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Abstract—Seismic data contains valuable information about
the Earth’s subsurface, which is useful in oil and gas (O&G)
exploration. Seismic attributes are derived from seismic data
to highlight relevant data structures and properties, improving
geological or geophysical data interpretation. However, when
calculated on large datasets, quite common in the O&G industry,
these attributes may be computationally expensive regarding
computing power and memory capacity. Deep learning techniques
can reduce these costs by avoiding direct attribute calculation.
Some of these techniques may, however, be too complex, require
large volumes of training data, and demand large computational
capacity. This work shows that a conventional U-Net Convolu-
tional Neural Network (CNN) model, with 31 million parameters,
can be used to compute diverse seismic attributes directly from
seismic data. The F3 dataset and attributes calculated on it
were employed to train the models, each specialized in a specific
attribute. The trained CNN models yield low prediction errors
for most of the tested attributes. These results evince that simple
CNN models are able to infer seismic attributes with high
accuracy.

I. INTRODUCTION

Seismic processing is a critical component of oil and gas
exploration due to its ability to provide valuable insights into
the subsurface geology, enabling companies to make informed
decisions about where to drill and extract these valuable
resources and reduce exploration risks. Seismic processing
involves analyzing the echoes of seismic waves that travel
through the Earth’s subsurface after being artificially gene-
rated by controlled explosions or vibrations. These echoes,
or reflections, contain information about the various layers of
rock, fluid, and other geological structures present beneath the
surface.

Seismic attributes are specific characteristics derived from
seismic data through complex mathematical analysis. These
attributes offer additional information beyond the traditional
seismic images and aid geophysicists and geologists on se-
veral exploration tasks, including identifying seismic facies
(horizontal and homogeneous structures of the same rock
material) [7], [13], horizon detection [12], and fault detec-
tion [11]. Moreover, seismic attributes are used to characterize

previously discovered reservoirs to maximize oil and gas
production.

Seismic attributes are generated via mathematical com-
putations, which can be quite time-expensive depending on
the specific attribute in question. For example, when a sub-
stantial surrounding area impacts each point within a three-
dimensional attribute, the outcome is a computation that
demands significant processing resources. Furthermore, this
analytical procedure can impose a substantial computational
burden when dealing with huge seismic datasets.

Prior research has demonstrated that deep neural networks
can be effectively trained for the efficient computation of
these attributes [8]. This strategy streamlines the calculation
procedure by condensing it into a set of matrix multiplications,
which can be readily parallelized using established computing
tools like GPUs. Navarro et al. [8] demonstrated that seis-
mic attributes can be efficiently calculated 80× faster using
Generative Adversarial Networks (GANs).

In this work, we show that various seismic attributes can
also be accurately estimated (predicted) using U-Net, a simpler
architecture compared to GANs. Moreover, training a U-Net
requires less data and computing power than GANs. Alterna-
tive strategies for addressing the posed issue may involve other
simple convolutional neural network (CNN) models, such as
LeNet [3] and Fully Connected Network (FCN) [2], [10].
However, this study is directed toward the traditional U-Net
model. Our results demonstrate that predictions are highly
accurate for almost all attributes based on complex seismic
traces.

The remainder of this paper is organized as follows: Sec-
tion II explains the experimental methodology. Section III
presents and discusses the results obtained. Finally, Section III
concludes the paper.

II. METHODOLOGY

The pipeline followed in this work is illustrated in Figure 1.
The seismic dataset was obtained and pre-processed. After
this, different attributes were calculated for the seismic dataset
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Fig. 1: Train and evaluation pipeline.

(step 1). Once the data were generated and annotated, 2D
arrays were obtained to train and test the model (step 2).
Afterward, a specific CNN model was trained for each attribute
(step 3). Finally, the trained model is tested with the test set,
generating the performance metrics (step 4).

