
Solving Moving-Blocks Problems

André G. Pereira1, Luciana S. Buriol1 (Advisor), Marcus Ritt1 (Coadvisor)

1Instituto de Informática – Universidade Federal do Rio Grande do Sul – Brazil

{agpereira,buriol,marcus.ritt}@inf.ufrgs.br

Abstract. Moving-blocks problems are extremely hard to solve and a represen-
tative abstraction of many applications. Despite their importance, the known
computational complexity results are limited to few versions of these problems.
In addition, there are no effective methods to optimally solve them. We address
both of these issues. This thesis proves the PSPACE-completeness of many ver-
sions of moving-blocks problems. Moreover, we propose new methods to opti-
mally solve these problems based on heuristic search with admissible heuristic
functions and tie-breaking strategies. Our methods advance the state of the art,
create new lines of research and improve the results of applications.

1. Motivation
Planning is a general problem-solving model and has been an active research area of arti-
ficial intelligence for more than half a century. A planning problem is defined by an initial
state, a set of goal states and a set of actions. A solution is a sequence of actions that trans-
forms the initial state into some goal state. Transportation problems are the most common
version of planning problems. They share four fundamental characteristics: a set of con-
nected locations, a set of movable objects, a set of goal locations, and a solution moves (a
subset of) movable objects to goal locations. Many transportation problems are motivated
by applications such as distribution chain planning [McDermott 2000], airport ground
traffic control [Hoffmann et al. 2006], and space exploration [Long and Fox 2003].

Moving-blocks problems are prototypical transportation problems. In these prob-
lems, movable blocks are placed on a grid-square maze defined by immovable blocks.
There is a distinguished block, called the man, that is the only block that can be moved
directly and indirectly moves other blocks. Different moving-blocks problems are defined
by the available set of actions and the definition of the set of goal states. The available
actions are Push, Pull, or both Push and Pull denoted by PushPull. The man
may be able to move only a fixed number of blocks (e.g. 1, k for some k > 1) or an
unlimited number of blocks (denoted by ∗) at once. There are problems variants in which
a moved block slides until it hits an obstacle, denoted by the repetition of the available
action (e.g. PushPush). The two most common definitions of the set of goal states are
Storage where each block must be placed at a distinct goal location and Path where there
is only one goal location which the man must reach.

Sokoban (Push-1-Storage) is the best known moving-blocks problem. It is (one
of) the hardest planning problems yet to be solved by computers, where humans still have
superior performance. It has been used for decades as a testbed in artificial intelligence
and has attracted a community of developers around the world that creates solvers for it.
Figure 1(a) shows an instance of Sokoban with a movable block at 3E, the man at 2B, an
immovable block at 1A and a goal location at 3B.

30º CTD - Concurso de Teses e Dissertações

2361



(a) A Sokoban
instance.

(b) Structural informa-
tion.

(c) Subproblem
decomposition.

Figure 1. Sokoban instance 1(a) and proposed methods 1(b) and 1(c).

Moving-blocks problems have the fundamental characteristics of transportation
problems. Thus, if we better understand moving-blocks problems we can better under-
stand transportation problems. The majority of the literature studied the computational
complexity of problems with Push moves. Problem with Pull moves have been proven
NP-hard while several problems with Push moves are PSPACE-complete. There are
even fewer results for problems with PushPull moves. Investigating problems with
PushPull moves may be one way to positively answer the question whether there ex-
ists an interesting but tractable version of a moving-blocks problem – in problems with
PushPull moves every action is reversible.

According to many measures, moving-blocks problems are the hardest planning
problems. They are also simple to describe and easy to implement. Thus, these problems
can be used to propose new methods that are transferable to planning problems. Heuristic
search algorithms are the most effective methods to optimally solve planning problems.
These algorithms use an admissible heuristic function to guide the search. Among the
most effective heuristic functions are those based on pattern databases (PDB heuristics).
However, PDB heuristics are ineffective in transportation problems where the mapping of
movable objects to goal locations is not fixed which is the case in moving-blocks prob-
lems. Also, it is common that during the search the heuristic function is not informed
enough to guide the search. In general only few instances of moving-blocks problems can
be optimally solved. For example, of the 90 standard instances of Sokoban only 10 had
been optimally solved before this thesis.

