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Abstract. LetG be a connected graph and P be a set of pairwise vertex-disjoint
paths in G. We say that P is a path cover if every vertex of G belongs to a path
in P . The minimum path cover problem asks for a path cover of minimum
cardinality. In this problem, known to be NP-hard, the set P may contain trivial
(single-vertex) paths. We study a variant of this problem in which the objective
is to find a path cover without trivial paths. Using the well-known Edmonds-
Gallai decomposition, we show that deciding whether a graph contains such
kind of path cover can be reduced to a matching problem on a bipartite graph.
We also show hardness and inapproximability results for both problems.

Resumo. Seja G um grafo conexo e P um conjunto de caminhos disjuntos nos
vértices em G. Dizemos que P é uma cobertura por caminhos se cada vértice
de G pertence a algum caminho em P . No problema da cobertura mı́nima por
caminhos, o objetivo é encontrar uma cobertura com o menor número de cami-
nhos. Nesse problema, que é sabido ser NP-difı́cil, o conjunto P pode conter
caminhos triviais. Estudamos uma variante desse problema onde o objetivo é
encontrar uma cobertura sem caminhos triviais. Usando a decomposição de
Edmonds-Gallai, mostramos que o problema de decidir se um grafo tem tal
cobertura pode ser reduzido a um problema de emparelhamento em um grafo
bipartido. Além disso, mostramos resultados de inaproximabilidade para ambos
os problemas de cobertura: com e sem caminhos triviais.

1. Introduction

All graphs considered here are simple and undirected. Let G be a graph and P be a path
in G. The length of P is its number of edges. If P has length k, we say that it is a k-
path. In the special case when k = 0, we also say that P is trivial. A set of pairwise
vertex-disjoint paths is a path cover of G if it spans V (G).

In the MINIMUM PATH COVER (MINPC) problem we want to find a path cover
of minimum cardinality. Clearly, deciding whether a graph has a Hamiltonian path
is equivalent to deciding whether it has a path cover of cardinality one. Therefore,
MINPC is NP-hard in the classes of graphs for which the Hamiltonian path problem
is NP-complete, such as cubic planar 3-connected graphs [Garey et al. 1976], circle
graphs [Damaschke 1989], split graphs, chordal bipartite graphs [Müller 1996], etc.
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Polynomial-time algorithms have been designed for MINPC on several classes
of perfect graphs, such as interval graphs [Arikati and Pandu Rangan 1990], cocompa-
rability graphs [Corneil et al. 2013], trees [Franzblau and Raychaudhuri 2002], etc. This
problem is of theoretical, but also of practical interest. It has applications in establishing
ring protocols in a network, code optimization and mapping parallel processes to parallel
architectures [Moran and Wolfstahl 1991].

Besides studying MINPC, we also study the problem of finding a path cover with-
out trivial paths. First, we consider the problem of the existence of such a path cover.
Then, we consider the two optimization problems: the MINIMUM NONTRIVIAL PATH
COVER (MINNTPC) and the MAXIMUM NONTRIVIAL PATH COVER (MAXNTPC).
In both cases we seek for path covers of optimum cardinality. In the next section, we
show that the existence problem and MAXNTPC have a close relation with the maximum
matchings of a graph.

2. Covering a graph with nontrivial paths
Let g and f be integer functions defined on the vertices of a graphG. A (g, f)-factor ofG
is a subgraph H of G such that V (H) = V (G) and each vertex x has degree at least g(x)
and at most f(x) in H . Let a and b be two integers such that a ≤ b. When g(x) = a
and f(x) = b for every x in G, we say that H is an [a, b]-factor. Thus, deciding whether
a graph has a nontrivial path cover is equivalent to deciding whether it has a [1, 2]-factor.

There is a large number of results characterizing graphs which contain (g, f)-
factors: both algorithmic and structural ones. In 1952, Tutte characterized graphs that
have an (f, f)-factor. Later, [Lovász 1970] gave a characterization of the graphs which
admit a (g, f)-factor. In the eighties, [Anstee 1985] showed an algorithm that finds a
(g, f)-factor, if it exists, or finds a certificate of its non-existence in polynomial time.
Another algorithmic result was given by [Heinrich et al. 1990], who designed a more
efficient algorithm for the special case in which g(x) ≤ 1 and g(x) < f(x) for every
vertex x in the graph. Therefore, it has already been proved that the nontrivial path cover
existence problem can be solved in polynomial time.

