
An Exploratory Study of Deep Learning for
Predicting Computational Tasks Behavior in HPC

Systems
Alexandre H.L. Porto

National Laboratory for Scientific Computing
Petrópolis, Brazil
xandao@lncc.br

Micaella Coelho
National Laboratory for Scientific Computing

Petrópolis, Brazil
micaella@lncc.br

Kary Ocaña
National Laboratory for Scientific Computing

Petrópolis, Brazil
karyann@lncc.br

Carla Osthoff
National Laboratory for Scientific Computing

Petrópolis, Brazil
osthoff@lncc.br

Francieli Boito
University of Bordeaux

CNRS, Bordeaux INP, INRIA, LaBRI
Talence, France

francieli.zanon-boito@u-bordeaux.fr

Douglas O. Cardoso
Smart Cities Research Center
Polytechnic Institute of Tomar

Tomar, Portugal
douglas.cardoso@ipt.pt

Abstract—The scientific gateway BioinfoPortal for bioinfor-
matics applications is hosted in the National Laboratory for
Scientific Computing (LNCC) and is coupled to the Santos
Dumont (SDumont) supercomputer environment. BioinfoPortal
offers a catalog of bioinformatics software that benefits from
the parallel and distributed architecture offered by LNCC. Task
submissions consume SDumont nodes shared by other users
of the supercomputer; thus, it is important they use the best
configuration, which is defined as the best choice of the number
of threads/nodes to be allocated for every task submission. This
article presents an analysis using neural networks to estimate the
computational time required to execute bioinformatics software
in several scenarios using a pre-configured number of nodes
and threads. Our goal is to demonstrate the performance
behavior of software such as RAxML in Bioinfoportal, and
which computational scenario can be chosen to efficiently execute
software in SDumont. Results support that the neural networks
are adequate to predict the variable elapsed time, Elapsed, to
evaluate the relationships between input parameters, number of
bootstraps (RAxML), number of threads, and number of nodes,
and to identify the fastest configuration. The goal is to make
BioinfoPortal a smart, efficient, and green gateway. In future
studies, we propose to study more variables and predictors as
well as other bioinformatics software in BioinfoPortal.

Index Terms—neural networks, phylogenetic analysis, extra
trees, performance prediction, performance modeling

Douglas O. Cardoso acknowledges the financial support by the Foundation
for Science and Technology (Fundação para a Ciência e a Tecnologia, FCT)
through grant UIDB/05567/2020, and by the European Social Fund and
programs Centro 2020 and Portugal 2020 through project CENTRO-04-3559-
FSE-000158.

I. INTRODUCTION

The BioinfoPortal [1] is a bioinformatics gateway hosted in
the National Laboratory for Scientific Computing (LNCC) and
coupled to the computational environment of the Santos Du-
mont (SDumont) supercomputer. BioinfoPortal was developed
under the architecture of the CSGrid middleware [24] and is
managed by the National High-Performance Computing Sys-
tem (SINAPAD/LNCC). The gateway supports bioinformatics
software and workflows executions, dependencies, and li-
braries, which are allocated in the SDumont environment. This
way, the waiting time for a gateway submission depends on
the performance execution of the tasks on the supercomputer.
RAxML (Randomized Accelerated Maximum Likelihood) is
a bioinformatics software [2] on BioinfoPortal which aims to
generate the phylogenetic trees from a dataset of biological se-
quences. Each RAxML submission in BioinfoPortal generates
a task to be performed on SDumont. RAxML is an application
widely used for research in phylogeny to implement genetic
comparison through “maximum likelihood” algorithms using
complex and effective probabilistic models, which generate a
high computational cost in terms of RAM memory.

The BioinfoPortal faces a challenge regarding the efficient
use of SDumont resources, since each application requires a
different set of parameters (number of nodes and processes)
in order to achieve its best performance. The portal currently
configures the same default parameters for all applications;
therefore, to improve its performance and promote good,
efficient, usage of SDumont, it is necessary to select the

9

2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)

979-8-3503-8160-3/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PADW60351.2023.00012

mailto:xandao@lncc.br
mailto:micaella@lncc.br
mailto:karyann@lncc.br
mailto:osthoff@lncc.br
mailto:francieli.zanon-boito@u-bordeaux.fr
mailto:douglas.cardoso@ipt.pt

best set of parameters to be used in the execution of each
application. There are different ways to deal with this situation,
such as testing all possible application parameters. Another
alternative would be to use machine learning (ML), which
would allow obtaining the necessary information through a
non-exhaustive set of tests and would be easily applicable to
new applications on the portal.

