
A Framework for Predictable Hardware/Software Component
Reconfiguration

João Gabriel Reis1, Eduardo Augusto Bezerra (Advisor)2,
Antônio Augusto Fröhlich (Co-advisor)1

1 Software/Hardware Integration Laboratory – Federal University of Santa Catarina
Florianópolis – SC – Brazil

2Embedded Systems Group – Federal University of Santa Catarina
Florianópolis – SC – Brazil

jgreis@lisha.ufsc.br, eduardo.bezerra@eel.ufsc.br, guto@lisha.ufsc.br

Abstract. The current pace of innovation in computing makes it difficult to as-
sume a fixed set of requirements for the whole life span of a system. Aggres-
sive technology scaling also imposes additional constraints to modern hardware
platforms. Field-Programmable Gate Array (FPGA) reconfiguration can help
systems cope with dynamic requirements such as performance and power, hard-
ware defects due to Negative-Bias Temperature Instability (NBTI) and Process,
Voltage and Temperature (PVT) variations, or application requirements unfore-
seen at design time. This work proposes a framework for reconfigurable compo-
nents whereby the reconfiguration of a component implementation is performed
transparently without user intervention. The reconfiguration process is confined
in system’s idle time without interfering with or being interfered by other activ-
ities occurring in the system or even peripherals performing I/O. A telecommu-
nications switch was used as a case study for the deployment of reconfigurable
components as well as the impact I/O interference has in the process and to
explore non-functional trade-offs between implementations.

1. Introduction

Many modern computing application scenarios, including smartphones, autonomous ve-
hicles, and IoT devices, evolve so quickly that it is no longer viable to define a fixed
set of requirements for the whole design process. Increasingly, systems are having to
adapt themselves on-the-fly in order to cope with varying (and sometimes conflicting)
requirements. Additionally, these scenarios are being enabled by aggressive technology
scaling, which, besides producing low-cost, high-performance systems, also brings about
a series of new issues such as process variation, failure of Dennard’s law, and emer-
gence of dark silicon [Taylor 2012, Rahimi et al. 2015]. These systems must constantly
monitor and adapt themselves in order to be energy-efficient and to wear out evenly,
being often called self-aware [Sarma and Dutt 2014, Falaki 2012, Pant et al. 2012,
Donyanavard et al. 2016, Rahimi et al. 2015, Wanner and Srivastava 2014]. In this con-
text, rigidly partitioning components between software and hardware inevitably leads to
sub-optimal results, once the design space for each component becomes constrained by
other component’s requirements, by system-wide requirements, and by the overall avail-
ability of resources, even if those components are not meant to be used simultaneously.

30º CTD - Concurso de Teses e Dissertações

2427



Adapting components at run-time is an alternative to cope with dynamically
changing requirements such as performance and power [Li et al. 2013]. Adaptability
also improves tolerance to hardware faults, particularly those arising from Negative-
Bias Temperature Instability (NBTI) and Process, Voltage and Temperature (PVT) varia-
tions [Martins et al. 2015]. An adaptive component architecture enables each individual
component to exist in multiple implementations, each encompassing a specific compro-
mise between the quality of the functionality being provided and the resources needed
to provide it [Reis et al. 2015]. For instance, a component may coexist as a sequential
software to be run in a single CPU, as a parallel software to be run on a multicore CPU
or on a GPU, as hardware to be instantiated on an FPGA, or as a remote (web) service.
With proper run-time support, different implementations of a component can be activated
along the time, enabling the system as a whole to cope with the demands presented at each
moment. Multimedia, vision, and physical simulations are good example of subsystems
that make use of components that can be adapted in this sense.

2. Contributions
This work proposes a framework whereby reconfiguring the current component imple-
mentation is a deterministic process performed without modifying its interface. The
reconfiguration is a deterministic process aiming not to disrupt critical system activi-
ties. We consider that a reconfigurable component can have multiple implementations
with different functional, quality, and business trade-offs. The framework delivers a tai-
lored wrapper for each component according to the number of implementations it has.
Each implementation can use different resources in different substrate (e.g. processor
core, Field-Programmable Gate Array (FPGA)) and better suit the application at given
moment according to the embedded system environmental conditions. Reconfigurable
components have a single interface such that from the application point of view, compo-
nents implementation using software or reconfigurable hardware resources can be invoked
seamlessly. The main contributions of this work are:

• The reconfigurable components implementations deployed in the framework
are designed following Application-Driven Embedded System Design (ADESD)
techniques [Fröhlich 2001], a domain engineering methodology.
• The process of reconfiguring the component implementation is transparent from

the application point of view, confined in the system’s idle time, and designed not
to interfere with critical threads executed by the system.
• Despite being temporally isolated from other threads, the reconfiguration can have

its timing determinism compromised when interfered by background I/O opera-
tions, specially when a new implementation must be reconfigured in an FPGA.

