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Abstract—Data-centric applications are increasingly more
common, causing issues brought on by the discrepancy between
processor and memory technologies to be increasingly more
apparent. Near-Data Processing (NDP) is an approach to mitigate
this issue. It proposes moving some of the computation close
to the memory, thus allowing for reduced data movement and
aiding data-intensive workloads. Analytical database queries are
very commonly used in NDP research due to their intrinsics
usage of very large volumes of data. In this paper, we investigate
the migration of most time-consuming database operators to
VIMA, a novel 3D-stacked memory-based NDP architecture.
We consider the selection, projection, and bloom join database
query operators, commonly used by data analytics applications,
comparing Vector-In-Memory Architecture (VIMA) to a high-
performance x86 baseline. We pitch VIMA against both a single-
thread baseline and a modern 16-thread x86 system to evaluate its
performance. Against a single-thread baseline, our experiments
show that VIMA is able to speed up execution by up to 5× for
selection, 2.5× for projection, and 16× for join while consuming
up to 99% less energy. When considering a multi-thread baseline,
VIMA matches the execution time performance even at the
largest dataset sizes considered. In comparison to existing state-
of-the-art NDP platforms, we find that our approach achieves
superior performance for these operators.

Index Terms—near-data processing, high performance com-
puting, database operators

I. INTRODUCTION

After several decades of precipitous advancements in pro-

cessor speed, main memory technology, Dynamic Random

Access Memory (DRAM), has lagged behind significantly,

failing to progress at the same rate. The latency in access

of data stored in DRAMs was only reduced by 30% between

1997 and 2017 [1]. Meanwhile, processors continue to advance

in speed at an average rate of 20% per year [2]. This disparity

poses an issue to all modern computers: they must move

all data from the memory to the processor for processing,

as required by the von Neumann architecture design. The

discrepancy between processor and memory speed causes a

myriad issues, largely referred to as the memory wall [3].

The memory wall is even more relevant currently, as interest

in big-data applications is ever-increasing. Such applications

deal with enormous volumes of data, thus requiring a lot of

data movement for processing, which is onerous in both time

and energy consumption [3]–[5].
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Cache hierarchies placed next to the processing cores, which

are now ubiquitous in all modern computer systems, are the

main mitigation strategy for the problems caused by data

movement. Cache memories are used to store data that gets

fetched from the memory, assuming it might be requested

by the application again soon, at which point they can be

provided much faster. Whenever the data access patterns of an

application involve reusing the same data in close succession,

this assumption greatly benefits the system, as the data is now

available close to the processor and does not require fetching

from the main memory again. However, it is increasingly com-

mon for applications to not present such locality of reference,

accessing data in a streaming-like pattern [6]–[9]. For this

class of applications, current modern computer systems are

unable to mitigate the penalty of accessing the main memory

to fetch required data. They will then provide poor execution

time and energy consumption performance when running such

applications.

The era of Big Data is mainly characterized by the increas-

ing relevancy of applications that fit this description, as they

primarily analyze large datasets. In fact, according to some

authors [10], the ’big data’ term itself carries the implica-

tion that such applications are ill-equipped to handle such

volumes of data. Such behaviors regarding data access cause

researchers to consider unorthodox methods. One such method

consists in implementing processing near the data, e.g. close

to the main memory, to avoid systems being forced to move

data all the way to the processor whenever beneficial. Such

approach enables systems to better suit applications that are

data-centric, as opposed to applications that are computation-

centric [4]. The field of research that studies and proposes

architectures that fit that description is known as Near-Data

Processing (NDP).

NDP research often uses big-data applications to evaluate

architecture proposals and showcase results, as they expose

the memory wall issue. Thus, several works in the literature

that apply different NDP concepts and architectures to fields

such as artificial intelligence, genome sequencing, and com-

putational fluid dynamics [11].

One such field is analytical database queries, which deal

with very large datasets by design and, thus, are also very

commonly targeted by NDP research. Much work is found

in the literature describing efforts to filter data near the



memory [12], implement major database query operators for

NDP hardware [13], and provide frameworks for processing

database applications near-data [14].

Most existing work focused on analytical database appli-

cations have focused on data streaming operators, such as

selection and projection, which suit NDP well due to their

coalescent access patterns and low data reuse. However, oper-

ators with data reuse behavior that benefit from data caching

are also critical for NDP [13].

In this paper, we migrate common database query oper-

ators to run on Vector-In-Memory Architecture (VIMA), a

novel NDP architecture [15]. We analyze how such operators

perform regarding execution time and energy consumption

compared to implementations for an x86 system with AVX-

512 extensions. Our main contributions are:

• We implement near-data versions of common database

operators and provide a simulation-based performance

evaluation of such implementations.

• We implement a near-data bloom join database operator

and provide a simulation-based performance evaluation

of such implementations.

• We discuss the benefits of near-data processing when run-

ning analytical workloads over large datasets, comparing

performance against a modern x86 system.

• We compare the performance of the NDP architecture

with that of a modern 16-thread x86 traditional architec-

ture.

• We simulate and evaluate the performance of database

operators on a near-data multithreaded context.

Our work is, as far as we are aware, the first to use a

near-data architecture based on large vectors to implement

and evaluate performance of database operators, migrate the

bloom join operator near-data and also the first to consider a

multithreaded near-data processing environment.