Machine learning would allow the use of a model that
helps choose the best set of parameters for each BioinfoPortal
application, when it must be executed on SDumont. That
would be possible after it has been trained with data obtained
from real submissions made to this portal application. This
can be done through supervised learning, in which predictive
models can be trained from historical data from the behavior
of executions of a set of non-exhaustive tests of an application.
In this article, we propose to use neural networks to help
discovering the ideal parameters for the execution of the
RAxML application, available on the BioinfoPortal portal, as
an alternative to the extra trees used in previous studies [11],
[15], [14]. Neural networks are usually recommended more
for situations with large data sets, because small data sets,
when used to train the network, can cause it to overfit to that
data. However, studies have shown that if well designed, neural
networks can perform well for a small data sets as well [3]–
[5].

This article, as well as the complete work, refers to a par-
ticular run of RAxML. As in previous studies [14], [15], [16],
the objective is to use neural networks to determine the most
effective parameters for submitting the RAxML application
on the Santos Dumont supercomputer for efficient execution.
Information to construct neural network models was returned
from variables “number of computational nodes and number
of threads per computational node” and the input parameters
“bootstrap and input file size”, the last ones supplied by the
user. The secondary objective of this article is to compare
the effectiveness of neural networks with Deep Learning
algorithms for determining the submission parameters of the
RAxML application for the Bioinformatics portal.

The structure of this paper is outlined as follows. Section II
provides the basic concepts we need to know to understand the
neural network proposed by the article, in addition to exploring
previous studies based on extra trees. Section III describes
the methodology used to define the structure of the proposed
neural network for an undefined number of neurons and layers,
to then show how to choose the network with the best number
of neurons and layers for the proposal of our article. Section
IV evaluates the best neural network defined by the previous
section, comparing its prediction performance with that of the
extra trees used in previous studies, while Section V offers
concluding remarks and insights into possible future research
directions.

II. RESEARCH BACKGROUND

To be able to choose the optimal submission values for
the number of nodes and the number of threads, according
to the input parameters bootstrap and file size, associated with

a RAxML execution submitted to the BioinfoPortal portal,
we will train a neural network to predict the “Elapsed”
metric, obtained by the command sacct of the SLURM task
management system used by SDumont, referring to a certain
execution of the RAxML. In our previous studies [14], [14],
[16], we used extra trees to predict the value of this parameter
in this context. Therefore, in this work, we compare the neural
network-based solution to that one with extra tress.

The information given by the Elapsed variable was chosen
because we aimed, for each execution of the RAxML program
generated from a submission made to the BioinfoPortal portal,
to choose the best parameters for the number of nodes and
threads, which minimize the execution time, but without
compromising the memory space used in the execution of
the RAxML program. In other words, we want to satisfy a
compromise between the time spent and the memory consump-
tion, to avoid the program being too fast, but with significant
memory consumption, or that the program is very slow, but
with negligible memory consumption. Therefore, our objective
is to train the network to predict the Elapsed variable so that
the prediction of this parameter, given the number of nodes, the
number of threads, and the bootstrap, is as close as possible
to the value that the command sacct would obtain if a real
RAxML execution were done using the same number of nodes,
threads, and bootstrap.

A. Extra Trees

In previous studies [15], [14] and [16], the supervised
machine learning method was adopted to predict the behavior
of the RAxML application. This involved formulating indi-
vidually supervised tasks for each output parameter, using
node numbers, threads, and bootstraps as input parameters.
A binary classification task was applied, wherein the values
of the output parameters were categorized as either below
or above the sample median. In other words, this approach
utilized the median as the cutoff point to divide the data
into two categories. The use of the median aimed to avoid
problems related to data imbalance, which can arise in both
classification problems [17] and regression problems [18].
For the binary classification analysis, cross-validation was
used to compare the accuracy of the various classification
tasks, aiming to evaluate the model’s performance and identify
the most influential input parameter in predicting the output
parameters.

Next, the supervised regression task was considered. In
this scenario, the emphasis is on numerical values of output
variables rather than class labels. The regression technique
allows for a more detailed analysis of the values, providing a
numerical estimate of the variable of interest. For the regres-
sion analysis, cross-validation was used to compare the mean
absolute error, which involved a comprehensive assessment
of the model’s performance. By evaluating the classification
and regression models, we learned how well they performed
on different aspects of the data. This allowed us to assess
the ability to classify correctly and the accuracy of numerical
estimates.

