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The Main Memory System

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Memory System: A Shared Resource View
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State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies 

 to satisfy all requirements
4
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Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing 

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
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Core count doubling ~ every 2 years 

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009



Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 

 ITRS projects DRAM will not scale easily below X nm 

 Scaling has provided many benefits: 

 higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high 
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale
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refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today
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An Example of  the DRAM Scaling Problem

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Most DRAM Modules Are at Risk

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


DRAM Modulex86 CPU
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loop:
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mov (Y), %ebx

clflush (X)
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• A real reliability & security issue 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

19Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems
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All modules from 2012–2013 are vulnerable

First
Appearance

Errors vs. Vintage



Experimental DRAM Testing Infrastructure
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Experimental Infrastructure (DRAM)

22Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
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1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

7. Solution Space
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RowHammer Characterization Results

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


One Can Take Over an Otherwise-Secure System
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Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
 “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 

 Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors (Kim et al., ISCA 2014)

 We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

 We built two working privilege escalation exploits that use this effect. 

 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

 One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

 When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

 It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

25
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications
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Recap: The DRAM Scaling Problem
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How Do We Solve The Problem?

 Fix it: Make DRAM and controllers more intelligent

 New interfaces, functions, architectures: system-DRAM codesign

 Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology

 New technologies and system-wide rethinking of memory & 
storage

 Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them

 New models for data management and maybe usage

 …
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Solutions (to memory scaling) require 
software/hardware/device cooperation

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User



Solution 1: Fix DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Enable reliability at low cost

 Reduce energy

 Improve latency and bandwidth

 Reduce waste (capacity, bandwidth, latency)

 Enable computation close to data

29



Solution 1: Fix DRAM
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

 Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 
2015.

 Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

 Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

 Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

 Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 
2015.

 Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

 Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

 Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” 
ISCA 2015.
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Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” 
ACM TACO 2014.

 Ren+, “Dual-Scheme Checkpointing: “A Software-Transparent Mechanism for Supporting Crash Consistency in 
Persistent Memory Systems,” MICRO 2015.
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Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies
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Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory
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• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



An Orthogonal Issue: Memory Interference

Main 
Memory

34

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory



 Problem: Memory interference between cores is uncontrolled

 unfairness, starvation, low performance

 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems

 Hardware designed to provide a configurable fairness substrate 

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different 
QoS goals

 QoS-aware memory systems can provide predictable 
performance and higher efficiency

An Orthogonal Issue: Memory Interference



Goal: Predictable Performance in Complex Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

36

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

 Approach: 

 Develop techniques/models to accurately estimate the 
performance loss of an application/agent in the presence of 
resource sharing

 Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

 All the while providing high system performance 

 Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013.

 Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
37



Some Promising Directions

 New memory architectures
 Rethinking DRAM and flash memory

 A lot of hope in fixing DRAM

 Enabling emerging NVM technologies 
 Hybrid memory systems

 Single-level memory and storage

 A lot of hope in hybrid memory systems and single-level stores

 System-level memory/storage QoS
 A lot of hope in designing a predictable system
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Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression
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Why In-Memory Computation Today?

 Push from Technology

 DRAM Scaling at jeopardy 

 Controllers close to DRAM

 Industry open to new memory architectures

 Pull from Systems and Applications

 Data access is a major system and application bottleneck

 Systems are energy limited

 Data movement much more energy-hungry than computation

41



Two Approaches to In-Memory Processing 

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 
(Ahn et al., ISCA 2015)

42

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf


Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

431046ns, 3.6uJ    (for 4KB page copy via DMA)



Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

441046ns, 3.6uJ90ns, 0.04uJ



DRAM Subarray Operation (load one byte)

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM array

4 Kbytes

Step 1: Activate row

Transfer 

row

Step 2: Read  

Transfer byte 

onto bus



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row
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RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



RowClone: Application Performance
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RowClone: Multi-Core Performance
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End-to-End System Design
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DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



Goal: Ultra-Efficient Processing Near Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



Enabling In-Memory Search

▪ What is a flexible and scalable memory interface?

▪ What is the right partitioning of computation capability?

▪ What is the right low-cost memory substrate?

▪ What memory technologies are the best enablers?

▪ How do we rethink/ease search algorithms/applications?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results



Enabling In-Memory Computation 
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Virtual Memory 
Support

Cache 
Coherence

DRAM 
Support

RowClone
(MICRO 2013)

Dirty-Block 
Index

(ISCA 2014)

Page Overlays 
(ISCA 2015)

In-DRAM 
Gather Scatter

(MICRO 2015)

In-DRAM Bitwise 
Operations 

(IEEE CAL 2015)
? ?