2. Contributions of this Thesis
This thesis presents four major contributions listed in the subsections below which im-
prove our understanding of the hardness and the capabilities to optimally solve of moving-
blocks problems.

2.1. Push and PushPull Problems are PSPACE-complete
We investigate the computational complexity of moving-blocks problems with Pull and
PushPull moves. We prove that many Pull problems and the entire set of PushPull
problems is PSPACE-complete. Our reductions are from the Nondeterministic Constraint
Logic (NCL) [Hearn and Demaine 2005]. We show how to build OR and AND gadgets,
and how to connect them into an arbitrary planar constraint graph. Our main contribution
in this research line is to enhance the knowledge of the complexity landscape of moving-
blocks problems. Next, we present the main theorems in the complexity contributions.
Table 1 presents a summary of our results.

XXXVII Congresso da Sociedade Brasileira de Computação

2362



Table 1. Hardness of moving-blocks problems with results of this thesis shown
in boldface. Problems hard for PSPACE are also complete for PSPACE since all
problems are in PSPACE.

Problem Storage Path

Hard for Reference Hard for Reference

Push-1 PSPACE [Culberson 1999] NP [Demaine and Hoffmann 2001]
Push-k with k ≥ 2 Open PSPACE [Demaine et al. 2002]
Push-∗ Open PSPACE [Demaine et al. 2002]
PushPush-1 NP [O’Rourke 1999] PSPACE [Demaine et al. 2004]
PushPush-k Open PSPACE [Demaine et al. 2004]
PushPush-∗ Open NP [Demaine et al. 2004]

Pull-1 PSPACE [Pereira et al. 2016b] NP [Ritt 2010]
Pull-k PSPACE [Pereira et al. 2016b] NP [Ritt 2010]
Pull-∗ PSPACE [Pereira et al. 2016b] NP [Ritt 2010]
PullPull-1 PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PullPull-k PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PullPull-∗ PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]

PushPull-1 PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PushPull-k PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PushPull-∗ PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PushPushPullPull-1 PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PushPushPullPull-k PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]
PushPushPullPull-∗ PSPACE [Pereira et al. 2016b] PSPACE [Pereira et al. 2016b]

Theorem 1. Pull-{1, k, ∗}-Storage are PSPACE-complete.

In Pull-Storage problems we build the gadgets such that each movable block can
be pulled to a unique goal location, prohibited moves that violate NCL constraints lead to
unrecoverable states where a movable block cannot reach its goal location. Using these
gadgets we show that all Pull-Storage problems are PSPACE-complete. Thus, now we
know that these problems are at least as hard as their corresponding Push versions.

Theorem 2. PullPull-{1, k, ∗}-Storage and Path are PSPACE-complete.

In PullPull-Path problems blocks do not have goal locations. Thus, we build
the gadgets such that prohibited moves leave the man trapped unable to reach its goal
location in a unrecoverable state. We were able to show that PullPull-∗ is PSPACE-
complete, where the man can move an unlimited number of blocks at once while the
equivalent Push version only is known to be NP-hard.

Theorem 3. PushPull-{1, k, ∗}-Storage and Path are PSPACE-complete.

PushPull problems do not have unrecoverable states since every move is re-
versible. This makes it harder to build the gadgets. Because of this, there is no distinction
in our gadgets between Storage and Path versions. Considering these difficulties, sur-
prisingly we were able to show that PushPull-1-Path is PSPACE-complete while the
much studied Push-1-Path and Pull-1-Path are NP-hard. The gadgets used to prove
the PSPACE-hardness of PushPull-1-Path are more complex than those used in more
relaxed versions that allow to move more blocks at once. This adds to the evidence that
proving PSPACE-completeness of variants where only one block can be moved is harder
than proving the same hardness results for k and ∗ Path variants. Our proofs introduce
novel ideas to NCL like buffer blocks which might help to close the knowledge gap about
moving-blocks problems.

30º CTD - Concurso de Teses e Dissertações

2363



Theorem 4. PushPushPullPull-{1, k, ∗}-Storage and Path are PSPACE-complete.

We were also able to show that enforcing more constraints does not alter the com-
plexity of these problems.