10

In conducting these supervised learning tasks, we used the
Extra Trees Classifier and Extra Trees Regressor [19] models,
employing the default settings provided by the Scikit-Learn
library [20]. These models employ the same algorithm, gener-
ating many random decision trees and combining the results
to obtain the final prediction. The main difference between
the models lies in the type of problem they were developed to
solve. The choice of these models is due to the advantage of
not requiring complex configurations to achieve competitive
performance compared to similar models. Furthermore, they
provide an estimate, during the training itself, of the degree
of influence of each input parameter on the prediction of the
output parameter. This information is valuable for assessing
the importance of the input parameters in predicting the output
parameters.

B. Neural networks

Neural networks are one of the deep learning techniques
used in artificial intelligence. The methodology of the tech-
nique is inspired by how the human brain works [6]. In this
technique, several structures, called neurons or perceptions,
are distributed in several interconnected layers, which aim to
simulate how neurons connect in the human brain. The inner
layers of the network are called hidden layers because we
do not have direct access to the results of the computations
generated by its neurons. The last layer is responsible for
generating the results we want to predict, with a neuron for
each result that needs to be predicted by the network.

To represent the neural network, we use a weighted graph
built according to the existing layers in the network. As only
the first-layer nodes are not associated with neurons, from now
on, in the text, to simplify the notation, we will refer to the
nodes of the graph associated with neurons simply as neurons.
Considering the network layers from left to right, the first
layer is the input layer, and there is a node in this layer for
each input parameter used when training the network. The
intermediate layers are represented by the neurons responsible
for most of the processing that occurs when the neural network
is trained. Finally, the last layer, the output layer, is responsible
for the final calculation of the results to be predicted by the
network, with a different neuron in the layer for each result
predicted by the network. As the network processing starts
from the second layer, an edge connects each neuron of the
second layer to each of the nodes associated with the input
parameters. For all layers from the third one, there is, for each
neuron in the layer, an edge connecting it to all the neurons in
the immediately previous layer. Note that there are no edges
between neurons in the same layer. Each edge of the graph
has a weight, which will be adjusted as the neural network is
trained, with the objective that, after training, the weights of
the edges are the most adequate for the neurons to generate
the best possible predictions for the network outputs from the
given inputs to the network.

Processing in the network proceeds from left to right,
starting with the input data used to train the network, layer
by layer, to the output layer, where the results predicted

by the network are generated. As each neuron of a layer,
except for the second, is connected with the neurons of the
previous layer, the processing of this layer can only start
after all the neurons of the previous layer have finished their
processing. For each neuron t of a layer, its processing is quite
simple, as it calculates the result of the following function
y = w1x1 + w2x2 + ... + wnxn, where n is the number of
neurons in the previous layer or the number of inputs in case
t is in the second layer, xi is the value generated by neuron
i from the previous layer or input parameter xi, and wi is
the weight of the edge connecting neuron t to neuron i or
input parameter xi. A function f , called activation function,
is additionally applied to the value calculated by each neuron,
that is, the value actually calculated by the neuron is f(y).
After neuron t computes its value, if the layer to which t
belongs is not the last one, the result of t is passed to all
neurons in the next layer. If the layer is the last one, then
the result is the value predicted by the network for one of the
output parameters. Figure 1 illustrates a simple neural network
with tree input parameters (I1, I2 and I3), two hidden layers,
each with four neurons, and the output layer, with a result,
O1, to be predicted by the network.

Input
layer

Hidden
layer

Hidden
layer

Output
layer

I1

I2

I3

O1

Fig. 1. Example of a neural network.

When we use neural networks, they are trained for several
steps. Each step is called an epoch, and at each epoch, a
given algorithm called an optimizer, changes the weights of
the edges of the neural network according to the score used to
evaluate the predicted results for the input data used when
training. A loss score is generated for each epoch, which
measures the model’s prediction quality after that epoch for the
input data used when training the network. If validation data
is being used when training the network, then, in addition to
the loss value, a score, called the val loss, is generated, which
measures the quality of the network prediction at that epoch
for the validation data.