In our simulation environment, VIMA is able to outperform

the x8e baseline for all database query operators, considering

both a single-thread x86 baseline and a 16-thread x86 baseline.

It speeds up execution by up to 16× for the join operator

considering a single-thread baseline, while consuming up to

99% less energy. Our results are superior to the related work in

reducing execution time and saving energy when considering

large input sizes.

Outline: In Section 2, we describe the NDP architecture

used for our experiments, pointing out how it enables faster

processing near the memory for applications dealing with large

data sets and a set of behaviors. In Section 3, we detail

our implementations of the NDP database query operators.

In Section 4, we present and discuss our results. In Section 5,

we present related work, describing other NDP work aimed at

database processing. Section 6 describes our conclusions.

II. BACKGROUND ON NEAR-DATA PROCESSING

Near-Data Processing (NDP) reduces data access times and

energy consumption in data-intensive tasks by placing process-

ing capabilities close to the data, extending the traditional von

Neumann architecture model. In an NDP architecture, process-

ing occurs near the memory, eliminating the need for excessive

data movement between memory and the processor. Rather

than transferring large amounts of data to the processor, only

relevant instructions are offloaded for near-data execution. This

approach offers significant reductions in execution time and

energy consumption for data-centric applications, effectively

utilizing the parallelism and internal bandwidth of the main

memory.

While the first few NDP proposals first surfaced back in the

last 1990s [16], [17], implementing processing and storage

elements on the same hardware was not feasible at the time

and, since systems still has much performance to gain from

allowing Moore’s law to follow its course, the idea was not

widely pursued and thus saw very little advancement for many

years. However, as Dennard scaling began to show signs of ex-

haustion [18] and Through-Silicon Via (TSV) technology [19]

became viable, yielding the first few 3D-stacked memories,

NDP has again sparked the interest of researchers.

The era of Big Data has meant that applications are increas-

ingly more data-centric [20], which means the von Neumann

bottleneck and the memory wall are ever more relevant, seeing

as the most significant source of inefficiency and energy

consumption in modern systems is data movement [21]. In

hopes of mitigating the impact of such inefficiency in both

execution time and energy consumption, the NDP approach

brings computation to the data by placing processing elements

near the memory, thus reducing most costs associated with

moving data across the system.

In general, NDP is better suited to applications that access

large volumes of data in a coalescent fashion, meaning they do

not benefit from traditional cache hierarchies. Considering a

traditional system, this means such programs access the main

memory for nearly every data access, thus experiencing longer

execution times and increased energy consumption due to this

constant data movement between memory and processor. On

the other hand, such a situation is oftentimes ideal for near-

data execution.

A simple experiment can illustrate the effects of NDP

execution of a data-hungry application in comparison to a

traditional system. Figure 1 shows the results of an experiment

that compares the performance of a traditional system with

a 16 MB last level cache with that of a NDP architecture.

Both systems run an application that performs a simple integer

comparison over a large vector. Observed variables were input

size (memory footprint), iterations (repetitions over the same

data) and number of baseline threads.

Whenever the input data fits the last level cache of the

baseline system, as one would expect, execution on the

baseline system is aided by the cache hierarchy and is thus

preferable to the near-data option. However, when input data

overwhelms the last level cache, data reuse is no longer

possible, meaning the baseline is forced to reload data for

repeated iterations of the application. From this point on, near-

data execution achieves better performance and is, therefore,

preferable. This improvement can be seen in Figure 1 when



0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x

Data Reuse

1 Thread

Data Reuse

2 Threads

Data Reuse

4 Threads

Data Reuse

8 Threads

Data Reuse

16 Threads

Sp
ee

du
p

1MB 4MB 16MB 64MB

0

1

2

3

1x 2x 4x 8x 16x

Data Reuse

8 Threads

Fig. 1. NDP performance compared to traditional x86.

observing the 64 MB results, where the improvement the

NDP alternative offers increases sensibly with the number of

application iterations on the baseline, as opposed to the other

data sizes, which fit in the last level cache.

Some of the most common approaches to NDP are: (i) in-

cell accelerators, which modify the behavior of memory cells

to enable in-memory processing [22]–[24]; (ii) in-memory

accelerators, which add logic to memory devices, oftentimes

to the logic later of 3D-stacked memories [13], [15], [25]–

[29], and; (iii) near-memory accelerators, which place separate

devices close to the memory using off-chip connections [30]–

[32].

Figure 2 shows a diagram of a 3D-stacked memory. Such

devices are made possible by TSV connection technology,

which allows for vertical integration of Dynamic Random

Access Memory (DRAM) layers. Memory space is split into

up to 32 logically independent vaults, allowing for high

internal bandwidth. The device also includes an underlying

logic layer where processing elements can be placed, thus

enabling near-data computation and bypassing the need for

data movement.

Fig. 2. Block diagram of a 3D-stacked memory.

For our experiments, we consider HMC Instruction Vector

Extensions (HIVE) [26], a 3D-stacked memory-based NDP

architecture. HIVE is a general-purpose architecture with a

readily available simulation environment and several existing

works in the literature documenting and extending its capa-

bilities [13], [15], [27]. It uses large vector instructions that

leverage the large internal bandwidth of 3D-stacked memories

for improved performance, extending the processor ISA with

its own specific instructions for simplicity of front-end instruc-

tion handling. We further extend this architecture by adding a

dedicated near-data cache memory to the architecture, which

we use to store and reuse vectorized data. Such storage is

added in place of the register bank used in the original research

paper that describes HIVE [26]. The resulting design is called

Vector-In-Architecture (VIMA) [15].

