
Dark Think Security: Enhancing the Security for the
Autonomous Architecture over a Restricted Domain

Julião Braga1, Rafael de Amorim Silva2, Patricia Takado Endo3. Nizam Omar4

1 VRS at University of Saskatchewan
PPGEEC-UPM

Sao Paulo, SP, Brazil

2Federal University of Alagoas (UFAL)
Maceio, AL, Brazil

3Pernambuco University
Recife, PE, Brazil

4Mackenzie Presbiterian University
Sao Paulo, SP, Brazil

juliao@braga.net.br, rafael@ufal.br, patricia@upe.br

nizam.omar@mackenzie.br

Abstract. This paper describes a security scheme called Dark Thing Security, to
be used in the autonomous architecture model over a restricted domains. Such a
scheme provides strong security due to its ability to hide intelligent agents from
the implementation of the model. Several intelligent agents are distributed in
the environment of an Autonomous System, being accessed only through agents
of the upper layer. Such upper layer agents, called controllers, are replaced by
more enabled agents, over time, making it difficult for unauthorized agents to
gain access from other domains.

Resumo. Este paper descreve um esquema de segurança chamado Dark Thing
Security, para ser utilizado no modelo de arquitetura autônoma sobre um
domı́nio restrito. Tal esquema provê segurança forte devido a sua capacidade de
esconder os agentes inteligentes, da implementação do modelo. Vários agentes
inteligentes são distribuı́dos no ambiente de um Sistema Autônomo, sendo aces-
sado somente através de agentes da camada superior. Tais agentes da camada
superior, denominados controladores são substituidos por outros mais habili-
tados, ao longo do tempo, dificultando tentativas de acesso por agentes não
autorizados, a partir de outros domı́nios.

1. Introduction
Paul Horn, in 2001, inspired by the living system physiology presented an IBM proposal
for the future of computer systems [Horn 2001]. His work argued that the efforts of spe-
cialists in the maintenance, control and operation of computer systems could be minimi-
zed and consequently have their costs reduced dramatically. The community, composed
mainly of researchers continued to advance in the researches of this knowledge domain
becoming a paradigm named by Horn as Autonomic Computation.

XXXVII Congresso da Sociedade Brasileira de Computação

298



Contributions have been expanded by multidisciplinary research groups and
the results have been surprising [Movahedi et al. 2012]. A number of applica-
tions, particularly in software, have enabled, for example, the technology of
space probes [Sterritt and Hinchey 2005], rather Unmanned Space Vehicles (USVs)
[Insaurralde and Vassev 2015].

The interest aroused has led to the application of Intelligent Agents or Intelligent
Elements (IEs) in the Infrastructure of the Internet. An Agent is something that percei-
ves and acts in an environment and can improve their performance trough learning [?].
This research concentrates basically on the protocols and techniques like Software Defi-
ned Networking (SDN) [Shukla 2014, Nadeau and Gray 2013, Wickboldt et al. 2015]. It
is important to develop case studies and experiments on the entire spectrum of applicati-
ons for the Internet Infrastructure. In this sense, the renewed experience and expansion
of research groups will make an effective contribution to improving and consolidating
the studies that are being carried out to date, especially the principle of interdisciplinary
cooperation.

This work is presented as follows. Section 2 presents essential foundations to
understand autonomic computing. Section 3 describes the dark thing security model,
emphasizing structural and operation aspects. Section 4 addresses the application of the
proposed model into IoT scenarios, exemplifying how the agents establish communication
inside a secure zone. Section 5 presents the final considerations of this paper.

2. The Application Domain and its characteristics

The Autonomous Architecture over a Restricted Domain (A2RD) model
[Braga et al. 2015] is presented in Figure 1 and divided into four layers, described
below. The model serves the interest of establishing an architecture of intelligent
elements under the administrative domain of ASs, which is known as the designation
given to the networks that form the Internet.