Non-contiguous 
Cache lines

Gathered Pages



In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM Bulk Bitwise AND/OR Operation

 BULKAND A, B  C 

 Semantics: Perform a bitwise AND of two rows A and B and 
store the result in row C

 R0 – reserved zero row, R1 – reserved one row

 D1, D2, D3 – Designated rows for triple activation

1. RowClone  A  into  D1

2. RowClone  B  into  D2

3. RowClone  R0  into  D3

4. ACTIVATE  D1,D2,D3

5. RowClone  Result  into  C
56



In-DRAM AND/OR Results
 20X improvement in AND/OR throughput vs. Intel AVX

 50.5X reduction in memory energy consumption

 At least 30% performance improvement in range queries

57Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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Going Forward

 A bulk computation model in memory

 New memory & software interfaces to 
enable bulk in-memory computation

 New programming models, 
algorithms, compilers, and system 
designs that can take advantage of 
the model

58
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Two Approaches to In-Memory Processing 

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 
(Ahn et al., ISCA 2015)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf


Tesseract System for Graph Processing
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Evaluated Systems
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Workloads

 Five graph processing algorithms

 Average teenage follower

 Conductance

 PageRank

 Single-source shortest path

 Vertex cover

 Three real-world large graphs

 ljournal-2008 (social network)

 enwiki-2003 (Wikipedia)

 indochina-0024 (web graph)

 4~7M vertices, 79~194M edges



Tesseract Graph Processing Performance
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Tesseract Graph Processing Performance
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Memory Energy Consumption (Normalized)
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DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row 
periodically to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling 
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Refresh Overhead: Performance

68

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Refresh Overhead: Energy
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15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Retention Time Profile of DRAM
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RAIDR: Eliminating Unnecessary Refreshes

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells 

more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

 74.6% refresh reduction @ 1.25KB storage

 ~16%/20% DRAM dynamic/idle power reduction

 ~9% performance improvement 

 Benefits increase with DRAM capacity

71
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Going Forward (for DRAM and Flash)

 How to find out weak memory cells/rows
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 

Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014.

 Low-cost system-level tolerance of memory errors
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014.

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” 
Intel Technology Journal 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” 
SIGMETRICS 2014.

 Tolerating cell-to-cell interference at the system level 
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014.

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 
and Mitigation,” ICCD 2013.
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Experimental DRAM Testing Infrastructure

73

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Experimental Infrastructure (DRAM)

74Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



More Information [ISCA’13, SIGMETRICS’14]
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Optimize DRAM and mitigate errors online 
without disturbing the system and applications

Initially protect DRAM 
with ECC 1

Periodically test
parts of DRAM 2

Test

Test

Test

Adjust refresh rate and
reduce ECC 3

Online Profiling of  DRAM In the Field
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DRAM Latency-Capacity Trend
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DRAM latency continues to be a critical 
bottleneck, especially for response time-sensitive 
workloads
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DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency
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Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds
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Approximating the Best of Both Worlds
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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What Else Causes the Long DRAM Latency?

 Conservative timing margins! 

 DRAM timing parameters are set to cover the worst case

 Worst-case temperatures 

 85 degrees vs. common-case

 to enable a wide range of operating conditions

 Worst-case devices 

 DRAM cell with smallest charge across any acceptable device

 to tolerate process variation at acceptable yield

 This leads to large timing margins for the common case

89



Adaptive-Latency DRAM [HPCA 2015] 

 Idea: Optimize DRAM timing for the common case

 Current temperature

 Current DRAM module

 Why would this reduce latency?

 A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case

 More charge in a DRAM cell

 Faster sensing, charge restoration, precharging

 Faster access (read, write, refresh, …)

90Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 
HPCA 2015.
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AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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Solution 2: Emerging Memory Technologies

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material 

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?
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Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge storage unit 
size reduces

99



Promising Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance
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Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Reliability issues (resistance drift)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system
101



PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 

 How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings

103



An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.