VIMA communicates with the host processor through an

instruction sequencer, which emits memory requests to the

memory and handles vector operands. All data is stored in a

256 KB dedicated cache and processed with a set of 512-bit

vector units used to operate over 8 KB vectors. Figure 3 shows

the architecture.

VIMA instructions, like other NDP proposals such as Intel

AVX or ARM NEON, extend the ISA of host processors.

These instructions work like regular memory instructions,

offloading to a near-memory device during execution. VIMA

assumes 8 KB vector operands, causing two data loads and one

data store operation of 8 KB to main memory. This vector size

suits a 3D-stacked memory with 32 vaults and a 256 B row

buffer, where 8 KB operands request 256 B from each vault.

Improved parallelism in data access is one of the main

features of 3D-stacked memories, which is another reason

why such devices are so well suited to NDP. Thus, much like

many other NDP solutions, VIMA fetches data in parallel from

the several independent vaults, taking advantage of both the

internal parallelism and increased bandwidth of the 3D-stacked

memory. All data is stored in the dedicated cache memory,

which is checked for existing data before load and store

requests are sent to the main memory. Data is only fetched

from the memory if it is not yet stored in the cache. Instruction

execution starts once all operand data is successfully stored

in the cache. Whenever an instruction finishes execution or

causes an exception, its status is updated accordingly.
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A. Intrinsics-VIMA

We provide a library that can be used to core and debug

applications using VIMA instruction in C/C++, Intrinsics-



VIMA. Code 1 shows an example of an Intrinsics-VIMA

routine.

Code 1. Intrinsics-VIMA routine example.
void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {

for (int i = 0; i < vima_size; ++i) {
c[i] = a[i] + b[i];

}
return EXIT_SUCCESS;

}

The library functions similarly to the libraries provided by

Intel or ARM to access their own Single Instruction Multiple

Data (SIMD) extensions, meaning the function calls are sub-

stituted for their associated SIMD instructions by the compiler.

We use this for simulation purposes, where each function call

is swapped for its corresponding VIMA instruction during

trace generation for our simulation environment.

III. NEAR-DATA DATABASE OPERATORS

Here we describe the three database operators selected for

our experiments: selection, projection and join. These specific

operators were chosen because of how ubiquitous they are

on analytic queries, accounting for about 70% of the total

execution time of TPC-H, a standard database benchmark [13].

The three operators display distinct two behaviors we aim to

investigate: (i) the selection and projection operators represent

a data streaming behavior, and (ii) the join operator represent

a data reuse behavior.

TABLE I
VIMA INSTRUCTION USED IN THE IMPLEMENTATION OF THE DATABASE

OPERATORS.

Instruction Description
vim2K iaddu Addition operation

vim2K imulu Multiplication operation

vim2K imovu Move operation

vim2K iandu Bitwise AND

vim2K iorun Bitwise OR

vim2K isllu Bitwise shift to the left

vim2K isrlu Bitwise shift to the right

vim2K isltu Set if lower than

vim2K icmqu If equal comparison

vim2K imodu Modulo division by immediate value

vim2K icpyu Copy operation

vim2K igtru Gather operation

vim2K iscou Scatter operation

vim2K ilmku Loads data from memory into vector according

to set indices in the mask

vim2K ismku Stores data from vector into memory according

to set indices in the mask

vim2K irmku Sets vector positions to zero according

to set indices in the mask

vim2K ipmtu Permutates elements from another vector

according to indices in the mask

vim2K idptu Dot product of all elements in a vector

Table I lists all the functions used in our code. Our ex-

periments considered random data, and the code was used to

generate simulation traces within the simulation environment.

Results are presented in the next section.

A. Data Streaming

Data streaming applications only load and process each data

point once per execution, thus not reusing data or benefiting

from the cache hierarchy of a system. Instead, since all data

is loaded to the processor, it gets stored in the cache to never

be reused, thus polluting the cache memory without providing

any benefit.

Selection. For the selection operator, the Vector-In-Memory

Architecture (VIMA) code performs a simple comparison

between a constant vector containing a filter and a second

vector into which all input data is loaded. The application

iterates over the input data and stores results considering a late

materialization model, meaning the result of the operation is

a bitmap the same length as the input dataset.

Code 2. VIMA selection operator code.
for (int i = 0; i < v_size; i += VECTOR_SIZE){

_vim2K_isltu (filter_vec, &vector1[i], &bitmap[i]);
}

Projection. The projection operator considers a bitmap

mask such as the one created by the selection operator. It

is used to inform a conditional loading operation that fetches

and stores data from the memory according to the positions

of the bits set in the mask. The results are stored in a separate

vector.

Code 3. VIMA projection operator code.
for (int i = 0; i < v_size; i += VECTOR_SIZE){

_vim2K_ilmku (&vector2[i], &bitmap[i], &result[i]);
}

B. Data Reuse

Cache memories benefit applications that present some

degree of data reuse, e.g. locality of reference. The database

join operator, which merges two datasets according to a

specific condition, behaves as such. It commonly relies on

an intermediary data structure to keep track of join elements,

and this data structure is repeatedly accessed for checking and

updating.