The model can exist in any of the 232 possible ASs [Hawkinson and Bates 1996].
However, on 02/03/2017 there were 56,710 active ASs on the Internet (originating traffic),
according to CIDR-report1. The number of an AS is unique, controlled by the Regional
Internet Registers (RIRs) and / or National Internet Registers (NIRs) and is called the Au-
tonomous System Number (ASN). Thus, the largest possible value of x is 56710, corre-
sponding to AS56710, at the date above. There is no conflict between the model being de-
ployed in any AS environment and being domain-restricted. In fact, the implementations
are independent, but with a high degree of interoperability and, of course, intense coopera-
tion, because ASs administrators depend on the behavior of all the others. The IANA has
reserved two contiguous ranges of ASs numbers for private use [Mitchell 2013]: 64512-
65534 and 4200000000-4294967294. Conveniently, these ASs numbers can be used to
designate Intelligent Elements in applications that need to represent sub-domains.

The first of the four layers hosts the Intelligent Element (IE) named Controller.
Its identification is unique and definitive: x:0, that is, the number 0 placed to the right
side of the symbol :, following by the ASN that hosting the model. Sometimes, to make
clear which IE is being referenced, IE is used before the identification, as for example,

1http://www.cidr-report.org/as2.0/

4º WPIETFIRTF - Workshop Pré-IETF-IRTF

299



Figure 1. Four Layer Abstract Model of Autonomous Architecture for Restricted
Domains (A2RD). Source: [Braga et al. 2015]

when affirming that the IE Controller is IEx:0. Thus, if AS5 is the host domain of the
model, then the controlling element is IE5:0. No IE of the lower layers can exist, without
the prior consent of the IE Controller. It has the property of keeping oneself organized
(self-organization) and ensuring the self-organization of any IE of the lower layers.

The second layer is represented by the so-called Specialized IEs. These ele-
ments are identified by suffixes that can range from 1 to 9999. The specialized elements
support the IE Controller, in specific activities and necessary to the respective functio-
nalities. These activities range from ensuring the interoperability of the entire system of
implemented IEs to the establishment of specific functionalities, such as servers with end-
to-end characteristics [Saltzer et al. 1984], database access functionalities and semantic
repositories, proprietary software (similar to Southern SDN APIs), features required for
lower-layer IEs, and many others. However, support for the IE Controller is the primary
objective of the Specialized IEs. This objective determines the functionalities of the se-
cond layer. It is assumed that some Specialized IEs may be Autonomic Elements or
intelligent elements that execute automatic processes, such as proprietary software and
procedures associated with legacy systems, among others. A Specialized IE can be crea-
ted as a function that only concerns the IE Controller, especially when it depends on the
functionalities of IEs of the third layer.

In the third layer lies the largest IEs agglomeration, which is why it is called the
Colonies of IEs. Elements of this layer can be autonomous, autonomic or automatic, ex-
cept legacy and are directly responsible for the most important activities of the application,
including software reuse. They act under the influence of a high degree of interoperability
and cooperation between them and between IEs of other layers and other domains / sub-
domains. They do not directly participate in interconnections or exchange messages with

XXXVII Congresso da Sociedade Brasileira de Computação

300



other IEs outside the domain, but they do so through the IEs of the upper layers. There
is intense semantic interoperability activity by these IEs, which have a high capacity for
self-learning due to continuous interactions with the domain environment, and produce
improvement effects on the knowledge of other IEs of the colony itself and the IEs of
the upper layers, IE Controller. In other words, these IEs favor the learning of the entire
cluster of IEs of the layer model, which hour is being described. The IEs of the colonies
receive an identification with numeric suffixes, ranging from 10000 to 4294967295.

The fourth layer is composed of Auxiliary IEs. This layer exists to allow the
transfer of computing demands to a new set of IEs (successiveness of the model). It
reproduces, successively, the first, second, third and a new fourth layers. This new IEs
sequence has an additional suffix :j:0 for a new IE Controller responsible for the following
four new layers. In the new second, third and fourth layers, the IDs of the IEs are post
fixed with :j:id, where j is a colony IE number that originated the new fourth layer and
the id is a number with the above specifications. A typical application for the fourth layer
are sub domains, such as home networks (home net).

