
pFun: A semi-explicit parallel purely functional language

André Du Bois, Adenauer Yamin, Mauŕıcio Pilla

Escola de Informática,

Universidade Católica de Pelotas

CEP: 96010-000 , Pelotas-RS, Brazil

{dubois, adenauer, pilla}@ucpel.tche.br

Gerson Cavalheiro

Universidade Federal de Pelotas

gerson.cavalheiro@ufpel.edu.br

Abstract

In this paper we present the design and implementa-

tion of pFun, a semi-explicit parallel purely functional

language. Parallelism is introduced in pFun through sim-

ple annotations in the code. Task creation, synchroniza-

tion and scheduling of computations on remote hosts

aremanaged automatically by pFun’s distributed runtime

system. pFun’s programming model and runtime system

are described, and preliminary measurements of the cur-

rent prototype implementation are presented on an SMP-

machine and on a Beowulf Cluster.

1. Introduction

With the arrival of multi-core chips for domes-
tic computers, parallel programming is becoming a
mandatory feature in programming languages. Further-
more, networks are increasingly pervasive, and big com-
panies are using clusters or grids to solve large-scale
computation problems. Parallel programming is hard,
and it is difficult to find programmers that really un-
derstand concurrency [7], even more considering the di-
versity of parallel architectures.

To address these challenges, we advocate the need
of a programming platform that provides a simple pro-
gramming model in which parallelism can be easily ex-
pressed and is readily available. Such a language must
be supported by an advanced runtime system that pro-
vides automatic creation, synchronization and schedul-
ing of computations on remote hosts.

Functional languages have the interesting property
that subexpressions of a purely functional program can
be evaluated in parallel at any order, always delivering
the same final result for the whole expression. Subex-
pressions of a program will never have implicit control
dependencies between them, as the ones introduced by
assignment [5].

pFun is a semi-explicit parallel functional language
that provides a simple programming model through
parallel annotations. The highest level of the pFun ar-
chitecture provides a semi-explicit parallel language of-
fering two parallel constructs: par and sync that are
used to indicate which expressions in the program could
be evaluated in parallel. Task creation, distribution and
synchronization are left to the implementation of the
language, i.e., its runtime system in bottom levels. Fur-
thermore, the parallel primitives of the language can
be used to implement higher-level coordination prim-
itives, such as algorithmic skeletons, i.e., higher-order
functions that encapsulate common patterns of paral-
lel computing.

The second layer guarantees execution on het-
erogeneous environment by compiling programs into
architecture-independent byte-code, and pFun’s run-
time system provides ways for serializing and com-
municating computations between different processes
or hosts. pFun’s runtime system is implemented us-
ing standard C and TCP/IP sockets for communica-
tion, maintaining a high degree of portability. Hence,
it allows code to be distributed on demand if exe-
cuting on grid environments, providing code mobil-
ity.

Finally, the third level is responsible for achieving ef-
ficient execution of programs in multiprocessors and
multicomputers. This level implements a scheduling
strategy able to execute efficiently the nested fork-join
structure of a parallel functional language.

In this paper, we present the design and implemen-
tation of pFun. Our preliminary results validate pFun’s
runtime system and show that the work-stealing mech-
anism used for load balancing performs better for data
parallel programs.



2. The pFun Language

pFun is a strict parallel purely functional language
with a syntax similar to Haskell [4]. pFun’s syntax,
semantics and parallel primitives will be presented
through examples in the following Sections. The reader
should be aware that pFun is not Haskell. Its syntax is
similar to Haskell only for convenience.

2.1. The pFun primitives for express-

ing parallelism

The pFun language provides two basic primitives for
expressing parallelism: par and sync. The par primi-
tive is used to express potential parallelism. It takes
as an argument a pFun expression of any type and re-
turns a reference to a Par value that represents an ex-
pression that could be evaluated in parallel:

par :: a -> Par a

The par primitive only indicates potential paral-
lelism in the program and it does not guarantee that
the expression will be evaluated in parallel with the
rest of the program. Task creation, scheduling, distri-
bution and synchronization are left to the implemen-
tation of the language as described in Section 3.

The sync primitive receives as an argument a refer-
ence to a Par value and returns the result of the eval-
uation of that expression:

sync :: Par a -> a

The operational behavior of the sync primitive is to
block in its argument if it is being evaluated (by a dif-
ferent processor or remote location) or to create a local
thread to evaluate it. The sync primitive will only pro-
ceed once its argument is evaluated to normal form.

2.1.1. Properties of par and sync pFun is a purely

functional language. For any purely functional expres-
sion exp written in pFun, the following property must
hold:

sync (par exp) == exp

It does not matter if a Par value is evaluated locally
or on a remote host, it will always return the same re-
sult.

In the following Section, some examples using par

and sync are given.