2.2. Tie-Breaking Strategies for Moving-Blocks Problems

During the search, the guidance provided by the heuristic function might not be enough to
optimally solve the problem. This is especially true for hard problems like moving-blocks
problems. The standard tie-breaking approach used in heuristic search prioritizes lower
heuristic function values.

We propose a new tie-breaking strategy that is based on structural information of
the problem. An example is shown in Figure 1(b) where our technique estimates the order
in which the goal locations must be filled. Our approach is effective in many problems,
for example when applied to Pukoban (PushPull-1-Storage). Compared to the best
previous proposed tie-breaking strategy our approach more than doubles the number of
optimally solved instances.

2.3. PDB Heuristics for Moving-Blocks Problems

As explained above standard PDB heuristics are ineffective in moving-blocks problems.
We solve this issue by introducing an approach that decomposes the original problem into
two subproblems. Then, we use the PDB heuristic to compute the cost of solving the first
subproblem (white locations in Figure 1(c)) and a minimum cost perfect matching in the
complete bipartite graph to compute the cost of the second subproblem.

First, we prove that when the two subproblems are independent the resulting
heuristic function is admissible. Second, we prove that the heuristic function is also ad-
missible when the two subproblems are dependent if computed according to:

min
8a∈A

[∑

P∈B

δa(P )(p(P )) +
∑

(b,g)∈M∗

δ(a(b), g)

]
+2L,

where δa(P )(p(P )) is the optimal cost stored in the PDB to solve a subset of movable
blocks in the first subproblem, δ(a(b), g) is the relaxed cost to solve the second subprob-
lem where all blocks are independent and 2L are pairs of adjacent blocks in the optimal
path of each other. To guarantee admissibility of the heuristic function we find an assign-
ment a that minimizes the sum of the cost to solve the two subproblems.

Using the proposed heuristic function we optimally solve more instances using
less the time and memory than previous methods. Considering the set of 90 standard
instances, in Pukoban we increase the number of optimally solved instances from 20
to 45 and in Sokoban from 10 to 28 compared to the best previous results. Given the
exponential growth in the effort to solve these instances, the increase in the number of
optimally solved instances represents a major advance in our understanding of how to
optimally solve extremely hard problems.

2.4. Generalization to Other Problems

We present methods to show that our contributions can be effective in other problems.
First, we applied a simple version of our tie-breaking strategy to 1050 instances divided

XXXVII Congresso da Sociedade Brasileira de Computação

2364



among 33 problems. Many of these problems model real-world applications. This simple
version of our tie-breaking strategy increases the number of solved instances, includ-
ing problems that are not transportation problems. These results indicate that stronger
versions of our strategies could be used to improve the results for planning problems.
Second, we also present experiments with simple versions of our heuristic functions in
the Airport problem that models ground traffic control of airplanes in an airport. Our
techniques increase the information provided by the heuristic function in the initial state,
during the search and solve more instances optimally.

3. Final Remarks
Papers: We published the results of this thesis in the most prestigious conferences and
journals in the areas of Artificial Intelligence and Theoretical Computer Science. In ad-
dition to the list below, two other papers with results of this thesis are being prepared for
submission. The list of currently published papers follows:
• [Pereira et al. 2016b] Theoretical Computer Science Journal (Qualis A1): It is

the top ranked journal on the field according to Google Scholar. The paper proves
computational complexity results about moving-blocks problems.
• [Pereira et al. 2015] Artificial Intelligence Journal (Qualis A1): Considered the

most important journal on Artificial Intelligence. The paper presents experimental
and theoretical results about PDB heuristics and tie-breaking strategies with a focus
on Sokoban.
• [Pereira et al. 2016a] IJCAI Conference (Qualis A1): Considered the most impor-

tant conference on Artificial Intelligence. The paper introduces improved versions of
our previous proposed methods.
• [Corrêa et al. 2016] BRACIS Conference: Evaluates the proposed methods on the

Airport problem.
• [Pereira et al. 2014b, Pereira et al. 2014a] ENIAC Conference and IJCAI Doc-

toral Consortium: Introduces a PDB heuristic to detect unsolvability in Sokoban.
• [Pereira et al. 2013] SoCS Conference: A symposium specializing on combinatorial

search. The paper presents the PDB heuristic with focus on Sokoban.

