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Abstract. An ordered pair (7, c,) is said to be a gap-|k|-edge-labelling (gap-|k]-
vertex-labelling) if m is an edge-labelling (vertex-labelling) on the set {1,... k},
and ¢ is a proper vertex-colouring induced by a gap-function based on 7. Gap-|k]-
edge-labellings and gap-[k|-vertex-labellings were first introduced by M. Tahraoui et
al. [7] and A. Dehghan et al. [2], respectively. The edge-gap number (vertex-gap
number) is the least k for which there exists a gap-|k|-edge-labelling (gap-[k|-vertex-
labelling) of a graph. In this work, we study the edge-gap number, X8, and the vertex-
gap number, x$,, of cycles, crowns and wheels.

1. Introduction

Let G be a simple, finite and undirected graph with vertex set V' (G) and edge set £(G). An
edge e € F(G) with ends u,v € V(G) is denoted by uv. The degree of a vertex v € V(G) is
denoted by d(v) and the minimum degree of GG, by §(G). The set of edges incident with v is
denoted by E/(v) and its neighbourhood, by N (v).

For a set C of colours, a (proper vertex-)colouring of GG is a mapping ¢ : V(G) — C,
such that c¢(u) # c(v) for every pair of adjacent vertices u,v € V(G). If |C| = k, mapping c is
called a k-colouring. The chromatic number, x(G), is the least number % for which G admits
a k-colouring. For S = F(G) or S = V(G) and a set of labels [k] = {1,...,k}, a labelling
7 of G is a mapping w : S — [k]. For S" C S, the gap function, gap(w, S’), is defined as:
1, if 8" = 0; w(s), if " = {s}; or maxses{m(s)} — minges{m(s)}, if |S| > 2. A gap-[k]-
edge-labelling of G is an ordered pair (7, ¢,;) such that 7 : E(G) — [k] is a labelling of G and
¢r : V(G) — C, a colouring of G defined as ¢, (v) = gap(m, E(v)). The least k for which G
admits a gap-[k]-edge-labelling, x2 (G), is called edge-gap number. A gap-[k|-vertex-labelling
of G is defined similarly, with 7 : V(G) — [k], and ¢, (v) = gap(m, N(v)). The least k for
which G admits a gap-[k]-vertex-labelling, x& (G), is called vertex-gap number. An interesting
remark is that all K,-free graphs admit a gap-[k]-edge-labelling for some k, while there are
graphs for which there is no gap-[k|-vertex-labelling, for any & [7]. For instance, complete
graphs K, n > 4, do not admit such a labelling.

Most researchers date the labelling of graphs using mathematical operations back to
1967, when it was introduced by A. Rosa [3, 4]. Since then, several variants of labellings have
been created and studied. Gap-|k]-edge-labellings, introduced in 2012 by M. Tahraoui et al. [7]
as a variant of gap-k-colourings, were investigated by R. Scheidweiler and E. Triesch [5, 6],
and A. Brandt et al. [1]. The latter proved that x (G) < x% (G) < x(G)+1 for all graphs except
stars. They also determined the edge-gap number for complete graphs, cycles and trees. The
vertex variant was first introduced in 2013 by A. Dehghan et al. [2], who proved that deciding
whether a graph admits a gap-|k]-vertex-labelling is NP-complete for several classes of graphs.
These findings inspired us to further research the properties of these labellings. In this work,
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we study the edge-gap and vertex-gap numbers for three classes of graphs: cycles, crowns and
wheels, and compare these parameters.

2. Results

We start by considering cycle graphs C,,, which are 2-regular, connected, simple graphs. Let
V(Cn) = {Uo, . ,Un_l} and E(Cn) = {Uivi—i—l}, 0 <17 < n. For Cg, X%(Cg) = XgE(Cg) = 4.
For n > 4, the vertex-gap number is established in the next theorem.

Theorem 1. Let G = C,, n > 4. Then, x5 (G) = 2, if n = 0 (mod 4), and x4 (G) = 3,
otherwise.

Outline of the proof. Let G = C,, n > 4. Since §(G) > 2, x4 (G) > x(G). It is well-
known that x(G) = 2 if n is even, and x(G) = 3, otherwise. By induction on n, we show
that x¢ (G) < 3.

We prove that G admits a gap-[3]-vertex-labelling (7, ¢, ) with labels (7 (v,,_2), 7(v,_1),
m(vg)) and colours (¢, (v,_2), cx(vn_1), cx(vo)) satisfying one of the following conditions: (i)
(1,2, )yand (1,0, 1); (i) (2, 3, 2) and (2, 0, 2); (iii) (3, 1, 3) and (1, 0, 1); or (iv) (1, 1, 1) and
(2,0,2).

For C and Cj, assign labels (1,3,1,2) and (1, 3,1, 1, 2) to vertices (v, . .., U,_1), Te-
spectively, satisfying condition (i). Now, let (, ¢,;) be a gap-[3]-vertex-labelling for C,,, n > 4,
satisfying one of the above conditions. We create cycle (), o by replacing vertex v,,_; with
a P, and labelling the new vertices so that if C,, satisfies condition [, [ € {(i), (ii), (iii), (iv)},
then (), satisfies the next condition in the cyclic order ((i), (ii), (iii), (iv)). We remark that all
operations on the indices are taken modulo n. Figure 1 exemplifies this construction.