A. Dataset specifications

The F3 Netherlands open dataset provided in [1] was
employed in SEG-Y and subsequently converted to NumPy
and Zarr format. This dataset is already normalized through
the standard norm. Various attributes were calculated on this
dataset to annotate it, namely, Envelope, Amplitude Accele-
ration, Apparent Polarity, Cosine Instantaneous Phase, Instan-
taneous Phase, Relative Amplitude Change, Sweetness, LBP
3D, and Semblance. The dataset split methodology follows the
one in [1].

Our dataset consists of two three-dimensional (3D) datasets,
which we refer to as cubes. One of these is the seismic
data, while the other is the seismic attributes. The 3D seismic
data is a volumetric dataset resulting from the combination
of seismic traces acquired from diverse directions and depths.
Seismic traces are individual data records collected at desig-
nated receiver positions, providing information within a single
measurement path. In a 3D seismic cube, a slice parallel to
one of the dimensions forms a set of seismic traces known
as inlines, while slices parallel to another dimension are
referred to as crosslines. The dimensions of the training cube
are (400, 701, 255), whereas those of the testing cube are
(200, 701, 255). The first dimension corresponds to inlines,
the second to crosslines, and the third to time.

B. Pre-processing

These three-dimensional arrays were then sliced into several
two-dimensional matrices, the inlines. Thus, the data used for
training and testing the network are matrices of (701, 255).

An atypical large error was found in all analytical attributes
employing the Hilbert transform. The calculation of this trans-
form depends on previous values, generating an attribute value
with a different pattern for the first value of each seismic trace.
This makes it difficult for the model to learn such a random
pattern. Thus, the result metrics were calculated by excluding
those values in the test. The drawback to this removal is the
absence of those points in the final inferred attribute, but the
performance metrics are drastically improved.

C. Neural Network Architecture

The CNN model used in this work was adapted from [6] and
[9]. As illustrated in Figure 2, the network has five levels of
convolutions for both input and output. Four 2x2 max pooling
layers followed by two 2D convolutions with kernel size 3 and
padding 1. The up-convolutions use the 2D tensor generated
in the down-convolutions and are followed by two kernel
size 2 2D convolutions. The convolutions and padding are
the standard functions of the PyTorch neural networks library.
Finally, there is an output convolution with a kernel size of 1.
Each level has a different number of feature maps.

D. Infrastructure Setup

In all experiments, we used a batch size of 64 and the mean
squared error (MSE) loss function. The maximum number of
epochs was set to 200 in the training stage, and the validation
set is 10% of the training set. The experiments were executed
in the OGBON Supercomputer, using one computational node
with four NVIDIA Tesla V100 SXM2 GPUs. The learning rate
follows the learning rate scheduler ”CyclicLR” varying from
10−3 to 10−5. The following metrics were used to evaluate
the model: MSE, RMSE, MAE, PSNR, SSIM, and R2.

III. RESULTS AND DISCUSSION

Table I demonstrates the performance metrics obtained with
the trained model for each seismic attribute considered in this
study. A specific model was trained to predict a particular
attribute. In general, the trained models performed well for
almost all the attributes assessed, except for the Instantaneous
Phase and LBP 3D attributes considering PSNR and SSIM
metrics, while Sweetness and LBP 3D underperformed in the
R2 metric. This indicates that the U-Net model was able to
approximate quite well the function implemented by most of
the attributes considered.

Figure 3 presents an example of a U-Net predicted attribute
(Pred) for each attribute considered in this study, its corre-
sponding analytical calculation (Gr. T), and the differences
between those two (Diff). All predictions were made on the
inline 4 of the test dataset. Most of the considered attributes
presented a very similar visual shape and yielded low errors
between the analytical and the predicted attributes.