11

III. METHODOLOGY

As we observed in the previous section, a neural network is
composed of several layers, one of which is the input, a given
number of hidden layers, and an output layer, responsible
for generating the values provided by the network. In this
section, we will describe, in the following subsections, how
we will build networks to predict the Elapsed variable from
data obtained by real RAxML executions in SDumont.

A. The MAE score

When training each neural network for each combination of
several neurons and layers described in the previous paragraph,
and when comparing the prediction performance of the neural
networks with the extra trees, we will use the MAE (Mean
Absolute Error) [23] score. Consider that an artificial intelli-
gence model predicted the outputs x1, x2, . . . , xn for a given
set of input data. If the actual outputs, that is, those obtained
by actual runs on these same input data, are y1, y2, . . . , yn,
with each yi being the actual value of the predicted xi

value, then the MAE score for the predicted values will
be the average of the modulus of differences between each
predicted value and the actual value it corresponds to, that is,(∑

1≤i≤n |xi − yi|
)
/n.

B. Getting the best numbers of neurons and hidden layers

To choose the best network to compare to the perfor-
mance of the extra trees, we made several network config-
urations for the Elapsed variable that we are going to use
in the performance evaluation tests in this article, obtained
by varying the number of neurons in each layer in the set
{1, 4, 16, 64, 256, 1024}, and the number of hidden layers
varying from 1 to 10, giving a total of 60 different combi-
nations of number of hidden layers and number of neurons
per hidden layer. In preliminary tests, we tried to use the
same configuration as in article [3], a neural network with 100
neurons per layer and ten hidden layers, because this article, to
our knowledge, is the most referenced when neural networks
are used with small datasets, but the results we obtained with
it were not promising. To discover the most suitable network,
with the best number of neurons per layer and hidden layers,
we evaluated the number of layers ranging from 1 to 10 used
in [3]. As for the number of neurons, we decided to evaluate
smaller and larger numbers of neurons than the 100 used in
[3], and, to reduce the neuron number space considered, we
decided to use powers of 4 lesser and greater than 100.

In Figure 2, we show the heatmap graph for each combina-
tion of several neurons and the number of layers for the neural
network used to predict the Elapsed variable. The values given
in each heatmap entry are the averages for 40 tests with the
number of neurons and layers associated with the entry, of the
value obtained by training, using the MAE score, after 200
epochs, the same number used in [3]. We decided to run 40
tests and calculate the average because otherwise, in one of the
60 configurations, only one neural network would be modeled,
for which we randomly chose 90% data for training and 10%
for validation. Therefore, we tried to statistically evaluate the

values for each possible combination of several neurons and
layers with the 40 tests. It is important to notice that, for the
MAE score, the best value is 0 and that the closer to 0, the
better the prediction of the network according to the metric.
We can see that, for the Elapsed variable, the best configuration
is a network with two layers and 256 neurons in each hidden
layer.

C. Evaluating the best result

In Figure 3, we show the graph with average values for
the 40 tests performed, to the best-chosen combination, 256
neurons, and two hidden layers for all 200 epochs made while
training the network. As we can see from the figure, the curves
of the loss, related to the data used by the training, and the
val loss, related to the validation data, are very close, with a
very small difference between the values. Furthermore, the
decreases in loss and val loss values stabilize after a few
epochs. Previous evidence and these curves support that the
architecture with 256 neurons and two hidden layers was at
least as good as any of its alternatives and that additional
training for more epochs could cause an overfitting of the
network to the data used to train it.

D. Defining how the best neural network is configured

The purpose of the proposed neural network for the variable
Elapsed is, based on the predictions of the possible values for
this variable, to help choose the best values for the parameters
number of nodes and number of threads. The network will
consist of the following layers:

• Since the three parameters, “Node”, “Thread” and “Boot-
strap”, are considered in each execution of the RAxML
program, the input layer will be composed of three nodes.
Due to the input parameters having very different ranges
of values, normalized versions of these parameters were
used, to ensure that all parameters have equal contribution
in the training of the network. The normalization per-
formed was min-max, which maps, for each parameter,
its set of possible values in the interval [0, 1], that is,
if the parameter value is x, the minimum value of
the parameter is min and the maximum value of the
parameter is max, then the new input parameter will be
(x−min)/(max−min).