The Figure 2 is the A2RD implementation model, where the small and colored
rectangles are IEs. The IEs are arranged and distributed among the layers, similar to
the abstract model. As an example, IEs are implemented in the domain of an AS whose
number is x. In the same figure, one can observe that the IEs functionally is important for
the inter-domain operations reside into the upper layers.

Figure 2. A2RD Implementation Model. Source: [Braga 2015a] [Braga et al. 2015]

4º WPIETFIRTF - Workshop Pré-IETF-IRTF

301



The implementation model that a classification of relevance is the intensity of
aggregation that an IE has in relation to the self-* properties. If an IE, however, has some
self-organizing capability, it must participate directly linked to the IE Controller. Even
if you participate in the layer of Auxiliary IEs there may be a new IE Controller that
logically builds a new layer architecture. And so on.

On the other hand, the representation of the model is logical (abstraction of the
physical implementation). Physically, locating an IE in the domain environment is essen-
tial. The best alternative is IP addressing, preferably IPv6, for availability reasons. The
IE Controller must maintain a table associating the logic reference with the IP designated
by the IE Controller itself, from the premise that an IPv6 block must be available at the
beginning of the implementation. However, this is not a fundamental issue, because as
will be seen in next section, in the name of security an IP relation as the IE ID will be
available in a primitive Domain Name System (DNS), the hosts file allocated internally
and with direct link to the IE Controller.

3. Dark Thing Security

The DTS model is a security scheme that protects the majority of intelligent elements from
an A2RD architecture, hiding their IP addresses from the external access. This model only
guarantees the IP of the IE Controller is externally visible and can be the interface of its
host. In this case, the access or the interconnection to the IE Controller by other domains
must have a security mechanism such as the Resource Public Key Infrastructure2, with
certification servers available in different RIRs (e.g. LACNIC3, responsible for covering
all the Latin American and Caribe regions). Figure 3 illustrates this unique visibility
through a black box model, which protects all the IEs from the external attacks by hackers.

Figure 3. The Dark Thing Model for the A2RD

The IE X:0, as well as any IE can replicate itself in the dark environment of the
figure. At any time, X:0 can replace itself or be replaced by some other IE whenever
necessary, such as if a Cyclic Redundancy Check (CRC) is used on the IE code and, in
the event of an undesirable interference.

To illustrate the behavior of DTS, we will assume a scenario in which IE X:0 must
deal with the problem of source validation. In other words, IE X:0 should ensure that an
IE from another domain wants, for some reason, to bring an IE enabled in the creation

2http://www.lacnic.net/en/web/lacnic/informacion-general-rpki
3http://www.lacnic.net/en/web/lacnic/certificacion-de-recursos-rpki

XXXVII Congresso da Sociedade Brasileira de Computação

302



of the route4 object to any Internet Routing Registry (IRR) server. Some considerations
should be taken into consideration for understanding what will be said:

• RPKI is one of the alternatives to the origin validation problem, but not the only
one.
• When an A2RD model is implemented it announces the IP block (preferably IPv6)

for all existing A2RD implementations.
• For the purpose of the example that illustrates the DTS operation, the local ASN

is the AS64512 and the remote ASN is the AS64513, both private AS numbers.
• When used the notation 64512:n or 64513:n for any n, it is the same as IE

64512:n or IE 64513:n.
• The word bootstrapping can refer to the development of successively more com-

plex, faster programming environments5. So, the word will be used in the sense of
self-replacing the code of an IE by other specialized IE code. The bootstrapping
activity happens systematically into the DTS model.

The Figure 4 displays the activities within the DTS. The only IE that accepts a
request for external interconnection to the domain or even from some component of the
local domain is 64152:0. Any IE is highly specialized and contains the minimum required
code to meet the demand of your expertise.

Figure 4. IE bootstrapping

This algorithm refers to Figure 5, which illustrates the relationship of the boots-
trapping process of the involved IEs.

