
Assessing the performance of an architecture-aware
optimization tool for neural networks

Raúl Marichal
Instituto de Computación

Facultad de Ingenierı́a
Montevideo, Uruguay
rmarichal@fing.edu.uy

Ernesto Dufrechou
Instituto de Computación

Facultad de Ingenierı́a
Montevideo, Uruguay

edufrechou@fing.edu.uy

Pablo Ezzatti
Instituto de Computación

Facultad de Ingenierı́a
Montevideo, Uruguay
pezzatti@fing.edu.uy

Abstract—The important growth in the demand for Neural
Network solutions has created an urgent need for efficient
implementations across a wide array of environments and plat-
forms. As industries increasingly rely on AI-driven technologies,
optimizing the performance and effectiveness of these networks
has become crucial. While numerous studies have achieved
promising results in this field, the process of fine-tuning and
identifying optimal architectures for specific problem domains
remains a complex and resource-intensive task. As such, there
is a pressing need to explore and evaluate techniques that can
improve this optimization process, reducing costs and time-to-
deployment while maximizing the overall performance of Neural
Networks.

This work focuses on evaluating the optimization process of
NetAdpat for two neural networks on an Nvidia Jetson device.
We observe a performance decay for the larger network when the
algorithm tries to meet the latency constraint. Furthermore, we
propose potential alternatives to optimize this tool. Particularly,
we propose an alternative configuration search procedure that
allows us to enhance the optimization process, achieving speedups
of up to ∼ 7×.

Index Terms—efficient computing, neural network optimiza-
tions, edge devices, heterogeneous computing, NetAdapt

I. INTRODUCTION

Developing and deploying efficient deep learning algorithms
is of the utmost importance in today’s data-driven world since
they profoundly impact various domains and industries. Effi-
cient algorithms enable faster and more accurate data analysis
and reduce costs by minimizing computational resources, such
as processing power and memory requirements, leading to
optimized hardware utilization and energy savings. Moreover,
making the deployment of machine learning models possible
on resource-constrained devices, such as mobile phones or
Internet of Things (IoT) devices, extends the reach of AI
applications to edge computing scenarios. This is the main
motivation for studying novel techniques to optimize this kind
of computation.

The efforts to improve the computational performance of
AI solutions are varied, ranging from hardware optimizations,
developing efficient specialized platforms that suit this kind
of workload (ASICs), to software or model-driven approaches
that allow optimizing by, for example, understanding the spec-
ifications of the hardware and adapting the computations to a
new workflow [14]. Among those efforts, Neural Architecture

Search (NAS) techniques have gained importance in recent
years. It consists of exploring the space of possible DNNs for
a certain task and obtaining one that adjusts to a certain budget
on properties such as inference latency, energy efficiency, and
accuracy. The sample that better adjusts to the budget is finally
trained to obtain the final network.

There is a wide range of NAS methods, such as Evolution-
ary NAS [15], reinforcement-learning-based approaches [16],
[21], or differentiable NAS [1], [11], [17].

A common characteristic of the above approaches is their
remarkable computational cost. This is often tackled by re-
curring to large computing infrastructures and applying High-
Performance Computing (HPC) architectures and techniques.
Nevertheless, this infrastructure is not always available for
most developers. Therefore, it is of utmost importance to work
on efficient implementations of this family of algorithms in
more common or restricted environments that are equipped in-
stead of multiple nodes with hundreds of Graphics Processing
Units (GPUs) available, only a node with a couple of them.

A recent trend related to NAS is to optimize the network’s
architecture using performance samples taken on the target
computing device [1], [2], [16], which is called platform-
aware optimization. A clear example is NETADAPT [19], [20].
Following a latency budget, this software tool optimizes a pre-
trained neural network model based on empirical measure-
ments on the platform in which it will be deployed.

NETADAPT uses an iterative algorithm that simplifies the
network, obtaining a set of candidate models and selecting
those that show the best relation between the performance in
terms of the metric to be optimized (e.g., latency) and the
accuracy. Using empirical measurements of the target platform
allows NETADAPT to produce optimized models without spe-
cific knowledge about that platform’s specifications.