• For the hidden layers, we will use the composition
determined by the best heatmap value given in Figure 2.
Therefore, our network will consist of 2 hidden layers,
each consisting of 256 neurons. The He-initialization
method [7] will be used to initialize the edge weights
of the neural network. The Adam optimizer [8], with
a learning rate of 0.01, will be used when optimizing
the weights of the network, and training will occur for
200 epochs, as done in the article [3]. The function used
by the Adam optimizer, when training the network and
adapting the weights of the edges, will be the “mae”
based on the mean absolute statistical (MAE) error. For

12

1 2 3 4 5 6 7 8 9 10
layers

1
4

16
64

25
6

10
24

ne
ur

on
s

294.68 318.22 392.17 399.58 399.58 407.02 421.74 421.74 421.74 421.74

147.05 91.19 115.49 118.90 140.10 186.75 164.84 253.61 193.51 204.76

106.87 26.97 19.31 15.62 16.64 18.34 19.37 18.90 20.42 20.00

55.64 14.56 15.45 15.91 19.53 18.25 21.67 22.79 21.98 25.84

36.13 14.10 17.75 20.76 22.89 24.10 24.01 23.09 28.24 23.49

16.46 16.96 17.75 20.42 21.13 22.85 27.95 32.52 31.77 31.84 50

100

150

200

250

300

350

400

Fig. 2. Heatmap for the Elapsed variable with MAE metric values for all combinations of numbers of neurons and layers described in the text. Colors vary
in intensity according to the MAE value, being darker for smaller values, as shown by the color scale on the map’s right side. The best combination, with
two hidden layers and 256 neurons per layer, is associated with the map entry with the lowest MAE value of 14.10.

0 25 50 75 100 125 150 175 200
epoch

0

50

100

150

200

250

300

350

400

M
AE

loss
val_loss

Fig. 3. Loss and val loss values calculated at each of the 200 epochs when
training the model with 256 neurons per layer and two hidden layers.

the activation function of each neuron, we decided to use
the “relu” function most used in studies based on neural
networks (for this function, f(y) = max({0, y}), instead
of the “elu” function [9] used in [3], because our results
were better with this function.

• Finally, the last layer will be composed of a neuron that
will be responsible for computing the value predicted by
the network, that is, the value of variable Elapsed.

IV. EXPERIMENTAL RESULTS

The neural networks were implemented in the Python
language using the Keras library [10] and the Sequential
class of this library, defined to facilitate the creation of very
complex neural networks. The class object was configured
to have an input layer for the three parameters “number of
nodes”, “threads” and “bootstrap”, and two hidden layers
defined with 256 neurons and the initialization function of the
weights He-initialization. Adam was defined as the optimizer
with a learning rate of 0.01 when compiling the network.
Additionally, we choose the MAE as the evaluation function
used by the optimizer, called the loss function, and defined by
the “loss” option.

When the network was trained using a given dataset, 90%
of the training data was used to effectively train the network,
while 10% of the training data was used to validate the
network while it was being trained. This division evaluated the
network in each of the 200 epochs for which it was trained by
the optimizer Adam, who, as we saw, uses the MAE scoring
function described above. The set of input data available to
train the network, obtained from real RAxML executions in
SDumont, was divided equally, in two parts, 100 times, using
the RepeatedKFold function of the model selection module of
the sklearn library [20], as done in previous studies based on
extra trees [14], [15], [16]. For each of the 100 splits into
two parts, the RepeatedKFold function returns two sets of
parts, one where the first part is used to train the network and
the second part is used as test set to evaluate the network’s
prediction accuracy, and another where the roles of the parts
are swapped, i.e., the first part is now used for evaluating
accuracy while the second part is used for training.

To train the neural networks for the Elapsed parameter, tests
were carried out in SDumont, using the number of nodes in the

13

set {1, 2, 4}, the number of threads in the set {2, 4, 8, 12, 24},
and the bootstrap of the set {100, 500, 1000, 1500, 2000}. The
amino acid sequences used were from the aminoacido.phylip
file, composed of amino acids associated with ten species for
which we wanted to build the best phylogenetic tree describing
the kinship of these species. To avoid influences of runtime
variations due to the shared use of SDumont, each combination
of node and thread numbers and bootstrap parameters was
executed five times. Therefore, the total number of tests
executed should have been 3× 5× 5× 5 = 375, but the total
was a little less, 370 tests, because five tests were aborted due
to execution problems in SDumont. Using the test set, each
network was trained as described in the previous section.