Bloom Join. The join operator has many different imple-

mentations. We chose to implement the bloom filter-based

implementation, e.g. bloom join, because it is not commonly

implemented near-data. The bloom join has three distinct

phases: (i) creation, when the bloom filter data structure is

set, usually using the smaller of the two datasets in the

join operation; (ii) probing, when the bloom filter is used

to check for whether elements of the larger dataset are in

the smaller one (and therefore are part of the result of the

join operation); and (iii) confirmation, when elements with a

positive result in the probing phase are checked against the

actual original dataset to confirm the result. The confirmation

phase is necessary due to the nature of bloom filters, which

are based on hash functions and thus risk false positive results,

although negative results are guaranteed. All bloom filter code

used is based on an existing algorithm by Polychroniou [33]

with alterations to account for the different Instruction Sec

Architecture (ISA) available for our experiments.

Code 4 contains VIMA code for the bloom filter creation

phase. It iterates over data elements, calculating bit positions



in the filter based on input elements. Each data point goes

through the same calculations to determine its mapping in the

filter, which is then set. Factors like the number of elements

and acceptable positive rate affect settings such as filter size

and number of hash functions. The outer loop loads new

elements into the vector, while the inner loop handles bit

positioning for each hash function.

Code 4. VIMA bloom join create operator code.
for (int i = 0; i < entries_size; i += VECTOR_SIZE) {

_vim2K_ilmku (&entries[i], mask_1, bit);
_vim2K_irmku (fun, mask_1);
for (int j = 0; j < functions; j++){

_vim2K_ipmtu (factors, fun, fac);
_vim2K_ipmtu (shift_m, fun, shift_vec);
_vim2K_imulu (bit, fac, bit);
_vim2K_isllu (bit, shift_vec, bit);
_vim2K_imodu (bit, bloom_filter_size, bit);
_vim2K_isrlu (bit, shift5_vec, bit_div);
_vim2K_iandu (bit, mask_31, bit_mod);
_vim2K_isllu (mask_1, bit_mod, bit);
_vim2K_iscou (bit, bit_div, bloom_filter);
_vim2K_iaddu (fun, mask_1, fun);

}
};

Code 5. VIMA bloom join probe operator code.
int j = 0;
for (int i = 0; i <= entries_size; ) {

_vim2K_ilmku (&entries[i], mask_k, key);
i += j;
_vim2K_irmku (fun, mask_k);
_vim2K_icpyu (key, bit);
_vim2K_ipmtu (factors, fun, fac);
_vim2K_ipmtu (shift_m, fun, shift_vec);
_vim2K_imulu (bit, fac, bit);
_vim2K_isllu (bit, shift_vec, bit);
_vim2K_imodu (bit, bloom_filter_size, bit);
_vim2K_isrlu (bit, shift5_vec, bit_div);
_vim2K_iandu (bit, mask_31, bit_mod);
_vim2K_isllu (mask_1, bit_mod, bit);
_vim2K_igtru (bloom_filter, bit_div, bit_div);
_vim2K_iandu (bit, bit_div, bit);
_vim2K_icmqu (bit, mask_0, mask_k);
_vim2K_icmqu (fun, fun_max, mask_kk);

_vim2K_idptu (mask_kk, &j);
if (j > 0) {

_vim2K_ismku (key, mask_kk, &output[*output_count])
;

*output_count += j;
}

_vim2K_iorun (mask_k, mask_kk, mask_k);
_vim2K_idptu (mask_k, &j);
_vim2K_iaddu (fun, mask_1, fun);

};

In Code 5, the probing phase’s VIMA implementation is

depicted. It verifies if elements in the second dataset exist in

the bloom filter set created earlier. In each iteration, elements

undergo identical hash calculations, their resulting bit positions

checked to ascertain presence or absence. Hash functions

determine the bloom filter index to probe for each data

point. This is calculated individually for each vector element,

directing a gather instruction to fetch relevant bloom filter

indices for bit assessment. Bit-wise operations isolate specific

bits, with their values indicating presence in the bloom filter.

A vector is used to keep track of which hash function

is currently being calculated for each input value, and its

elements are updated according to the result of each loop

iteration of the probing loop. This value is incremented every

time the bit probed for its associated element is found in the

bloom filter and resets to zero when it is not, meaning the

element in the corresponding index of the input data vector

is deemed absent. If this value reaches the total number of

hash functions used in the bloom filter, the corresponding

element is stored as a possible positive result. The vector

is also used as a mask to load new data for data, replacing

elements that have been determined to not fit the condition

of the join operation, to not waste any processing time. Once

every data point has reached one of the two possible outcomes,

all elements deemed present in the bloom filter are eligible to

go through the confirmation phase.

The confirmation phase takes every positive result from

the probing phase and compares them against the entire

original data used to set the bloom filter structure. This step

is necessary to remove all possible false positives from the

probing phase due to the nature of the hash functions used in

the bloom filter. The VIMA implementation is seen on Code 6.