Impact: The impact of this thesis can be measured by the theoretical and experimen-
tal contributions to understand and optimally solve moving-blocks problems as well by
its practical importance for applications. We prove computational complexity results for
moving-blocks problems, including unexpected results. Our results answer open research
questions and close the complexity research for some versions of the problems. Also, they
show that many relaxations will not make these problems easier. Regarding optimal so-
lutions, our methods are general and address an important limitation of PDB heuristics in
transportation problems. We have currently the best published results on optimally solv-
ing Sokoban. This research was developed in collaboration with the well-known heuristic
search group at the University of Alberta. A postdoc scholarship was granted by the Swiss
Government Excellence Scholarships program to work at the University of Basel in their
worldwide known planning group. However, the scholarship was declined to assume a po-
sition at UFRGS, but with the possibility of maintaining a research interaction with that
group. Recent papers have been exploring techniques and research directions proposed
by this thesis. For example, the paper [Asai and Fukunaga 2017] explores tie-breaking
strategies for planning problems.

30º CTD - Concurso de Teses e Dissertações

2365



References
Asai, M. and Fukunaga, A. (2017). Tie-Breaking Strategies for Cost-Optimal Best First

Search. Journal of Artificial Intelligence Research, 58:67–121.

Corrêa, A. B., Pereira, A. G., and Ritt, M. (2016). Improved airport ground traffic control
with domain-dependent heuristics. In Brazilian Conference on Intelligent Systems,
pages 73–78.

Culberson, J. (1999). Sokoban is PSPACE-complete. In International Conference on Fun
with Algorithms, pages 65–76.

Demaine, E. D., Hearn, R. A., and Hoffmann, M. (2002). Push-2-F is PSPACE-Complete.
In Canadian Conference on Computational Geometry, pages 31–35.

Demaine, E. D. and Hoffmann, M. (2001). Pushing blocks is NP-complete for noncross-
ing solution paths. In Canadian Conference on Computational Geometry.

Demaine, E. D., Hoffmann, M., and Holzer, M. (2004). PushPush-k is PSPACE-
Complete. In International Conference on FUN with Algorithms, pages 159–170.

Hearn, R. and Demaine, E. D. (2005). PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science, 343(1-2):72–96.

Hoffmann, J., Edelkamp, S., Thiébaux, S., Englert, R., dos Santos Liporace, F., and Trug,
S. (2006). Engineering Benchmarks for Planning: The Domains Used in the Deter-
ministic Part of IPC-4. Journal of Artificial Intelligence Research, 26(1):453–541.

Long, D. and Fox, M. (2003). The 3rd International Planning Competition: Results and
Analysis. Journal of Artificial Intelligence Research, 20:1–59.

McDermott, D. M. (2000). The 1998 AI planning systems competition. AI Magazine,
21(2).

O’Rourke, J. (1999). PushPush is NP-hard in 3D. Technical report, Smith College.

Pereira, A. G., Holte, R., Schaeffer, J., Buriol, L. S., and Ritt, M. (2016a). Improved
Heuristic and Tie-Breaking for Optimally Solving Sokoban. In International Joint
Conference on Artificial Intelligence.

Pereira, A. G., Ritt, M., and Buriol, L. S. (2013). Finding Optimal Solutions to Sokoban
Using Instance Dependent Pattern Databases. In Symposium on Combinatorial Search.

Pereira, A. G., Ritt, M., and Buriol, L. S. (2014a). Solving motion planning problems. In
International Joint Conference on Artificial Intelligence School - DC.

Pereira, A. G., Ritt, M., and Buriol, L. S. (2014b). Solving Sokoban Optimally using
Pattern Databases for Deadlock Detection. In Encontro Nacional de Inteligência Arti-
ficial.

Pereira, A. G., Ritt, M., and Buriol, L. S. (2015). Optimal Sokoban Solving using Pattern
Databases with Specific Domain Knowledge. Artificial Intelligence, 227:52 – 70.

Pereira, A. G., Ritt, M., and Buriol, L. S. (2016b). Pull and PushPull are PSPACE-
complete. Theoretical Computer Science, 628:50 – 61.

Ritt, M. (2010). Motion planning with pull moves. CoRR, abs/1008.2952:1–9.

XXXVII Congresso da Sociedade Brasileira de Computação

2366