4. Concluding Remarks
There are many challenges to the progress of the project. Among them is the construction
of the vocabulary (set of words and their meanings) that can meet the demand of the
construction of ontologies in the area of Internet Infrastructure. The development of this

4http://bit.ly/2nRP9IH
5https://en.wikipedia.org/wiki/Bootstrapping

4º WPIETFIRTF - Workshop Pré-IETF-IRTF

303



Figure 5. Bootstrapping IE X : 0 execution model, where X = 64512, a private
AS number

vocabulary should be cooperative and, although there are initiatives of researchers in the
area of Internet of Things (IoT) [Hachem et al. 2011], and by those interested in the Inter-
netware paradigm of the Context Aware Supporting Environment for Internetware6 (CA-
SEi), the authors find to have a central coordination, such as the Internet Research Task
Force (IRTF), through a multi-stakeholder group. As future work the authors recommend
analyzing the performance of the proposed methodology.

Without exhausting other proposals it is necessary to develop methodologies for
the construction of IEs, in this case, identified as Intelligent Objects (IOs). IO is an
intelligent element built with quality, reusable and preserving the knowledge of its life
cycle, in the context of A2RD model applications, strengthening the security environment
proposed by the DTS model and other related models. Construction of IOs, in an adequate
and standardized manner induces interdisciplinary cooperation and rapid development of
IEs. One proposal would be to use the methodology INTERA [Braga 2015b], adapted to
the construction of IOs. INTERA is a successful methodology used in Learning Objects.

References
Braga, J. (2015a). Modelo para Implementação de Elementos Inteligentes em Domı́nios

Restritos da Infraestrutura da Internet. Master’s thesis, Universidade Presbiteriana
6https://code.google.com/p/casei/

XXXVII Congresso da Sociedade Brasileira de Computação

304



Mackenzie, São Paulo, SP.

Braga, J. (2015b). Objetos de Aprendizagem: Metodologia de Desenvolvimento. Editora
da UFABC, São Paulo, 1 edition.

Braga, J., Omar, N., and Granville, L. Z. (2015). Uma proposta para o uso de elementos
inteligentes em domı́nios restritos da infraestrutura da internet. In Anais CSBC 2015 -
WPIETFIRTF, Recife, Pernambuco, Brasil.

Hachem, S., Teixeira, T., and Issarny, V. (2011). Ontologies for the internet of things. In
Proceedings of the 8th Middleware Doctoral Symposium, page 3. ACM.

Hawkinson, J. and Bates, T. (March 1996). Report on MD5 Performance . Technical
report, RFC Editor. RFC1930. https://tools.ietf.org/rfc/rfc1930.
txt.

Horn, P. (2001). Autonomic computing: Ibm’s perspective on the state of information
technology.

Insaurralde, C. C. and Vassev, E. (2015). Autonomic computing software for autonomous
space vehicles. In Nature of Computation and Communication, pages 33–41. Springer.

Mitchell, J. (July 2013). Autonomous System (AS) Reservation for Private Use. Technical
report, RFC Editor. RFC6996. https://tools.ietf.org/rfc/rfc6996.
txt.

Movahedi, Z., Ayari, M., Langar, R., and Pujolle, G. (2012). A survey of autonomic
network architectures and evaluation criteria. Communications Surveys & Tutorials,
IEEE, 14(2):464–490.

Nadeau, T. D. and Gray, K. (2013). SDN: Software Defined Networks. O’Reilly, USA, 1
edition.

Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277–288.

Shukla, V. (2014). Introduction to Software Defined Networking. Amazon, USA, 1 edi-
tion.

Sterritt, R. and Hinchey, M. (2005). Engineering ultimate self-protection in autonomic
agents for space exploration missions. In Engineering of Computer-Based Systems,
2005. ECBS’05. 12th IEEE International Conference and Workshops on the, pages
506–511. IEEE.

Wickboldt, J. A., De Jesus, W. P., Isolani, P. H., Bonato Both, C., Rochol, J., and Zambe-
nedetti Granville, L. (2015). Software-defined networking: management requirements
and challenges. Communications Magazine, IEEE, 53(1):278–285.

4º WPIETFIRTF - Workshop Pré-IETF-IRTF

305