Code 6. VIMA bloom join confirmation operator code.
for (int i = 0; i < positives_size; i++){

_vim2K_imovu (positives[i], vector);
for (int j = 0; j < entries_size; j += VECTOR_SIZE){

count = 0;
_vim2K_icmqu (vector, &entries[j], check);
_vim2K_idptu (check, &count);
if (count > 0){

result++;
break;

}
}

}

IV. EVALUATION METHODOLOGY AND RESULTS

This section describes the methodology of our work and the

simulation results we obtained to evaluate our query opera-

tor implementations using the Vector-In-Memory Architecture

(VIMA).

Theoretically, VIMA is able to function with any 3D-

stacked memory device, observing its features and limita-

tions. We must note, though, that the organization of the

devices directly impacts VIMA performance. Since VIMA

is a monolithic device that moves data out of the vaults of

the 3D-memory, we expect performance to be superior on

memory devices that favor vault parallelism, as opposed to

bank parallelism. For our experiments, we consider that the

memory controller maps the least significant address bits to

vaults and most significant bits to memory banks (similar to

what occurs on multichannel systems with DDR-x devices).

To maximize performance in NDP architectures using

DRAM-based memories, the most efficient approach is to

directly access data on the memory row buffers during each

access. This allows for optimal utilization of the internal

bandwidth available in the memory. In the case of a SIMD

instruction approach like VIMA, adjusting the width of vector

operands based on the number of independent vaults and the

size of their row buffers is crucial for achieving the best

possible performance. Table II presents the relevant features

and the theoretically optimal vector size for each memory con-



TABLE II
NDP VECTOR SIZE RECOMMENDED FOR DIFFERENT 3D MEMORY

ARCHITECTURES.

Memory # of
Vaults

Buffer
Size Banks Max. Req.

Size
Vector

Size
HMC 1.0 16 256 B 8 128 B 4096 B

HMC 2.1 32 256 B 16 256 B 8192 B

HBM 8 2 KB 16 128 B 16384 B

HBM2E 8 1 KB 32 128 B 8192 B

HBM3 16 1 KB 64 128 B 16384 B

figuration, considering both the internal memory bandwidth

and the benefits of an NDP architecture.

For instance, if we consider the HMC 2.1 [34], we have 32

independent vaults, each with a 256 B row buffer. Assuming

parallel accesses to all 32 vaults, 8192 B are available on the

row buffers per access. This is the reasoning behind the 8 KB

size of VIMA vector operands, since we assume an HMC

2.1 underlying memory. Since each vault in this configuration

has 8 banks that can be accessed in a pipeline fashion, the

device could possibly provide 8192 B per access and thus, a

NDP architecture could consider this size for its instruction

operands in order to extract as much performance from the

memory as possible. We could also expect that most of the

latency to fetch the next chunk of 8192 B would be hidden by

bank parallelism. It should be noted, however, that this line of

thought does not necessarily translate to actual performance

for every device as it ignores constraints such as internal

transmission speed, maximum supported request sizes and

the width of the connections between devices. For the HMC

2.1 3D-stacked memory device, however, this is theoretically

possible since it supports a maximum request size that is the

same size as its row buffers.

A. Methodology

For our testing workloads, we used standard C/C++ math

functions and libraries to generate random 32-bit integers.

Dataset sizes were chosen for each experiment according to

the Last Level Cache (LLC) capabilities of each architecture

involved. Since Near-Data Processing (NDP) will usually

achieve good performance against a traditional baseline when

the dataset being processed overwhelms cache capacity, we

ensure that, for every operator, at least one dataset size would

overwhelm the capacity of the x86 architecture’s LLC size.

For our experiments we consider three distinct situations:

(i) a single-thread x86 system against a single-thread system

with VIMA, (ii) a 16-thread x86 system against a single-

thread system with VIMA, and (iii) a 16-thread x86 against a

multithreaded system with VIMA.

B. Single-Thread Baseline

Table III shows the parameter details used in our simulations

with a single-thread baseline. We set parameters to be similar

to Intel’s Skylake microarchitecture. We used SiNUCA [35]

for all simulations. Its original paper reports only a 9% average

error in comparison with the performance of a real machine,

thus being adequate for our evaluation goals.

TABLE III
BASELINE AND VIMA SYSTEM CONFIGURATION.

OoO Execution Cores 1 core @ 2.0 GHz, 32 nm; Power: 6W/core;

6-wide issue; Buffers: 40-entry fetch,

128-entry decode; 168-entry ROB;

MOB entries: 72-read, 56-write; 2-load, 1-store units (1-1 cycle);

4-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);

2-alu, 2-mul. and 1-div. fp. units (3-5-10 cycle);

1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;

L1 Inst. Cache 64 KB, 8-way, 4-cycle; 64 B line; LRU policy;

Dynamic energy: 194pJ per line access; Static power: 30mW;

L1 Data Cache 64 KB, 8-way, 6-cycle; 64 B line; LRU policy;

Dynamic energy: 194pJ per line access; Static power: 30mW;

L2 Cache 128 KB, 16-way, 34-cycle; 64 B line; LRU policy;

Dynamic energy: 340pJ per line access; Static power: 130mW;

LLC Cache 16 MB, 16-way, 52-cycle; 64 B line; LRU policy;

Dynamic energy: 3.01nJ per line access; Static power: 7W;

3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;

4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle

8 B burst width at 2.5:1 core-to-bus freq. ratio; Open-row policy;

DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit;