To better illustrate the error performance, Figure 4 shows
the trace 23 of the inline 4 for the selected predicted attributes.
All the predicted traces for attributes with good performance
metrics values follow very close its corresponding analytical
trace. For instance, Envelope (Figure 4a), which yielded good
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Fig. 2: The U-Net architecture employed in this work.

results in all performance metric, followed well the signal
shape with just a few prediction errors. Interestingly, Sem-
blance (Figure 4i), which scored low in the R2 metric, also
follows well the shape of the analytical attribute; As expected,
Instantaneous phase (Figure 4d) and LBP 3D (Figure 4h),
which are the attributes underperforming in the R2 score and
PSNR metrics, are the ones more discrepant in the figure,
evincing a bad performance following the analytical trace.

A. Limitations

It was evinced that the trained models have a great learning
capacity for predicting a seismic attribute. However, prediction
errors occur for some attributes, particularly, for instantaneous
phase and LBP 3D. The latter is a 3D attribute and may require
neighborhood information to improve the model prediction
performance. This information, however, is not fully captured
with the 2D model employed in this study.

TABLE I: Performance metrics for different seismic attributes.

Attribute MSE RMSE MAE PSNR SSIM R2
Envelope 0.0003 0.0183 0.0131 39.3533 0.9804 0.9833
Apparent
Polarity 0.0189 0.1303 0.0670 21.6219 0.8107 0.8722

Cosine
Instantaneous

Phase
0.0044 0.0615 0.0361 23.4770 0.9834 0.9901

Instantaneous
Phase 2358.8037 47.4073 34.2836 11.3785 0.6686 0.7690

Relative
Amplitude

Change
0.0041 0.0597 0.0367 23.8015 0.9172 0.9711

Amplitude
Acceleration 0.0023 0.0466 0.0323 26.2879 0.9473 0.9688

Sweetness 0.00005 0.0069 0.0047 28.9432 0.8434 -46.6401
LBP 3D 99.0772 9.9386 8.1093 11.1663 0.2462 -0.0110

Semblance 0.0048 0.0667 0.0438 23.1695 0.8008 0.6620

It is still not clear whether these errors are relevant to
geologists, geophysicists, or even to other neural network
models performing a task that employs an attribute as input,
for instance, semantic segmentation of seismic facies [5].
Thus, the impact of the observed errors on tasks in which
the attributes are employed deserves further analysis. If the
performance of this CNN model is not enough for a given
application, thus, more complex techniques to attribute calcu-
lation may be still necessary, such as 3D CNN models, GANs
[8] or transformers [4].

IV. CONCLUSION

This work has demonstrated the feasibility of using the
U-Net convolutional neural network to calculate seismic at-
tributes, whose outputs are very similar to those calculated
mathematically. The network scores differently for each seis-
mic attribute, producing generally better results for continuous
attributes, such as envelope, and slightly worse results for
instantaneous phase and LBP 3D. In many cases, the difference
between the inference and the ground truth cannot be visually
identified without some help, such as the calculation of the
differences between the images. It is necessary to understand
whether this error is relevant for tasks employing the attributes,
such as neural networks to predict seismic facies or horizons.

The constant inference speed of the CNN regardless of the
trained attribute being calculated is a strong motivation to train
deep learning models to replace the calculation of seismic
attributes, especially those more expensive computationally.
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(a) Envelope (b) Apparent Polarity (c) Cosine Instantaneous Phase

(d) Instantaneous Phase (e) Relative Amplitude Change (f) Amplitude Acceleration

(g) Sweetness (h) LBP 3D (i) Semblance

Fig. 3: Prediction and error performance of the trained model for each attribute assessed. From up to down in each image:
(Gr.T) ground truth data, (Pred) prediction, and (Diff) their difference. The scale for the three images is the same and is shown
on the right side. All the attributes were inferred or calculated on inline 4 from the F3 dataset.
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(a) Envelope (b) Apparent polarity (c) Cosine instantaneous phase

(d) Instantaneous phase (e) Relative amplitude change (f) Amplitude acceleration

(g) Sweetness (h) LBP 3D (i) Semblance

Fig. 4: Seismic trace 23 of inline 4 for the attribute considered in the study. The green one is the trace obtained from analytical
calculation and the red one is the inference produced by the model.
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