We show that the existence of a nontrivial path cover in a graph has a close relation
with the structure of its maximum matchings. Let G be a graph that has a path cover by
k-paths with k ≥ 1. Note that, the paths of length greater than 2 can be broken into paths
of length 1 or 2. Therefore, we may focus only on the problem of deciding whether there
exists a path cover of G consisting only of 1-paths or 2-paths. Let us denote by P1,2(G)
a path cover of G composed by 1-paths or 2-paths with the property that it has the largest
possible number of 1-paths. We can prove the following result on |P1,2(G)|.

Proposition 1 Let G be a graph that admits a nontrivial path cover, and let P1,2(G) be
a path cover as defined above. Then |P1,2(G)| is precisely the cardinality of a maximum
matching of G.

By Proposition 1, if we choose an edge from every path in P1,2(G), we obtain a
maximum matching of G. Therefore, if a graph G admits a nontrivial path cover, then G
has a maximum matching that can be extended to a path cover P1,2(G). However, it is
not true that every maximum matching has this property. Using the structure given by the
Edmonds-Gallai decomposition [Lovász and Plummer 1986] of a graph, we can reduce
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MAXNTPC on G to a maximum matching problem in a bipartite graph, and prove the
following result.

Theorem 1 The MAXNTPC problem can be solved in polynomial time.

The classic result of [Lovász 1970] characterizing graphs that admit a (g, f)-
factor gives the following result when we consider the special case of [1, 2]-factors (see
[Las Vergnas 1978]).

Theorem 2 (Lovász 1970) A graph G has a [1, 2]-factor, if and only if, i(G− S) ≤ 2|S|
for every S ⊆ V (G), where i(G− S) is the number of isolated vertices in G− S.

Our approach of specializing to path coversP1,2(G) of a graphG gives an efficient
way to find a [1, 2]-factor (nontrivial path cover), when it exists, or to find a negative
certificate. The next theorem shows how this certificate can be obtained.

Theorem 3 Let G be a graph, D(G) be the set given by the Edmonds-Gallai decomposi-
tion ofG, and T ⊆ D(G) be the set of vertices corresponding to the trivial hypomatchable
components in D(G). Then the following holds:

(i) G has a [1, 2]-factor if and only if |X| ≤ 2|N(X)|, for every X ⊆ T .
(ii) If G does not have a [1, 2]-factor, and X is a set that violates the condition stated

in (i), then S = N(X) (the set of neighbours of X) is a set that violates the
condition stated in Theorem 2. Moreover, S can be found in polynomial time.

Next, we show a reduction from MINPC to MINNTPC. Let G be a cubic graph.
Let G′ = (V ′, E ′) be a cubic graph obtained from G by replacing each vertex v in V (G)
with a triangle Tv (that is, a K3). Each vertex of Tv represents one of the edges incident
to v in G. The set of edges E ′ is composed of the edges of the triangles Tv for each v
in V (G), and for each edge uv ∈ E(G) there is an edge in E ′ linking the vertices in Tu
and Tv that represent the edge uv. Observe that G′ always has a nontrivial path cover.
Moreover, ifG is planar and 3-connected, thenG′ also has these properties. The following
result is used to show the hardness to approximate MINNTPC.

Proposition 2 Let G be a cubic graph and let G′ be a graph as defined above. Let P be a
nontrivial path cover of G′. Then, G′ has a nontrivial path cover Q such that, |Q| ≤ |P|,
and whenever a path in Q intersects a triangle Tv, it traverses two edges of Tv.

Using the reduction and the Proposition above, we can conclude that MINNTPC
is NP-hard on cubic planar 3-connected graphs. This result also follows from the fact that
the Hamiltonian path problem is NP-complete on cubic planar 3-connected graphs.

Now, we present some inapproximability results for MINPC and MINNTPC. For
that, we use the fact that the MINIMUM TRAVELING SALESMAN (MINTSP-(1, 2)) prob-
lem is Max SNP-hard [Papadimitriou and Yannakakis 1993] even when the edge-weights
are 1 or 2, and the edges with weight 1 induce a cubic graph. Using a result of Arora
et al. [Arora et al. 1998] and showing AP-reductions from MINTSP-(1, 2) to MINPC,
and from MINPC to MINNTPC, we prove the following result.

Theorem 4 MINPC and MINNTPC on cubic graphs have no PTAS, unless P = NP.

We also show an approximation threshold for MINPC.
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Theorem 5 For every ε > 0, there is no
(
371
370
− ε

)
-approximation algorithm for MINPC,

unless P = NP.
When restricted to trees, we can show the following result.

Theorem 6 MINNTPC on trees can be solved in linear time.

3. Concluding remarks
As far as we know, the MINNTPC and MAXNTPC problems have not been treated in the
literature. Currently, we are testing some integer programming formulations which we
have proposed for MINNTPC. The computational results are preliminary, but seem very
promising. We are also interested in the design of approximation algorithms for MINPC
and MINNTPC.
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