2.2. Example 1: Parallel Fibonacci

In this section we present a naive implementation of
a parallel fibonacci function, just to demonstrate the
use of the par and sync. A simple parallel version fi-
bonacci function can be implemented as:

parFib n = if (n<=1) then 1

else let

fib2 = par (parFib (n-2));

fib1 = par (parFib (n-1))

in (sync fib2) + (sync fib1);

In the definition of parFib, the two recursive calls
are marked with the par primitive to be computed
in parallel. It can be very inefficient to create paral-
lel tasks to evaluate every recursive call to parFib,
since calculating fibonacci of small numbers is a fine
grained task. A threshold could be used in the defini-
tion to limit the number of parallel tasks created.

2.3. Example 2: The parMap Skeleton

Using the par and sync primitives it is possible
to write more powerful constructors for the pFun lan-
guage, such as Algorithmic Skeletons [3]. Algorithmic
skeletons are higher-order functions that encapsulate
common patterns of parallel computation.

These functions can be used by application program-
mers to write parallel software easily. For example, the
function map, present in every functional language, is a
higher-order function that takes two arguments, a func-
tion and a list, and applies the function to every ele-
ment of the list generating a new list.

A parallel map is a function that has the same type
as the sequential map but applies the function argu-
ment to every element of the list in parallel.

To implement a parallel map in pFun, we first need
a function to create parallel tasks to evaluate the ap-
plication of a function to every element of a list:

parList:: (a->b) -> [a] -> [Par b]

parList f l = case l of

[] -> [];

(x:xs) -> (par (f x)) : (parList f xs);

The function parList creates a list of possible par-
allel tasks, and we need a way of accessing the values
computed by these tasks:

syncList :: [Par a] -> [a]

syncList list = map sync list;

Finally, the parMap skeleton can be implemented us-
ing parList and syncList:

parMap :: (a->b) -> [a] -> [b]

parMap f l = syncList (parList f l);

Notice that parMap first uses parList to create all
the parallel tasks, and only when all tasks are created
it uses syncList to collect the results.



3. Distributed Scheduling

The pFun runtime runs a dynamic scheduler imple-
menting a work stealing strategy. This scheduling is
particularly interesting to exploit the inherent nested
fork-join program structure obtained by the par/sync
parallel constructors. In this section the term thread

represents a sequence of tasks, i.e., a Par object being
executed. Tasks are bounded in the context of threads
by par/sync calls.

Work stealing is a general denomination of a
receiver-initiated class of distributed load bal-
ancing schedulers. The basic algorithm assumes
that the responsibility for managing and execut-
ing the set of tasks generated by a running ap-
plication is shared among processors of a parallel
machine. The number of tasks executing simultane-
ously on each processor is limited in order to allow
each processor to maintain a reserve of work repre-
sented by a ready tasks queue. The scheduler uses
the length of ready queues as the load informa-
tion. Also distributed among the processors is the con-
trol for scheduling decisions. Depending on the size
of such queues a processor can start a schedul-
ing operation. A processor sends a request for new
ready tasks (a work steal) to another randomly cho-
sen processor when its local ready queue reaches a
value below of a certain limit. When a processor re-
ceives a steal message it will answer with a task taken
from its local queue if the amount of work in re-
serve is above a certain limit; otherwise the message
is forwarded to another randomly chosen proces-
sor.

The current prototype was developed for multicom-
puters, where communication costs are high. In order
to avoid large number of messages to achieve load bal-
ancing, a hierarchical implementation of the runtime
scheduler in terms of work server and slaves allows to
reduce communication when compared to the standard
work stealing algorithm. The slave nodes are dedicated
to execute threads while work servers can also answer
steal requests. The par primitive adds a task to the
ready queue of a work server. Slaves are hosts that con-
nect to a work server asking for computations to exe-
cute. A slave receives work, executes it, and sends the
result back to its server.

4. Preliminary results

The first set of experiments in this section were per-
formed on 8 computers, each with an AMD Athlon(tm)
XP 2400+ processor and 192MB of RAM, using one as

1 Proc 2 Proc 4 Proc 6 Proc 8 Proc
(sec) (sec) (sec) (sec) (sec)

parFib 58.7 27.7 31.8 15.9 21.0
parMapFib35 103.1 51.3 31.2 26.8 15.6
pMaze 46.7 23.2 13.9 9.3 9.3
pCoins 48.5 35.9 36.1 36.2 37.5

Table 1. pFun on 8 nodes (1 work server and 7
slaves)

a work server and the other 7 as slaves. Table 1 shows
the runtimes for 4 different programs and

The speedups reported here and throughout
this section are relative, i.e., improvement over
the single-processor parallel execution. parFib is
the program given in section 2.2. The second pro-
gram is parMapFib35, which calculates 8 times the
seqFib of 35. As parMap is used, this program gen-
erates 8 threads that can be evaluated in parallel,
one for each element of the list. The pMaze pro-
gram searches for an exit in a maze. The maze is rep-
resented as a tree and we use depth first search to
find the exit. Parallelism is introduced with parMap.
pCoins is a more realistic program: given a collec-
tion of coins and an amount to be paid, it com-
putes the number of possible ways to pay it. It
uses a divide-and-conquer algorithm and paral-
lelism is again introduced with the parMap skele-
ton.