Static power 4W;

VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;

256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)

256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);

VIMA cache: 256 KB, fully assoc., 2-cycle (1-tag, 1-per data);

Dynamic energy: 194pJ per line access; Static power: 134mW;

In Figure 4, VIMA demonstrates higher speedup compared

to AVX for the selection and projection query operators. The

figures above each bar represent estimated energy savings

compared to the baseline. VIMA achieves improved execution

speed by effectively utilizing the internal parallelism of the

memory during data fetching. Both operators require fetching

two operands, leading VIMA to fetch two 8 KB vectors for

each instruction. As shown in the figure, VIMA accelerates

the selection operator by over 5× and the projection operator

by 2.5×. This performance enhancement is accomplished by

leveraging the vault parallelism of the 3D-stacked memory

while significantly reducing energy consumption by 75% for

the selection operator and approximately 50% for the projec-

tion operator compared to the baseline.

For each experiment of the bloom join operation, we use

two columns that differ in size by 4×. All sizes mentioned in

the results refer to the size of the largest column of the two.

The smaller column is used to set the bloom filter structure,

while the larger one is used for probing.

To simulate real-world conditions, we created datasets with

varying selectivity to evaluate the performance differences

between systems during data-join operations. The datasets

were generated randomly, and selectivity was controlled by

intentionally adding elements from the smaller column to

the larger column based on the desired selectivity level.

Selectivity ranged from 0% to 100%, with increments of 10%

for each test. The bloom filter implementation employed a
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Fig. 4. Speedup over baseline for selection and projection operators, percent-
ages indicate energy savings over baseline.

hash function that utilized multiplications and bit shifting

operations from the VIMA ISA [36]. The number of hash

functions used in each experiment varied based on the dataset

size to maintain a low false-positive rate across all selectivities.

The multiplication and shifting factors were identical for

both VIMA and AVX implementations. Figure 5 provides an

overview of the speedup results, and the numbers atop each bar

indicate the estimated energy savings compared to the baseline

execution.

Each phase in the execution of the bloom join operator is

greatly affected by selectivity in the data, directly impacting

performance. The three execution phases are bloom filter

creation, bloom filter probing, and confirmation. The bloom

filter is set during the creation phase. All data elements in

the smaller column of the join go through the hash functions,

and the results are used to set the corresponding bits in the

bloom filter vector. Since every data element goes through all

hash function calculations regardless of numerical value, the

creation phase has the same behavior no matter the results

expected from the selectivity in the data. On the other hand,

bloom filters are much more efficient at determining that any

one data element is represented in the data structure than when

it is not. This behavior happens as the bloom join executes

distinct operations according to data patterns.

At the probing phase, data content directly impacts perfor-

mance. Here, the bloom join uses the hash result of elements

in the second column to check whether a specific bit is

set in the bloom filter. If any hash result for an element

points to a bit that is not set, that element is confirmed a

negative, and we can discard it. Consequently, data selectivity

determines the length of the probing and confirmation phases.

This relationship explains why results for the 0% selectivity

datasets show a considerable advantage for VIMA over AVX.

For VIMA, each loop iteration discards up to 2048 elements,

and therefore, the probing process moves fast. Meanwhile,

for the 100% selectivity dataset, all elements go through all

hash computations, meaning the probing phase lasts very long.

Here, VIMA’s dedicated cache comes into play. The cache can

house the vectors used for the hash function computations in

the probing phase, as the bloom join repeatedly reuses them.

The 0% selectivity dataset shows superior results during

the confirmation phase of the bloom join operator. This phase

compares positive results from the probing phase to the filter

creation data, which can be time-consuming as each element

is compared to all elements in the dataset. In datasets with

positive results, the confirmation phase becomes a larger

portion of the execution time as more elements pass the

probing phase. However, the all-negative dataset has fewer

positive results, mostly false-positives, resulting in a shorter

confirmation phase. The highly efficient probing phase on

VIMA explains the significantly better result at 0% selectivity.

As selectivity increases, the confirmation phase takes up a

larger portion of the execution time, and the architecture’s

reuse capabilities start to impact overall performance.

Another factor is the smaller column size, which the bloom

join operator repeatedly accesses for the confirmation phase.

Since this column is one-fourth of the dataset size, its size is

256 KB, 5 MB, 16 MB, and 20 MB for the datasets considered

here. These sizes mean that for all datasets but the largest one,

the baseline architecture’s LLC can store the entire column.

The benefits of the LLC are clear on the results for the 1 MB

dataset. While VIMA outperforms AVX at low selectivity

levels, the advantage disappears as selectivity rises, which

shows how much the baseline benefits from the faster access

provided by its cache hierarchy. Energy consumption follows

the same pattern, with VIMA using much more energy as it

reloads data from the main memory repeatedly. Meanwhile,

this data is kept in the baseline’s LLC, translating into a

significant advantage maintained from 20% selectivity onward.