3. Proposal
In Chapter 3 it is shown how the syntax and semantics of the component interface in
our system are preserved across the multiple implementations, such that an application
sees no difference (other than changes in quality and cost associated with the compo-
nent usage) when implementations are changed. The adaptation system is aware of the
system behavior by means of models of system and components behavior (e.g. perfor-
mance, temperature, aging). By feeding those models with data from sensors captured
during run-time, it is possible to predict if by reconfiguring a component, the system can

XXXVII Congresso da Sociedade Brasileira de Computação

2428



improve a system-level metric (e.g. throughput, energy, temperature) and delegate the ac-
tion to a manager. Multiple implementations can be available through a pool from which
the reconfiguration system can chose based their inherent characteristics. The process is
depicted in Figure 1.

Application

A A A

A A A

Model Temperature

Power

PMU

. . .

Sensors
Manager

B A B

A A B

B

B B

Implementation pool

Interface

Implementation

Decision

Reconfigure

Figure 1. Components reconfiguration. Multiple implementation are available
in a pool and can be deployed according decisions based on models inferring
system behavior from on sensor data.

The process of reconfiguring the component implementation, presented in Chap-
ter 5, is transparent from the application point of view, confined in the system’s idle time,
and designed not to interfere with critical threads executed by the system. By delegat-
ing reconfiguration to lower-level software layers that can reason on the system’s current
state, the reconfiguration process becomes transparent from the application point of view
as the application programmer does not have to be aware that the reconfiguration is hap-
pening. The reconfiguration process of each component is divided into small tasklets
such that its largest atomic step can typically be performed within available system slack
as long as processor utilization is under 100%. Performing reconfiguration only when the
system is idle allow the systems to temporally isolate other critical operations from it and
mitigate the inflicted interference. The reconfiguration process time takes extra care for
I/O interference from external system components in a speculative fashion by monitoring
system execution.

Despite being temporally isolated from other threads, the reconfiguration can have
its timing determinism compromised when interfered by background I/O operations, spe-
cially when a new implementation must be reconfigured in an FPGA. A large FPGA
bitstream used to store its configuration must be moved from memory to the FPGA recon-

30º CTD - Concurso de Teses e Dissertações

2429



figuration interface while, for example, a video stream is being moved from the memory
to a video interface. The sharing of hardware resources (interconnects and memory inter-
faces) by both streams of data results in an increased execution time for both operations
due to interconnect scheduling policies and limited memory bandwidth. Our reconfig-
uration process speculatively monitors the I/O traffic sources to predict when to deploy
FPGA reconfiguration without the hazard of being interfered by other peripherals. It is
also capable of powering down devices being used by non-critical threads to reduce I/O
interference and prioritize the reconfiguration. In Figure 2 we present how our approach
can cope with interference by isolating the reconfiguration process. Peripherals being
used by non-critical threads can still interfere with the reconfiguration process are sus-
pended as shown in Figure 2a. Figure 2b shows that the I/O activity performed by the
reconfiguration interface is confined in the idle thread with the supporting reconfiguration
operations and does not interfere with other I/O controllers.

In Chapter 4, we also propose a static performance-estimation technique for the
time delay caused by I/O interference when moving data through shared chip resources
such as interconnects and memory controllers. The model uses concepts from queuing
theory and estimates the average time each peripheral data transaction has to wait on
shared resources. The higher latency and throughput degradation is due to other peripher-
als’ transactions that are passing through the same shared resources that queue the trans-
actions before forwarding them. Such model is specially helpful to illustrate the increase
in the FPGA reconfiguration time (specially bitstream loading) when multiple peripherals
are contending for system I/O resources. It is also meant to be used as a design tool for
application designers to ensure a minimal interference between threads that depend on
I/O resources.

4. Concluding remarks and work impact
This work presented a transparent framework for reconfigurable computing geared to-
wards the application programmer. Reconfigurable components interfaces may be real-
ized through many different implementations, ranging from high-quality software ver-
sions to software approximations, cloud offloaders, and hardware accelerators. While the
syntax and semantics of reconfigurable components interface is preserved across the dif-
ferent implementations, the system may at any time pick any of the implementations that
suits better for the current execution context. The framework manages the whole recon-
figuration process and ensures that it can be used in critical systems without interfering
in its time constraints. With our reconfiguration mechanism, a task set schedulable on a
reconfigurable fabric large enough to accommodate at the same time all hardware compo-
nents used by its tasks, will still be schedulable on a smaller reconfigurable fabric where
only some components can be simultaneously instantiated in hardware. The remaining
components are momentarily deployed in software without compromising to the tasks re-
quirements since all activities pertaining reconfiguration are performed within the slack
time and made aware of I/O interference.