Continuing a previous work [12] where we evaluate the
benefits of NETADAPT, in this opportunity, we present a de-
tailed analysis of the optimization process done by the original
implementation of the algorithm [18], in an environment with
3 GPUs. With these results, we present a strategy to speed
up the optimization process of the NETADAPT, focusing on
optimizing the search for optimal layer width that satisfies a
given latency constraint on each algorithm step.

The rest of the paper is structured as follows. In Section II,

1

2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)

979-8-3503-8160-3/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PADW60351.2023.00011

we describe in detail how the NETADAPT algorithm works
and present an analysis revisiting some of our previous efforts
using this tool. The description of our novel proposal follows
this in Section IV, and the corresponding experimental eval-
uation, with the environment and test cases, is in Section V.
Finally, a few remarks and some lines of future work close
the paper in Section VI.

II. EFFICIENT NEURAL NETWORKS

Multiple efforts are dedicated to optimizing Deep Learning
computations, which can be categorized into two main levels:
software and hardware optimizations.

On one hand, hardware-driven optimizations focus on effi-
ciency and energy consumption while maximizing hardware
utilization, requiring the design of specialized hardware ar-
chitectures. This idea has been derived in new Application-
Specific Integrated Circuits (ASICs) specifically designed
for deep learning workloads, a tendency that authors like
Hennessy and Patterson pointed out a few years ago [5].
Examples range from academic (implemented) architectures.
One of them is Eyeriss [3], an energy-efficient accelerator that
minimizes data movement. There are also industry develop-
ments such as Google’s Edge Tensor Processing Unit (Edge
TPU) [4], which presents a matrix of Processing Elements
(PEs) that has specific limitations such as a reduced subset
of operations and only supports INT8. Other companies, like
META, have put effort into developing a new family of
hardware platforms called MTIA [13], optimized for their deep
learning recommendation models (DLRMs) workloads.

Software optimizations involve improving performance
through transformations, rearrangements, pruning, and quanti-
zation techniques. Pruning removes unnecessary computations,
while quantization converts the model’s data format into
smaller representations. For example, instead of using Floating
Point (FP32, 32 bits) to represent weights and activations, in
some cases, they can be stored and computed with an FP16 or
INT8 representations, reducing the memory footprint associ-
ated with the model and allowing faster inferences with small
and, depending on the problem, acceptable accuracy drops.
Also, an important line of research is the Network Architecture
Search (NAS), which helps automate the process of finding
new optimal neural network architectures for specific domains
and tasks. Instead of the laborious job of developing novel
architectures, which is directly tied to expertise and knowledge
in the field, this type of algorithm helps to alleviate this
demanding task, allowing the automatic design of performing
neural networks by using techniques of machine learning itself,
in problems like image classification, object detection, and lan-
guage translation. Even though it is an effortless and automatic
way to develop new architectures, there are multiple aspects to
consider when developing and deploying NAS. For example, it
is necessary to define a search space of possible neural network
architectures, including different types of layers, number of
layers, width of layers, skipped connections, etc.. In most
cases, this yields a huge spectrum of options, easily becoming
a complex and costly search problem, handled by, for example,

reinforcement learning and evolutionary algorithms [15], [21].
There are other aspects, such as model training and evaluation
over the iterations of the algorithm, that, depending on the
search spaces, can take several computing resources in the
form of massively parallel hardware (e.g., hundreds of GPUs)
and a lot of computing time, which is not always available.

Other authors look for better accuracy-latency trade-offs in
the resulting networks by incorporating metrics such as the
measured latency of a sampled network on the target inference
device. This can allow obtaining DNNs with better latency and
energy efficiency in resource-constrained environments than
NAS methods that do not incorporate the characteristics of the
inference computing platform while preserving a good level of
quality in the solution [16], [19]. An excellent example of this
sort of tool is NETADAPT, in which we focus on this work.