To evaluate the efficiency, we will compare the neural
network of the variable Elapsed with a previously created
model [11], [14], [15], [16] for each of the parameters, using
the extra trees based on random decision trees [12] [13]. To
compare the accuracy of the neural network and extra tree
prediction, let’s use the MAE score used when training the
neural network. For every 200 tests described above, both the
extra trees and the neural networks for the Elapsed variable
will be generated using the data defined for training and then
will be evaluated using the data defined for prediction, being
that for each predicted result, we will calculate its MAE score
with the given result in the data used for prediction.

In Figure 4, we show the boxplot plot of the MAE score
for all 200 predictions made by the extra trees and neural
networks with two hidden layers with 256 neurons. The figure
shows that the neural network performs worse than the extra
tree since, for the MAE score, the best values are always
the smallest, with 0 being the ideal value (in this case, the
predicted values would be exactly equal to the real values).
Since neural networks typically excel on complex problems
with a relatively large set of variables as well as more abundant
training data, it could be expected that the results of the neural
networks were better compared to those of the extra trees in a
scenario where more parameters and performance metrics of
the computational tasks are considered.

V. CONCLUSION

From the results of the previous section, we can conclude
that neural networks are also adequate to predict the Elapsed
variable considered in the article, and we believe that it is
justifiable not only to perform new training with more data but
also to evaluate the prediction performance of neural networks
in comparison with extra trees for each of the other five
variables MaxVMSize, AveVMSize, MaxRSS, AveCPU and
CPUTime described in [11]. It is noteworthy that, although
we need to rebuild the models generated by the extra trees
used in previous studies, for a neural network, we can keep
training it without having to rebuild it from scratch.

A possible future study is, as done in [11] for the extra
trees, to study the accuracy, for neural network predictions,
of each of the input parameters, Node, Threads and boot-
strap, for the Elapsed variable considered in this article,
and for the neural networks to be trained for the remaining

10 15 20 25 30 35 40
MAE

Extra trees

Neural networks

M
od

el
s

Fig. 4. MAE scores for predictions from extra trees and neural networks. In
the graph, the MAE scores that are mumerically farthest from the majority
of the 200 scores are shown outside the range delimited in each boxplot
by diamonds. Considering the scores that are within the range, the range
bounds define the smallest and largest value of the scores within the range.
Still considering the scores within the range, for each filled rectangle, its
boundaries represent the first and third quartiles of these scores, the inner
line represents the mean of these scores, and the green triangles represent the
medians of these scores.

variables MaxVMSize, AveVMSize, MaxRSS, AveCPU and
CPUTime. As these variables can be grouped into two groups,
time-related variables (AveCPU, CPUTime, and Elapsed) and
memory usage-related variables (MaxVMSize, AveVMSize
and MaxRSS), we could also develop a neural network for
each one of the two groups, which would predict, from the
Node, Threads, and bootstrap input parameters, values for all
variables in the group.

In this article, we consider the construction of a neural
network for an output variable, Elapsed, which measures
the complete execution time of the RAxML program. Of
all six variables considered in [11], the variables (AveCPU,
CPUTime, and Elapsed) are related to execution time, and
the variables MaxVMSize, AveVMSize, and MaxRSS are re-
lated to memory expenditure. However, there are applications
that, instead of spending most of their time computing and
demanding a lot of CPU time, i.e., CPU-bound applications,
spend most of their runtime accessing files, i.e., IO-bound
applications. Therefore, a possible future study would be to
consider the output variables of the sacct SLURM command
related to the I/O operations performed by an application,
such for example, the variables AveDiskRead, AveDiskWrite,
MaxDiskRead, and MaxDiskWrite.

To evaluate the possibility of adapting neural networks
to other programs, we propose, as future studies, to define
new neural networks to predict the variable Elapsed and the
other five defined in [11], for another application of the
BioinfoPortal portal, bowtie2 [21], used to perform various
sequence alignments. In the case of this application, which is
just multitasking, we will evaluate only the number of threads
since the number of nodes is always equal to 1, and as an
application-dependent parameter, we will use the size of the
file with the sequences to be aligned. Later, we intend to make

14

neural networks that adapt to any application, using two sets
of inputs: the ones dependent on the execution in SDumont
and those dependent on the application.

ACKNOWLEDGMENT

We would like to thank CNPq for providing the resources
for the project, INRIA and its collaboration with the project,
and the Santos Dumont supercomputer (SDumont) support
team.