The work resulted in the following publications:
• OS Support for Adaptive Components in Self-aware Systems, In: ACM SIGOPS

Operating Systems Review. To appear.
• A Framework for Dynamic Real-Time Reconfiguration, In: 18th Euromicro Con-

ference on Digital Systems Design, 2015.

XXXVII Congresso da Sociedade Brasileira de Computação

2430



CPU 0 . . . CPU N

LLC LLC Memory

MI MI MI

Bridge

II II II

I/O controller 0 . . . I/O controller N Reconfig.
interface

Phy. 0 . . . Phy. N FPGA

Last level cache

Memory interconnect

I/O interconnectI/O interconnect

Suspended device
Active device

(a)

Time

Thread 0

I/O controller 0

Thread 1

I/O controller 1

Idle thread

Reconfig. interface

(b)

Figure 2. a) I/O controllers are suspended to prioritize the reconfiguration of a
component that benefits a more critical thread. b) Reconfiguration is confined in
the idle thread and thus does not interfere and is not interfered by other threads.

30º CTD - Concurso de Teses e Dissertações

2431



• X-Ware: Mutant Computing Substrates, In: 26th IEEE International Symposium
on Rapid System Prototyping, 2015.
• On the FPGA Dynamic Partial Reconfiguration Interference on Real-Time Sys-

tems, In: 5th Brazilian Symposium on Computing Systems Engineering, 2015.
Best paper award.
• Mutant Components: Efficiently Managing Multiple Implementations, In: 6th

Brazilian Symposium on Computing Systems Engineering, 2016. Best paper
award.

References
Donyanavard, B., Mück, T., Sarma, S., and Dutt, N. (2016). SPARTA: Runtime task

allocation for energy efficient heterogeneous many-cores. In Proc. International Con-
ference on Hardware/Software Codesign and System Synthesis, pages 27:1–27:10.

Falaki, H. (2012). Automating Personalized Battery Management on Smartphones. PhD
thesis, UCLA.

Fröhlich, A. A. (2001). Application-Oriented Operating Systems. Number 17 in GMD
Research Series. GMD - Forschungszentrum Informationstechnik, Sankt Augustin.

Li, Y., Jia, Z., Xie, S., and Liu, F. (2013). Dynamically reconfigurable hardware with a
novel scheduling strategy in energy-harvesting sensor networks. IEEE Sensors Jour-
nal, 13(5):2032–2038.

Martins, V. M. G., Villa, P. R. C., Neto, H. C. C., and Bezerra, E. A. (2015). A TMR
strategy with enhanced dependability features based on a partial reconfiguration flow.
In Proc. IEEE Computer Society Annual Symposium on VLSI, pages 161–166.

Pant, A., Gupta, P., and van der Schaar, M. (2012). AppAdapt: Opportunistic application
adaptation to compensate hardware variation. IEEE Transactions on Very Large Scale
Integration Systems, 20(11):1986–1996.

Rahimi, A., Cesarini, D., Marongiu, A., Gupta, R. K., and Benini, L. (2015). Task
scheduling strategies to mitigate hardware variability in embedded shared memory
clusters. In Proc. Design Automation Conference (DAC)’15, DAC’15, pages 152:1–
152:6, New York, NY, USA. ACM.

Reis, J. G., Wanner, L. F., and Fröhlich, A. A. (2015). X-Ware: Mutant computing
substrates. In Proc. IEEE International Symposium on Rapid System Prototyping
(RSP’15), Amsterdam.

Sarma, S. and Dutt, N. (2014). FPGA emulation and prototyping of a cyberphysical-
system-on-chip (cpsoc). In Proc. IEEE International Symposium on Rapid System
Prototyping (RSP’14), pages 121–127.

Taylor, M. B. (2012). Is dark silicon useful? harnessing the four horsemen of the coming
dark silicon apocalypse. In Proc. Design Automation Conference, pages 1131–1136.

Wanner, L. and Srivastava, M. (2014). ViRUS: Virtual function replacement under
stress. In Proc. USENIX Conference on Power-Aware Computing and Systems (Hot-
Power’14), HotPower’14. USENIX.

XXXVII Congresso da Sociedade Brasileira de Computação

2432