A. NETADAPT

NetAdapt [19] is an automated algorithm designed to adapt
and optimize neural network models for specific hardware
architectures. It sequentially optimizes a pre-trained model
through layer-level simplifications, reducing the number of
filters involved using empirical measures from the target
platform. Note that it uses a similar approach to NAS, by
automatically designing a new model, but in this case, limited
to a pre-existing architecture, without taking into account
more complex decisions such as defining new search spaces
that can grow immensely fast. This allows, depending on the
complexity of the original model, the development of efficient
and high-performing neural network models without the need
for an excessive computing infrastructure. Nevertheless, as we
will see in the following sections, running in relatively normal
setups is still costly.

As an example of an application, in [6] NETADAPT is used
to complement the NAS algorithm to search a new version of
Mobilenet (V3). In particular, the authors apply the algorithm
to obtain a smaller version of the architecture. The algorithm
is an iterative procedure where each iteration involves simpli-
fying, training, and evaluating independent models. To gain
a comprehensive understanding of the algorithm’s function-
ality and the steps involved, we hereby present a simplified
explanation as follows:

1) It starts with a pre-trained model (seed). For example,
in [6], the authors start with an architecture found by
NAS.

2) For each step until a maximum number of iterations or
until the desired latency budget is reached (for example,
0.5× |L|, where |L| is the latency of the model):

a) A set of architectures or proposals is generated.
Each one is a modification of the current model
in the step, resulting in at least a δ reduction in
latency (in the NETADAPT implementation, there
are as many proposals as there are layers in the
network, reducing the number of filters for that
layer until the constraint is reached, for example,
a reduction δ = 0.025 × |L|). In [18], this step
is implemented with a system of workers that

2

independently find a simplified network definition.
This reduction in the number of filters is evaluated
sequentially using a Look-Up Table (LUT) contain-
ing latency measurements for the specific platform.
In some cases, depending on the configuration and
the LUT, the latency value for a configuration must
be obtained by interpolating the latency values
in the LUT since not all the configurations are
evaluated in the target platform (which would take
several days or even weeks depending of the width
of the layers, step reduction, and the iterations
to average). For instance, we use a reduction on
the channel dimension (for the input and output)
of 8 for convolutional layers and 64 for fully-
connected layers since the fully-connected layers
have a much bigger dimensionality, taking days for
smaller reductions.

b) For each of the proposals, once the constraint is
met, the model is created in the worker’s assigned
GPU. To create the new models, the pre-trained
model from the previous step is taken and pruned
to match the architectures proposed in the previous
step.

c) Subsequently, all models are fine-tuned by T steps
to obtain a reasonable accuracy.

d) Once fine-tuned, the models are evaluated, and the
accuracy is stored.

e) The best candidate given a certain metric is se-
lected as the current model for the next iteration.
This metric is calculated considering the latency
and accuracy.

It can be observed that, for example, the parameters T
and δ may impact the final elapsed time to compute the
algorithm. T represents the number of fine-tuning iterations
involving forward passes and back-propagation computations,
which is well-known to be a computationally intensive task.
Furthermore, δ references to the speed of latency reduction.
The larger this value, the faster (at least in the number of
iterations) the latency budget should be reached. As a refer-
ence, the application of NETADAPT in [6] sets the parameters
T = 10000 (for ImageNet) and δ = 0.01|L| (i.e., 1% of
latency of the seed model), and finally trains the candidates
from scratch, having a 4x4 TPU Pod [8] for the training.

In our previous experimental evaluations, even though we
reached good results reducing the models’ latency and pre-
serving acceptable levels of accuracy (Table I), the higher
execution time when applying NETADAPT in larger net-
works (for example, AlexNet) stood out. This considerable
computational cost can make using the tool impractical in
several situations. For this reason, it is interesting to obtain
a detailed performance profile of NETADAPT and evaluate the
opportunities for performance improvement.

III. ANALYSIS

The benefits of applying NETADAPT, as we shown in
our previous work, were clear (for example, see Table I).

TABLE I
LATENCY REDUCTION RATIO FOR ADAPTED VERSIONS OF ALEXNET

EXECUTED ON DIFFERENT DEVICES: INTEL NCS2, NVIDIA GTX 970,
NVIDIA JETSON TX2 AND CPU INTEL CORE I7-4790. EXTRACTED

FROM [12].