REFERENCES

[1] K. Ocaña, M. Galheigo, C. Osthoff, L. Gadelha, F. Porto, A.T.A. Gomes,
D. Oliveira and A. Vasconcelos, “BioinfoPortal: A scientific gateway
for integrating bioinformatics applications on the Brazilian national
high-performance computing network”, Future Generation Computer
Systems, Vol. 107, 2020.

[2] A. Stamatakis, “Raxml version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies,” Bioinformatics, vol. 30(9), pp. 1312-
–1313, 2014.

[3] M. Olson, A. J. Wyner and R. Berk, “Modern neural networks generalize
on small data sets,” NIPS’18: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 3623-–3632,
December 2018.

[4] T. Shaikhina and N. A. Khovanova, “Handling limited datasets with neu-
ral networks in medical applications: A small-data approach,” Artificial
Intelligence in Medicine, vol. 75, pp. 51–63, January 2017.

[5] A. Pasini, “Artificial neural networks for small dataset analysis,” J.
Thorac. Dis., vol. 7(5), pp. 953—960, May 2015.

[6] W.S. Mcculloch and W. Pitts, “A Logical Calculation of the Ideas
Immanent in Neuvous Activity,” Bulletin of Mathematical Biophysics,
vol. 5, pp. 115–133, 1943.

[7] K. He, X. Zhang, S. Ren and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
IEEE International Conference on Computer Vision (ICCV), pp. 1026—
1034, 2015.

[8] D.P. Kingma and J.L. Ba, “Adam: Amethod for stochastic optimiza-
tion,” In Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015.

[9] D.A. Clevert, T. Unterthiner and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[10] F. Chollet, “Deep learning with python,” Manning Publications Co.,
2017.

[11] M. Coelho, C. Osthoff and K. Ocaña, “Avaliação do RAxML no
Supercomputador Santos Dumont,” Anais Estendidos do XI Simpósio
Brasileiro de Bioinformática, 2018.

[12] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5-–32,
2001.

[13] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63(1), pp. 3-–42, April 2006.

[14] Coelho, M. et al. Development of a Machine Learning Framework
to Support Efficient Scientific Gateways. In: Latin America High
Performance Computing Conference (CARLA 2022), Porto Alegre,
2022.

[15] COELHO, Micaella et al. Desenvolvimento de um Framework de
Aprendizado de Máquina no Apoio a Gateways Cientı́ficos Verdes,
Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro.
In: Anais do XXIII Simpósio em Sistemas Computacionais de Alto
Desempenho, 2022, Florianópolis. Sociedade Brasileira de Computação,
2022. p. 205-216.

[16] Coelho, M. et al. Um estudo sobre Aprendizado de Máquina no
Apoio a Gateways Cientı́ficos Verdes, Inteligentes e Eficientes. IN:
XXIII Encontro da Rede de Estudos Ambientais de Paı́ses de Lı́ngua
Portuguesa - REALP, Instituto Politécnico de Tomar, 2022.

[17] Johnson, Justin M. and Khoshgoftaar, Taghi M. Survey on deep learning
with class imbalance. In: Journal of Big Data, vol. 6, no. 1, p. 27, Mar.
2019.

[18] Ribeiro, Rita P. and Moniz, Nuno Imbalanced regression and extreme
value prediction. In: Machine Learning, vol. 109, no. 9, pp. 1803–1835,
Sep. 2020.

[19] Geurts, Pierre et al. Extremely randomized trees. In: Machine Learning,
vol. 63, no. 1, pp. 3–42, Apr. 2006.

[20] Pedregosa, Fabian et al. Scikit-learn: Machine Learning in Python. In:
Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830,
2011.

[21] B. Langmead and S.L. Salzberg, “Fast gapped-read alignment with
Bowtie 2”, Nature Methods, Vol. 9, pp. 357—359, 2012.

[22] A.B. Yoo, M.A. Jette and M. Grondona, “SLURM: Simple Linux Utility
for Resource Management”, Workshop on Job Scheduling Strategies for
Parallel Processing, Springer Berlin Heidelberg, pp. 44–60, 2003.

[23] C.J. Willmott*, K. Matsuura, “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance”, Climate Research, vol. 30, pp. 79—82, 2005.

[24] A. T. A. Gomes, B. F. Bastos, V. Medeiros, V. M. Moreira, ”Experiences
of the brazilian national high-performance computing network on the
rapid prototyping of science gateways”, Concurrency and Computation:
Practice and Experience, Vol. 27, No. 2, pp. 271—289, 2015.

15