Looking at the results for the 20 MB and 64 MB datasets,

VIMA remains advantageous even with growing selectivity

due to the effect of its large vectors. As the amount of data

under evaluation for the confirmation phase grows (original

data column and positives from the probing phase), VIMA’s

ability to load and process large vectors at once starts to sur-

pass the effect of AVX’s cache hierarchy. For more extensive

datasets (e.g., 80 MB), VIMA offers superior performance

in both metrics. For example, when looking at the 80 MB

results, we observe that VIMA outperforms AVX by 16× at

0% selectivity while consuming over 99% less energy. Here,

the data through which the application must iterate to confirm

probing phase results is larger than the LLC in the baseline

architecture. Thus, AVX no longer benefits from the LLC

locality and is forced to reload data directly from the main

memory. At this dataset size, the 0% selectivity workload still

yields a few thousand false-positive results from its probing

phase. Thus, VIMA’s large vectors coupled with the baseline’s

fetching inefficiency results in this considerable performance

improvement. As selectivity grows, the confirmation phase

grows, and VIMA’s advantage drops. However, VIMA contin-

ues to outperform AVX by at least 3.5× at 100% selectivity

while consuming 54% less energy.

C. Multi-Thread Results

Multithreaded systems traditionally benefit greatly from

their ability to fetch and process data in parallel. Since

each core is equipped with its own set of functional units
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Fig. 5. Speedup over baseline for the bloom join operator with varying selectivity rates, figures over 1 indicate speedup. Percentages over the bars indicate
energy savings over baseline, negative values indicate energy consumption exceeded baseline.

and register banks, such systems are able to issue numerous

memory requests in parallel, applying increased pressure to

the main memory and using much of its bandwidth. For this

reason, we now consider a 16-thread system as our baseline,

constructing a tough case against VIMA. We assume all 16

cores in the baseline follow the same specifications determined

in Table III.

A functional units-based near-data architecture like VIMA,

in order to favor simplicity and energy efficiency, is unable to

behave like a superscalar processor. Therefore, to provide an

execution time performance improvement over such systems,

the vector size used by the device must be large enough to

match or surpass such levels of parallelism by leveraging as

much of the memory bandwidth as possible. Nevertheless, the

vector size also impacts on the amount of VIMA instructions

the processor needs to trigger to our architecture, which also

impacts energy and time. The smaller the operand size, the

more instructions the processor must trigger to fully process

a given dataset. This is the reasoning behind the 8 KB size of

the vector operands we use for VIMA.

Figure 6 shows the results for the experiments considering

a 16-threaded baseline. The selection query is a clear example

of a data streaming application, being composed of mainly

one operation that stores an immediate value in each entry of

a vector. As can be seen on the graph, the advantage VIMA

has over the baseline shrinks as the input size grows. This

happens due to the multithreaded nature of the baseline we

are considering, as it suffers from the overhead of splitting the

workload at the start of processing and aggregating all results

when processing is finished. As input size grows, this overhead

becomes a less significant portion of the overall execution time

and thus the extent of the advantage of the NDP approach

becomes more realistic. This applies to every application with

primarily data streaming behavior when considering a multi-
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Fig. 6. Speedup over baseline for the selection and projection operators,
figures over 1 indicate speedup. Percentages over the bars indicate energy
savings over baseline, negative values indicate energy consumption exceeded
baseline.

thread baseline.

Although the advantage of VIMA over the traditional archi-

tecture is not as pronounced as it was for the single-threaded

results, it is still fairly advantageous. Regarding execution

time, VIMA is able to at least match the performance of the

16-thread baseline using a single-thread even at the largest

input size considered in our experiments. It is able to achieve

this result while consuming 70% less energy for the selection

operator and 72% for the projection operator. This suggests

that, by using VIMA in a system such as the baseline consid-

ered here, one could free up 15 cores for other uses while still

achieving the same performance regarding execution time and

consuming 70% less energy.

Figure 7 shows results for relative average throughput for

our experiments considering selection and projection queries.

The graph considers relative values of average data throughput

achieved by VIMA and the 16-thread x86 baseline. The data

throughput and execution time results graphs almost exactly
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Fig. 7. Data throughput results of x86 system and VIMA executing selection
and projection database queries, normalized to 16-thread x86 baseline.

mirror each other, which shows how better usage of available

data throughput is the main reason why VIMA performs better

than a traditional architecture when running data streaming

applications.

D. Near-Data Multi-Threading

We ran experiments to analyze the performance of a mul-

tithreaded system using VIMA and the speedup and data

throughput results can be seen on Figures 8 and 9. Our exper-

iments considered the selection and projection database query

operators running on a VIMA-enabled system with increasing

vector widths (256 B, 512 B and 1024 B) and number of

cores (1, 2, 4 and 8 cores). The VIMA cache is shared among

all threads, making the bloom join experiment susceptible to

thrashing due to the limited memory size. Consequently, our

experiments exclusively focused on data streaming operators.

In the future, a potential avenue for investigation could involve

allocating distinct cache lines to cores for conducting data

reuse experiments. The underlying memory chip we used was

the HMC 2.1, as it has generally shown the most advantageous

results so far, and consider the 64 MB input size for both

workloads.

The speedup results, which are normalized to a 16-thread

x86 system, show that when using smaller vector operands,

VIMA is unable to match the baseline performance when

running on a single-threaded system. However, even with

only one additional core, it outperforms the baseline for the

selection workload and almost matches baseline performance

for projection. This advantage scales with larger vectors and

a higher number of threads, achieving a 3.7× improvement

in execution time over the baseline for the selection database

query workload at 8 threads with a 1024 B vector operand

width.