Latency reduction ratio between AlexNet models
Device NA-

NCS2
NA-
GTX

NA-
TX2

NA-i7 Base
Model

NCS2 59% 38% 57% 45% 0.020ms
GTX 23% 82% 23% 5% 0.004ms
TX2 35% 18% 36% 17% 0.020ms
i7 62% 39% 64% 64% 0.044ms

Nevertheless, its application can be quite expensive in terms of
computational cost and time since multiple instances of models
need to be independently optimized (sequentially), trained, and
evaluated to choose the best-performing one in each step. In
this section, we present a few results of different NETADAPT
configurations to show how costly the computation can be
and how, depending on the parameters used, it may drastically
affect the elapsed time to compute the optimization.

TABLE II
ELAPSED TIME (IN SECONDS) AND NUMBER OF ITERATIONS TAKEN TO

COMPUTE NETADAPT (ORIGINAL) FOR DIFFERENT δ VALUES, USING
T = 500.

Mobilenet Alexnet
δ Elapsed time Iterations Elapsed time Iterations
0.01 3.434× 104 40 1.343× 105 68
0.025 1.662× 104 18 1.003× 105 24
0.05 1.010× 104 11 7.282× 104 12

We ran several experiments of the original implementation
of NETADAPT on a computer/server equipped with 3 Nvidia
GPUs over two well-known convolutional neural networks:
MobileNet and AlexNet. This setup and test cases are de-
scribed with more precision in the experimental evaluation
(Section V). We ran NETADAPT with T = 500 fine-tuning
iterations and varying the δ value, seeking to speed up the
velocity of latency reduction. From Table II, it can be observed
that for the smaller δ in each step (i.e., smaller latency
constraint reduction), MobileNet takes more iterations, and the
elapsed time correlates with the number of iterations in all the
cases (around 15 minutes per iteration).

On the other hand, for the case of AlexNet, we can see that
for a higher δ value, the budget is, as expected, also reached
in fewer iterations. Nevertheless, the elapsed time does not
directly relate to these results, having very similar elapsed
times or, at least, not a homogeneous time per iteration. Given
that all tests have the same number of fine-tuning iterations
(T), the discrepancy in elapsed time cannot be attributed to
either the fine-tuning stage or the evaluation process. In fact,
there are fewer iterations for increasing δ values, resulting in
a reduced number of fine-tuning and evaluation stages. The
reason for NETADAPT’s behavior in the AlexNet case is that
most of the time was spent finding the new architecture that
satisfies the constraint in each step, computing the latency from
the look-up table, and interpolating the missing values.

3

0 1 2 3 4 5 6
Number of Block

0

100

200

300

400

El
ap
se
d
tim

e
(s
)

Alexnet - Average time per stage for each block (0.01)
Simplify network definition
Simplify model
Fine-tune
Evaluation

Fig. 1. Average elapsed time per stage in the worker’s block optimization
process. T = 100 and δ = 0.01.

0 1 2 3 4 5 6
Number of Block

0

500

1000

1500

2000

2500

3000

3500

El
ap
se
d
tim

e
(s
)

Alexnet - Average time per stage for each block (0.05)
Simplify network definition
Simplify model
Fine-tune
Evaluation

Fig. 2. Average elapsed time per stage in the worker’s block optimization
process. T = 100 and δ = 0.05.

The higher the δ, the harder it is (in terms of the number of
latency evaluations) to find a good configuration that fulfills
the latency restriction. This exact behavior can be observed in
Figures 1 and 2, where in both cases, the time spent to simplify
the network definition of AlexNet is larger than the other steps
involved, the fine-tuning, model generation and evaluation
(which have quite regular times across the simplified blocks).
It must be noted that there is a certain regularity between the
first blocks, but the last two stand out, associated with the
fully connected layers with higher dimensionality. This gap is
even more remarkable in the case of δ = 0.05.