Table 1 shows that, for the set-up used in the experi-
ments, the distributed scheduling performed by pFun’s
runtime system works better for data parallel programs
(parMapFib35 and pMaze) than for divide-and-conquer
programs (parFib and pCoins). parMapFib35 creates
only 8 tasks, one for each computer, hence it improves
run time for all number of processors measured. The
same happens with pMaze that creates 10 threads of
equal size, one to evaluate each branch of the tree. In
parFib there is an improvement of performance up to
6 processors, after that there is an increase of commu-
nication in the system affecting performance: there are
many idle slaves sending messages asking for work, and
the work server’s ready queue is empty. The pCoins

program creates 1 large grained thread, and many fine
grained threads, therefore the runtime on more than
one processor is always the time needed to evaluate
the larger thread.

Another interesting result came from a different set-
up: we used only one laptop computer with a Centrino
Duo 1.60GHz processor, an Intel dual core processor
for laptops, and only one work server and one slave,



Speedup

parfib 1.75
pmapFib35 1.93
pMaze 1.96
pCoins 1.33

Table 2. Speedup on a Centrino Dual Core

each allocated to a different core of the processor. For
all parallel programs some speedup was achieved as can
be seen in Table 2.

5. Related Work

The potential of functional programming languages
to support parallelism has been recognized for a long
time and several extensions for parallel programming in
functional languages have been implemented (for a sur-
vey on the field, the reader should refer to [5]). Here we
discuss the ones that are more closely related to pFun.

GPH [8] is a parallel extension of Haskell for paral-
lel programming. To express parallelism, the program-
mer uses a par combinator (similar to pFun’s par).
Since Haskell is a lazy language, it is difficult to pre-
dict the order of evaluation of expressions, thus the seq
combinator must be used to control sequencing. GUM
(Graph reduction for a Unified Machine model) [8] is
the distributed runtime system that implements GPH.
It is also the core of several other Haskell extensions for
parallel and distributed computing like Eden [2] and
Distributed Haskell [6]. GUM is designed to run on
Beowulf clusters, hence all PEs (Processing Elements)
know each other and they all function as work servers:
when a PE is idle, it can search for work on other PEs.
GUM is also a closed system: once the system is run-
ning, no other PE can join the computation, while in
pFun’s model, slaves can join a work server at anytime.
Another difference between GUM and pFun’s runtime
system is that, in GUM, the machine code for paral-
lel applications must be installed on all the PEs be-
fore execution can be started, while in pFun the code
can be distributed together with task to be executed.

Grid/ML [1] is an extension of Standard ML for
GRID programming. In Grid/ML all nodes maintain
a queue of pending work, and they can steal work from
other nodes. Grid/ML provides primitives (similar to
pFun’s primitives) to express parallelism and populate
the node’s queue of pending work. The Grid/ML sys-
tem focuses mainly on fault-tolerant distributed pro-
gramming: GRID applications are written as a series
of deterministic functions that can be memorized by
the network and restarted at any time. No measure-

ments of their current implementation are given.

6. Conclusions and Future Work

We have presented the design and implementation
of pFun, a strict parallel functional language. pFun pro-
vides an intuitive parallel programming model for het-
erogeneous environment doted with an efficient run-
time in a layered architecture.

There are a number of issues that could be inves-
tigated in the future. pFun’s implementation could
easily be extended to provide security through au-
thentication: all code being communicated is serialized
into strings, and these strings can be easily encoded
through cryptography, e.g., using the public key of the
sender/receiver. In that way, we can ensure that the
code received by a slave comes from a trusted work
server.

In the case of failure of one node, purely functional
expressions can be re-started at any time as they are
free of side effects. pFun’s architecture could be ex-
tended with a failure recovering system, such as the
one provided by Grid/ML [1].

In the language level, we plan to investigate how
pFun’s programming model could be extended with
higher-level abstractions to express parallelism, e.g.,
using different parallel skeletons.

References

[1] T. Murphy VII. Ml Grid programming with concert. In
The 2006 ACM SIGPLAN Workshop on ML (ML 2006).
ACM press, 2006.

[2] S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña.
The Eden Coordination Model for Distributed Memory
Systems. In HIPS. IEEE Press, 1997.

[3] M. Cole. Algorithmic Skeletons: Structured Management
of Parallel Computation. Pitman, 1989.

[4] S. L. P. J. (Editor). Haskell 98 language and libraries:
the revised report. Journal of Functional Programming,
1(13), 2003.

[5] K. Hammond and G. Michaelson, editors. Research Di-
rections in Parallel Functional Programming. Springer-
Verlag, UK, 1999.

[6] R. Pointon, P. Trinder, and H.-W. Loidl. The design and
implementation of Glasgow Distributed Haskell. In IFL
2000, LNCS, Volume 2011. Springer-Verlag, 2000.

[7] H. Sutter. The free lunch is over: a fundamental turn to-
ward concurrency in software. Dr. Dobb’s Journal, 30(3),
March 2005.

[8] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Par-
tridge, and S. L. Peyton Jones. GUM: a portable imple-
mentation of Haskell. In PLDI, Philadephia, May 1996.


