available:
https://doi.org/10.1145/3357526.3357543

[22] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee, “Mind: In-network memory management for
disaggregated data centers,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, ser. SOSP ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
488–504. [Online]. Available: https://doi.org/10.1145/3477132.3483561

[23] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ser. ISCA ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 267–278. [Online].
Available: https://doi.org/10.1145/1555754.1555789

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” SIGPLAN
Not., vol. 40, no. 6, p. 190–200, jun 2005. [Online]. Available:
https://doi.org/10.1145/1064978.1065034

[25] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal,
P. Bhattacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and
P. Chauhan, “Tpp: Transparent page placement for cxl-enabled tiered-
memory,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 742–755. [Online].
Available: https://doi.org/10.1145/3582016.3582063

[26] P. Messina, “The exascale computing project,” Computing in Science &
Engineering, vol. 19, no. 3, pp. 63–67, 2017.

[27] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy,
S. Ratnasamy, and S. Shenker, “Revisiting network support for rdma,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 313–326.
[Online]. Available: https://doi.org/10.1145/3230543.3230557

[28] D. Mosberger and S. Eranian, IA-64 Linux Kernel: Design and Imple-
mentation. USA: Prentice Hall PTR, 2001.

[29] N. Niu, F. Fu, B. Yang, Q. Wang, X. Li, F. Lai, and J. Wang, “Pfha: A
novel page migration algorithm for hybrid memory embedded systems,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 29, no. 10, pp. 1685–1692, 2021.

[30] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer,
“Every walk’s a hit: Making page walks single-access cache hits,”
in Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 128–141. [Online]. Available:
https://doi.org/10.1145/3503222.3507718

[31] A. Patke, H. Qiu, S. Jha, S. Venugopal, M. Gazzetti, C. Pinto, Z. Kalbar-
czyk, and R. Iyer, “Evaluating hardware memory disaggregation under
delay and contention,” in 2022 IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW), 2022, pp. 1221–
1227.

[32] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Ka-
trinis, and H. P. Hofstee, “Thymesisflow: A software-defined, hw/sw
co-designed interconnect stack for rack-scale memory disaggregation,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020, pp. 868–880.

[33] J. V. Quiroga, M. Torrents, N. Sonmez, D. Theodoropoulos,
F. Zyulkyarov, and M. Nemirovsky, “Evaluation of a rack-scale
disaggregated memory prototype for cloud data centers,” in Proceedings
of the 30th International Workshop on Rapid System Prototyping
(RSP’19), ser. RSP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 15–21. [Online]. Available:
https://doi.org/10.1145/3339985.3358496

[34] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of the Third ACM Symposium
on Cloud Computing, ser. SoCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2391229.2391236

[35] T. Repantis, C. Antonopoulos, V. Kalogeraki, and T. Papatheodorou,
“Dynamic page migration in software dsm systems,” in 2004 IEEE In-
ternational Conference on Cluster Computing (IEEE Cat. No.04EX935),
2004, pp. 494–.

[36] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” IEEE Comput. Archit.
Lett., vol. 10, no. 1, p. 16–19, jan 2011. [Online]. Available:
https://doi.org/10.1109/L-CA.2011.4

[37] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 101–111.

[38] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed os for hardware resource disaggregation,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
69–87.

[39] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu,
“Dc.p4: Programming the forwarding plane of a data-center switch,”
in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, ser. SOSR ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2774993.2775007

[40] Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu, “Uimigrate:
Adaptive data migration for hybrid non-volatile memory systems,” in
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2019, pp. 860–865.

[41] Y. Tan, B. Wang, Z. Yan, W. Srisa-an, X. Chen, and D. Liu, “Apmi-
gration: Improving performance of hybrid memory performance via an
adaptive page migration method,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 2, pp. 266–278, 2020.

[42] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - the
development and verification of a performance abstraction for Monte
Carlo reactor analysis,” in PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[43] R. Wang, J. Wang, S. Idreos, M. T. Özsu, and W. G. Aref, “The case
for distributed shared-memory databases with rdma-enabled memory
disaggregation,” Proc. VLDB Endow., vol. 16, no. 1, p. 15–22, sep
2022. [Online]. Available: https://doi.org/10.14778/3561261.3561263

[44] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He,
and S. Jiang, “Supporting superpages and lightweight page migration
in hybrid memory systems,” ACM Trans. Archit. Code Optim., vol. 16,
no. 2, apr 2019. [Online]. Available: https://doi.org/10.1145/3310133

[45] S. Wu, B. Wang, C. Yang, Q. He, and J. Chen, “A hot-page aware
hybrid-copy migration method,” in 2016 IEEE International Conference
on Cloud Engineering (IC2E), 2016, pp. 220–221.

[46] Y. Zhang, J. Zhan, J. Yang, W. Jiang, L. Li, L. Zhu, and X. Tang,
“Dynamic memory management for hybrid dram-nvm main memory
systems,” in 2016 13th International Conference on Embedded Software
and Systems (ICESS), 2016, pp. 148–153.