In Figures 3 and 4, we show how the latency (empirical
measures) varies given the input and output dimensions for a
specific device (Xavier). In particular, we can observe mostly
linear growth for both types of layers for larger input and
output sizes. Even though there are only two examples, we

0 50 100 150 200 250 300 350 400
Number of OUT channels

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

La
te

nc
y

(m
s)

Number of IN channels

192
184
176
168
160
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8

Fig. 3. Latency measurements of a Convolutional layer latency measures
varying IN and OUT number of channels on an Nvidia Jetson Xavier.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of OUT channels

0.000

0.001

0.002

0.003

0.004
La

te
nc

y
(m

s)

Number of IN channels

9216
9152
9088
9024
8960
8896
8832
8768
8704
8640
8576
8512
8448
8384
8320
8256
8192
8128
8064
8000
7936
7872
7808
7744
7680
7616
7552
7488
7424
7360
7296
7232
7168
7104
7040
6976
6912
6848
6784
6720
6656
6592
6528
6464
6400
6336
6272
6208
6144
6080
6016
5952
5888
5824
5760
5696
5632
5568
5504
5440
5376
5312
5248
5184
5120
5056
4992
4928
4864
4800
4736
4672
4608
4544
4480
4416
4352
4288
4224
4160
4096
4032
3968
3904
3840
3776
3712
3648
3584
3520
3456
3392
3328
3264
3200
3136
3072
3008
2944
2880
2816
2752
2688
2624
2560
2496
2432
2368
2304
2240
2176
2112
2048
1984
1920
1856
1792
1728
1664
1600
1536
1472
1408
1344
1280
1216
1152
1088
1024
960
896
832
768
704
640
576
512
448
384
320
256
192
128
64

Fig. 4. Latency measurements of a Fully connected layer latency measures
varying input and output size on an Nvidia Jetson Xavier.

observe this behavior in most of the layers for other devices.
Considering these results, it would be interesting to address

the problem of finding the configuration that allows satisfying
the constraint. Particularly, the quasi-linear growth of the la-
tency regarding the number of channels suggests using a faster
method than linear evaluation over the number of channels
dimension.

IV. PROPOSAL

As pointed out, since the number of iterations of fine-tuning
and evaluation remained fixed in the tests, and we vary the
ratio reduction per step (δ), comparing the Figures 1 and 2
evidence the important and crescent cost is associated with the
process of simplifying the network definition by searching the
configuration that satisfies the step constraint. Following, we
present a strategy to reduce the number of evaluations of the
latency LUT and interpolations done to estimate the latency.

4

A. Modified search procedure (Binary search)

As discussed above, for most cases, latency measures
present a “linear” growth in the function of the output and
input channel dimensions. Therefore, to speed up the configu-
ration search to meet the latency constraint for each layer, we
propose to perform such a search in a different order. Instead of
using a purely sequential evaluation, reducing the dimension in
a magnitude of min_feature_size to compute the total
latency of the architecture, we propose combining it with a
simple binary search algorithm that modifies the size of the
layer in a variable step until a certain threshold is met, to
evaluate linearly later until the latency constraint is met. Note
that the order of complexity of the original search is O(n). In
the worst case, all the possible configurations are evaluated.
This is especially important since the latency LUT elements,
the pairs of ((in channels,out channels): latency) scale with
a factor of (in channels/step)× (out channels/step).

For the case of AlexNet, we have a fully connected
layer with 9126 in channels and 4096 out channels. Mea-
suring the latency with a step of 64, e.g., the configurations
(9126,4096),(9062,4096),... (64,4096) are evaluated until the
latency constraint is met resulting in a total of (4096/64 *
9126/64) = 9126 configurations. Moreover, a modification in
a layer dimension may affect the following layers. In some
cases or configurations where the latency can not be computed
directly from the LUT, the values are interpolated, adding an
extra cost.