105



Results: Architected PCM as Main Memory 

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
106



Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies
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STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ) device

 Reference layer: Fixed magnetic orientation

 Free layer: Parallel or anti-parallel

 Magnetic orientation of the free layer 
determines logical state of device

 High vs. low resistance

 Write: Push large current through MTJ to 
change orientation of free layer

 Read: Sense current flow

 Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ
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STT-MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

 4-core, 4GB main memory, multiprogrammed workloads

 ~6% performance loss, ~60% energy savings vs. DRAM
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Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering
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Coordinated Memory and Storage with NVM (I)

 The traditional two-level storage model is a bottleneck with NVM
 Volatile data in memory  a load/store interface

 Persistent data in storage  a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate, 
buffer data become performance and energy bottlenecks with fast NVM stores

113

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address 
translation

Load/Store

Operating 
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change) 
Memory



Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well

114

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data 

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)

116

PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices

Persistent objects



Performance Benefits of a Single-Level Store
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~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store
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~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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Principles (So Far)

 Better cooperation between devices and the system

 Expose more information about devices to upper layers

 More flexible interfaces

 Better-than-worst-case design

 Do not optimize for the worst case

 Worst case should not determine the common case

 Heterogeneity in design (specialization, asymmetry)

 Enables a more efficient design (No one size fits all) 

 These principles are coupled
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Summary: Memory Scaling

 Memory scaling problems are a critical bottleneck for system 
performance, efficiency, and usability

 New memory architectures
 A lot of hope in fixing DRAM

 Enabling emerging NVM technologies 
 A lot of hope in hybrid memory systems and single-level stores

 System-level memory/storage QoS
 A lot of hope in designing a predictable system

 Three principles are essential for scaling

 Software/hardware/device cooperation

 Better-than-worst-case design

 Heterogeneity (specialization, asymmetry)
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Open Source Tools
 Rowhammer

 https://github.com/CMU-SAFARI/rowhammer

 Ramulator

 https://github.com/CMU-SAFARI/ramulator

 MemSim

 https://github.com/CMU-SAFARI/memsim

 NOCulator

 https://github.com/CMU-SAFARI/NOCulator

 DRAM Error Model

 http://www.ece.cmu.edu/~safari/tools/memerr/index.html

 Other open-source software from my group

 https://github.com/CMU-SAFARI/

 http://www.ece.cmu.edu/~safari/tools.html
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Referenced Papers

 All are available at

http://users.ece.cmu.edu/~omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

 A detailed accompanying overview paper

 Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015. 
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Related Videos and Course Materials

 Undergraduate Computer Architecture Course Lecture 
Videos (2013, 2014, 2015) 

 Undergraduate Computer Architecture Course 
Materials (2013, 2014, 2015) 

 Graduate Computer Architecture Course Materials
(Lecture Videos)

 Parallel Computer Architecture Course Materials
(Lecture Videos)

 Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
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https://www.youtube.com/watch?v=hxzvtWEN7G4&list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Thank you.

onur@cmu.edu

http://users.ece.cmu.edu/~omutlu/
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Research Focus: Computer architecture, HW/SW, bioinformatics

• Memory, memory, memory, storage, interconnects

• Parallel architectures, heterogeneous architectures, GP-GPUs

• System/architecture interaction, new execution models

• Energy efficiency, fault tolerance, hardware security 

• Genome sequence analysis & assembly algorithms and architectures

General Purpose GPUs

Heterogeneous

Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Backup Slides
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NAND Flash Memory Scaling
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Another Talk: NAND Flash Scaling Challenges

 Onur Mutlu,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” 
DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 
Lifetime,” ICCD 2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and 
Modeling,” DATE 2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel 
Technology Journal 2013.

Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” 
ICCD 2013.

Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” 
HPCA 2015.

Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 

Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention 
Management,” MSST 2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
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Experimental Infrastructure (Flash)
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USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm

NAND Flash

[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015]



Error Management in MLC NAND Flash

 Problem: MLC NAND flash memory reliability/endurance is a key 
challenge for satisfying future storage systems’ requirements

 Our Goals: (1) Build reliable error models for NAND flash 
memory via experimental characterization, (2) Develop efficient 
techniques to improve reliability and endurance

 This talk provides a “flash” summary of our recent results 
published in the past 3 years:

 Experimental error and threshold voltage characterization [DATE’12&13]

 Retention-aware error management [ICCD’12]

 Program interference analysis and read reference V prediction [ICCD’13]

 Neighbor-assisted error correction [SIGMETRICS’14]
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed
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Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards

139

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator
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DRAM Infrastructure
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Experimental DRAM Testing Infrastructure
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Experimental Infrastructure (DRAM)

143Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
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