The data throughput results in Figure 9 highlight the sig-

nificant improvement in execution time performance with ad-

ditional cores. The single-thread system using smaller VIMA

vectors lacks the ability to fully utilize the memory and achieve

high data throughput. Despite the load-ahead mechanism im-

proving VIMA’s throughput, there are not enough instructions

in the instruction buffer to exploit the vault parallelism in

the HMC 2.1 memory chip. However, with extra cores, more

instructions are issued simultaneously, enabling VIMA to

load operands out-of-order and utilize more of the memory’s

bandwidth.

As a result, even with a 256 B vector, VIMA outperforms

the baseline by 44% even with only 2 cores at the selection

database query. Under the same conditions, it gets to 82%

of the execution time performance of the baseline for the

projection workload, achieving a 13% speedup when using 8

cores. This trend remains true for the results of the experiments

with 512 B and 1024 B operands.

V. RELATED WORK

Ailamaki et al. [37] and Boncz et al. [38] were among

the early researchers discussing the impact of the memory

wall on database system performance during the late 1990s.

They observed that processor advancements outpaced storage

technology, prompting the development of software techniques

aligned with hardware structures to maximize resource uti-

lization. Consequently, strategies like columnar data storage,

bulk query relational algebra, cache-conscious algorithms, and

automatic optimization became prevalent in database applica-

tions, enabling efficient utilization of hardware resources [39].

Although these adaptations achieve their efficiency goal,

they fail to reduce data movement, which renders them still

susceptible to the increasing issue of the memory wall. How-

ever, due to their data-intensive nature, database applications

are intrinsically well-suited for near-data execution, and are

treated as such by Near-Data Processing (NDP) researchers as

near-data technology becomes viable [40].

Columnar storage in modern databases can be harnessed

through near-data strategies. JAFAR [40], [41] uses a column-

store approach for near-data selection operations, achieving

a speedup of up to 9×. Their solution features an adjacent

accelerator enabling direct data access, executing efficient

filtering via simple comparison and predication. This technique

produces a bit-mask for tuple selection, further processable

with late materialization. While promising, its extensibility to

other query operators might pose challenges.

Biscuit [14] translates the MySQL database engine to a

near-data implementation on SSD disks, offering a com-

prehensive framework with dynamic task loading, language

support, multicore capabilities, and an expressive program-

ming model. Their reported speedup for all TPC-H queries

is 3.6×. However, Biscuit relies on complex modifications,

including adding processing cores to SSD devices. In contrast,

Vector-In-Memory (VIMA) achieves comparable performance

improvements with simpler requirements.

One approach that also considers a 3D-stacked memory is

HIPE [27], which adds predication to the Hybrid Memory

Cube (HMC). This modification, which considers an already

modified HMC [26], enables it to compute database algebra

queries by allowing control-flow dependencies to be solved

near-data. The authors report an 6.46× execution time im-

provement over an x86 architecture for the selection operator,

with 5% higher energy-efficiency. While this approach is

very similar to VIMA both in architecture and simulation

infrastructure, it fails to match its energy-efficiency and is

much more limited, only considering the selection operator.
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Kepe et al. [13] investigated HMC-based near-data database

query operators (selection, projection, aggregation, sorting,

and join) against a state-of-the-art x86 system. They employed

the HIVE [35] near-data architecture with an Intel AVX-512-

equipped baseline. Notably, most operators showed significant

improvements, except aggregation. Selection outperformed the

baseline, with over 3× faster execution and 45% energy

reduction. Projection achieved a 7× to 10× improvement

over the baseline, while being 3× more energy-efficient. The

join operator, with hash, sort-merge, and nested loop im-

plementations, demonstrated superior near-data performance

in execution and energy usage compared to the baseline.

Although the aggregation operator underperforms in time and

energy, their approach doesn’t exploit architecture parallelism

via vector sizes. Our work achieves superior execution time

and greater energy savings across operators, especially in joins

with diverse selectivity. We show speed enhancements from

3.5× to 16×, and energy savings of 46% to 99% for the

highest input size. Furthermore, we compare to a 16-thread

x86 baseline, reinforcing VIMA’s superiority over their single-

thread baseline.

VI. CONCLUSIONS AND FINAL CONSIDERATIONS

With the growing relevancy of analytics applications that

process vast sets of data, Near-Data Processing (NDP) emerges

as a solution for the memory wall problem. In this paper, we

migrate the execution of database query operators to a near-

data architecture.

Our approach outperforms a single-thread baseline with

speedup of up to 5× for selection, 2.5× for projection, and

16× for join operators. It achieves energy savings of 75% for

selection, 50% for projection, and 99% for join. These results

surpass the state-of-the-art while using a simpler and more

programmer-friendly architecture. This work is the first to

implement and evaluate database operators on an architecture

with large vectors, and also the first to migrate the bloom join

operator to an NDP architecture.

Unlike our closest related work, we also consider a modern

16-thread x86 baseline in our experiments, which we also

manage to outperform. According to our results, even in a

single-thread system, our approach matches the performance

of a 16-thread x86 system, meaning our strategy could free

up 15 entire cores for processing while maintaining the same

execution time performance.

Future work includes migrating other database operators and

implementations of the join operator, as other implementations

can better suit certain situations. This migration should enable

us to evaluate our approach with the entire TPC-H benchmark.
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