Therefore, assuming a linear growth for increasing channel
dimensions, we propose a fairly simple variation of the clas-
sical binary search. The new search procedure is summarized
in Figure 5. Although a pure binary search is not viable
because the latency growth is not entirely homogeneous in
some cases, only a few iterations of the binary search allow
performing the linear search in a significantly more restricted
neighborhood. This is especially useful in situations where the
latency constraint is not reached, and, therefore, a long search
is performed, which implies traversing a significant part of the
dictionary associated with the latency LUT. Figure 6 shows
an example of the new search procedure with threshold = 1
(pure binary search), trying to meet the 0.5 latency constraint.
It has to be noted that this simple idea, assuming the quasi-
linear growth, can lead to an important reduction in the number
of latency computations, avoiding unnecessary latency LUT
reads and interpolations, allowing to meet a latency constraint
with only five evaluations instead of 10. The complexity of
the new search algorithm reduces to O(log(n) + threshold)
instead of O(n), being n the possible layer configurations.

V. EXPERIMENTAL EVALUATION

This section describes the experiments performed to assess
the performance of our proposal and summarizes the main
results. First, we present the experimental platform used for
the tests, also used for the analysis presented in Section II.

threshold = 16

left = 0

right = len(num_out_channels_try) - 1

while right - left > 1:

if (right - left) <= threshold:

break
mid = (right + left)//2

current_num_out_channels =

num_out_channels_try[mid]

Get the current resource consumption

simplified_resource = compute_resource(

simplified_network_def,

resource_type,

lookup_table)

if simplified_resource < constraint:

right = mid

else:
left = mid

num_out_channels_try =

num_out_channels_try[left:right+1]

Fig. 5. Pseudocode of the new search procedure.

1.12 1 0.850.9 0.570.610.70.81.4 0.290.420.48

0.5

1.12 1 0.850.9 0.570.610.70.81.4 0.290.420.48

1.12 1 0.850.9 0.570.610.70.81.4 0.290.420.48

1.12 1 0.850.9 0.570.610.70.81.4 0.290.420.48

1.12 1 0.850.9 0.570.610.70.81.4 0.290.420.48

88 80 6472 3240485696 81624

Constraint:

Fig. 6. Example of binary search with threshold = 1, trying to met the
constraint 0.5. Instead of 10 evaluations, assuming ordered latency measures,
the searching problem can be solved in 5 evaluations.

A. Experimental Setup

All the experiments, including the ones reported in Sec-
tion II, were performed in a server equipped with 3 GPUs,
detailed described in Table III and Table IV, including hard-
ware and software aspects such as pytorch version. The models
were optimized for an NVIDIA Jetson Xavier using PyTorch
CUDA.

B. Test cases

For the test cases, we evaluate the performance of NE-
TADAPT applied to classical architectures: AlexNet [10] and
MobileNet [7]. Both AlexNet and MobileNet are convolutional
neural networks. AlexNet was specifically designed to address
the challenge of large-scale image classification. It consists of
multiple convolutional and high dimensional fully connected
layers. We choose AlexNet (218MiB) to evaluate the possi-
bility of deploying high-performing and larger-scale models
on resource-constrained devices. Even if it is not a novel
architecture, the dimensions and the number of parameters

5

TABLE III
DETAILED DESCRIPTION OF EXPERIMENTAL SETUP COMPONENTS.

Component Specifications

CPU Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
(4 cores, 64kB L1 cache)

RAM 64 GB
GPU 1 NVIDIA GeForce GTX 980 Ti (6GB)
GPU 2 NVIDIA GeForce GTX 980 Ti (6GB)
GPU 3 NVIDIA GeForce GTX 1060 (3GB)
Operative System CentOS Linux 7 (Core)
Python version 3.6.8
PyTorch 1.10.1

TABLE IV
CAPABILITIES AND THEORETICAL PERFORMANCE OF NVIDIA GTX 980

TI AND GTX 1060 GRAPHICS CARDS.

Capability Nvidia GTX 980 Ti Nvidia GTX 1060
Architecture Maxwell Pascal
CUDA Cores 2816 1280
Base Clock (MHz) 1000 1506
Boost Clock (MHz) 1075 1708
Memory 6 GB GDDR5 3 GB GDDR5
Mem. Bus Width 384-bit 192-bit
Mem. Speed 7 Gbps 8 Gbps
Mem. Bandwidth (GB/s) 336.5 192.2
TDP (W) 250 80
FP32 Theoretical perf. 5.63 TFLOPS 3.85 TFLOPS
FP64 Theoretical perf. 187 GFLOPS 120 GFLOPS

employed in the layers still represent highly parameterized
new models.

On the other hand, MobileNet is a way smaller model
designed for efficient and lightweight deep learning on mobile
and embedded devices. It has achieved high accuracy on vari-
ous computer vision tasks while minimizing the computational
resources required for inference. It is interesting to evaluate
these two different scale models, the case for MobileNet (in
its PyTorch implementation weights around 13MiB), seeking
opportunities to develop even more lightweight models.

Both architectures are more precisely described in Table V,
focusing on the dimensions and number of layers.

TABLE V
COMPARISON AND DESCRIPTION OF ALEXNET AND MOBILENET

ARCHITECTURES.

Parameter AlexNet MobileNetV1
Depth 8 layers 28 layers
Number of Parameters ∼61 million ∼4.2 million
Size (MiB) ∼220 MiB ∼13 MB
Max FC Input Dims. 9216 1024
Max FC Output Dims. 4096 1000
Number of Conv. Layers 5 13
Number of FC Layers 3 1
Number of Pooling Layers 3 1
Number of Activation Layers 5 13

For the dataset, we use the CIFAR10 [9], composed of
60000 color images divided into ten classes. We set NE-
TADAPT parameters: T = 500 to avoid the huge execution
cost of the fine-tuning stage (since it is a simple dataset and
we do not have enough parallelism to train all the variations
at the same time), and the δ values, which controls the

latency constraint reduction for the candidates’ models in each
iteration, we use {0.01, 0.025, 0.05}. We want to achieve a
budget ratio of 0.5× L (half of the original latency).

C. Experimental results

TABLE VI
ELAPSED TIME TO COMPUTE NETADAPT IN THE DIFFERENT VERSIONS:

ORIGINAL AND USING BINARY SEARCH, FOR DIFFERENT δ VALUES, WITH
T = 500 OVER MOBILENET.

δ Original Binary search SpeedUp
0.01 572 622 0.92×
0.025 270 268 1.01×
0.05 168 167 1.01×

TABLE VII
ELAPSED TIME TO COMPUTE NETADAPT IN THE DIFFERENT VERSIONS:

ORIGINAL AND USING BINARY SEARCH, FOR DIFFERENT δ VALUES, WITH
T = 500 OVER ALEXNET.

δ Original Binary search SpeedUp
0.01 2239 798 2.81×
0.025 1672 319 5.24×
0.05 1214 174 6.98×

Table VII shows the important speedup reached for AlexNet
while implementing the variation in the search for an archi-
tecture that satisfies the latency constraint in the iteration
step. With a speedup of ∼ 7× for the δ = 0.05. Note
that this behavior is not present for MobileNet (Table VI),
which is consistent with the analysis done in Section II, where
the average time per iteration remain consistent through the
variations in the δ values, achieving an almost imperceptible
speedup for δ = {0.025, 0.05}. This result can also be
observed in Figures 7 and 8, which shows the average time in
minutes per iteration for the two different architectures. From
Figure 8 can be observed how the time per iteration using
the new search algorithm is way more regular for crescent δ
values, as happened for MobileNet even before applying the
optimized algorithm (Figure 7).

Fig. 7. Average time (in minutes) per iteration for the different implementa-
tions over MobileNet, with different δ values.

6

Fig. 8. Average time (in minutes) per iteration for the different implementa-
tions over AlexNet, with different δ values.

This can be explained due to the notorious difference in
the channel dimensions on both architectures. An important
question that arises from the proposal and these results is how
the new search technique affects the final solution. The results
show that it does affect the architecture found by the algorithm
but with no big differences. For example, we did not perceive
an important variability in terms of accuracy. This may be
due to the configuration used since we evaluate the tool with
a fairly simple dataset. Further tests with more complex data
must be done.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work, we evaluate the NETADAPT, focusing on the
cost of computing it for networks with many filters per layer.
In this case, AlexNet, with a fully connected layer with input
size 9216 and 4096 as output size, shows that the sequential
evaluation of the configurations that reduce the size of the
layers, in some cases, takes an extraordinary amount of time.
This is because the latency constraint was not reached during
the reduction, thus hitting the minimum size of the filters and
maximizing the number of LUT evaluations and interpolations.
In addition, this result does not seem optimal since a layer
that could be important is almost completely pruned. Given
this cost, we propose an alternative implementation. Assuming
some conditions based on the empirical latency measures, we
replace the sequential evaluation with a faster algorithm to
find the architecture that satisfies the latency constraint. In
this case, we implement a binary search with a threshold
and perform a sequential evaluation over a smaller subset of
options. This change allowed us to achieve important speedups
for the large model AlexNet, and a regular cost over the
different δ values, from ∼ 3× to ∼ 7×.

It must be mentioned that NETADAPT does have other
important execution costs, for example, given by the fine-
tuning iterations (T), the evaluation itself to get the candidates’
accuracy, or even the interpolations done over the LUT to
generate latency values for not measured configurations. With
enough computing resources and parallelism (for example, in
the form of more GPUs or TPUs), this cost can be reduced to

a theoretical cost of simplifying, training, and evaluating only
one model.

We can see that this implementation of NETADAPT has op-
portunities for improvement. In future work, we seek to tackle
these problems by, for example, optimizing the interpolation
that takes place when the configurations are missing in the
LUT, or incorporating other NAS techniques to the search
algorithm of NETADAPT.

REFERENCES

[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural
architecture search on target task and hardware, 2018.

[2] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry
Kalenichenko, Hartwig Adam, and Quoc V. Le. MnasFPN: Learning
Latency-Aware Pyramid Architecture for Object Detection on Mobile
Devices. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13604–13613, 2020.

[3] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2017.

[4] Google. Edge TPU - Run Inference at the Edge — Google Cloud.
[5] John L. Hennessy and David A. Patterson. A New Golden Age for

Computer Architecture. Commun. ACM, 62(2):48–60, 1 2019.
[6] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,

Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for
MobileNetV3. CoRR, abs/1905.02244, 2019.

[7] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. CoRR, abs/1704.04861, 2017.

[8] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture. ACM, June 2017.

[9] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 and
CIFAR-100 datasets (Canadian Institute for Advanced Research).

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems 25. Curran Associates, Inc.,
2012.

[11] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differen-
tiable architecture search. CoRR, abs/1806.09055, 2018.

[12] Raúl Marichal, Guillermo Toyos, Ernesto Dufrechou, and Pablo Ezzatti.
Evaluation of architecture-aware optimization techniques for Convolu-
tional Neural Networks. In Raffaele Montella, Javier Garcı́a Blas, and
Daniele D’Agostino, editors, 31st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP 2023,
Naples, Italy, March 1-3, 2023, pages 177–184. IEEE, 2023.

[13] META. MTIA v1: Meta’s first-generation AI inference accelerator.
[14] NVIDIA. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt.
[15] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-

taka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. Large-
Scale Evolution of Image Classifiers. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17,
page 2902–2911. JMLR.org, 2017.

[16] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V. Le. MnasNet: Platform-Aware
Neural Architecture Search for Mobile. CVPR 2019, 2018.

[17] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,
Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt
Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via Dif-
ferentiable Neural Architecture Search, 2018.

[18] Tien-Ju Yang. NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications - Official Pytorch implementation. https:
//github.com/denru01/netadapt.

[19] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go,
Mark Sandler, Vivienne Sze, and Hartwig Adam. NetAdapt: Platform-
Aware Neural Network Adaptation for Mobile Applications. In Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,

7

Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part X, volume 11214 of
Lecture Notes in Computer Science, pages 289–304. Springer, 2018.

[20] Tien-Ju Yang, Yi-Lun Liao, and Vivienne Sze. Netadaptv2: Efficient
neural architecture search with fast super-network training and archi-
tecture optimization. In Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021.

[21] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

8