Figure 1. Cycle C,, satisfies condition (iii). We assign labels to the vertices of C,, 2 so
as to satisfy condition (iv)

Now, we prove that only C,,, n = 0 (mod 4) admits a gap-[2]-vertex-labelling. Let
(7, c,) be a gap-[2]-vertex-labelling of C,. Adjust notation so that ¢.(v;) = 0,if i = 0
(mod 2), and ¢, (v;) = 1, otherwise. This implies that every vertex v; with odd index has
the same label a, for a € {1,2}, and also {m(v;_1), 7(vi+1)} = {1,2}. Let j = 1 (mod 2).
Each sequence of four vertices (v;_1,vj,v;j+1,v;42) has labels (a,a,b,a) or (b,a,a,a), for
{a,b} = {1,2}. Moreover, the distance between any two consecutive vertices u,v € V(C,)
with label b is exactly four. Without loss of generality, consider the sequence (a, a, b, a) start-
ing at vy and repeating itself along the cycle. If n = 2 (mod 4), then ¢, (v,_1) = ¢;(vg) = 0
and, therefore, ¢, is not a colouring of GG. Thus, there is no gap-[2]-vertex-labelling of G in this
case. Forn = 0 (mod 4), any assignment of values {a, b} = {1, 2} using one of the sequences
(a,a,b,a) or (b, a,a,a) produces a gap-[2]-vertex-labelling for C},, and the result follows. [

In 2016, A. Brandt et al. [1] showed that x¢ (C;,) = 2ifn =0 (mod 4), and x% (C,,) =
3, otherwise. Their proof is shorter, although with some common points. As we have been
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observing, gap-[k|-edge-labellings allow an analysis in a more restricted neighbourhood, which
helps to limit the number of cases under consideration.

Next, we study crown graphs. A crown R,, n > 3, is the graph obtained from C,
and n copies of Ky, by identifying each vertex of C,, with one vertex of a different copy of a
K. Figure 2 illustrates the crown Rg. The values of x% (R,) and x% (R,) are established in
Theorem 2.

Figure 2. The crown Rg

Theorem 2. Let G = R, n > 3. Then, x4 (G) = x4(G) = x(Cy).

Proof. Let G = R, with V(G) = {vy,...,vp-1} U{ug,...,up_1}, d(v;) = 3 and d(u;) = 1,
0 <4 < n. First, we show that x¢ (G) > x(C,,). Note that x2 (G) > 2 since G has adjacent
vertices of same degree. However, if n is odd, X5, (G) > 3 since it is not possible to have
colour 2 in a vertex of degree three in any gap-[2]-edge-labelling of G.

Let m(vv;41) = 1,0 < i < n, and 7(v;u;) = 1+ (¢ mod 2),0 < i < n—(n mod 2). If
n is odd, let 7(v,_1u,_1) = 3. Observe that ¢, (u;) = 7(v;u;) for all u;, c.(v;) = i mod 2, for
i € [0,n — (n mod 2)], and ¢, (v,_1) = 2, when n is odd. Therefore, (7, ¢,) is a gap-[x(C,,)]-
edge-labelling, and we conclude that x2 (G) = x(C,,).

Now, we prove that x* (G) = x(C,). As in the previous case, x% (G) > x(Cy). In
order to conclude the proof, it is sufficient to construct a gap-|[x(C,,)]-vertex-labelling for G.
Let m(v;) = x(Rn), 0 <i < mn,and 7m(u;) = 1+ (imod 2),0 <i<n—(nmod2). If nis
odd, let 7(u,—1) = 3. The result follows from the fact that ¢, (u;) = 7(v;) = x(R,,) for all u;,
cr(v;) = x(R,) — 1 — (i mod 2), and ¢ (v,,—1) = 0, when n is odd. O

The last class considered is the wheel graphs. A wheel W,,, n > 3 is the graph obtained
from R, by identifying all degree-one vertices. In the next theorem we determine 2 (W,,).

Theorem 3. Let G = W,,, n > 3. Then, x5(G) = 3, if n is even and n # 4, and x5,(G) = 4,
otherwise.

Proof. Let G = W, n > 3. Since §(G) > 2, x4 (G) > x(G) = x(Cy) + 1. Consider, first,
the case where n is even. Assign label 2 to edges v;v;+1, 0 < ¢ < n. Following the order of
the indices, assign labels 2, 1, alternately, to edges v;v,, 0 < ¢ < n — 1. Assign label 3 to
the remaining edge v,,_1v,. Observe that ¢, (v;) = ¢t mod 2, 0 < i < n, and ¢, (v,) = 2. We
conclude that (7, ¢;) is a gap-[3]-edge-labelling of G.

Now take n = 3. Since G = Ky, x8 (G) = x&(K4) = 4, as shown by A. Brandt et
al. [1]. Finally, suppose n > 5 and odd. Assign labels 2, 3, alternately, to the edges v;v;1,
1 <17 < n—3;labels 1, 2 to the edges v;v,, 0 < i < n — 3; and labels 3, 1, 1, 4, 1 to
the edges v, _2Uy_1, Up_1V0, VU1, Up_2Un, Un_10y,, respectively. In order to see that (m, ¢,) is
a gap-[4]-edge-labelling, note that ¢, (v;) = 2 — (imod 2), 1 < i < n —1, ¢;(vy) = 0 and
¢ (v,) = 3. This concludes the proof. O
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Finally, consider the gap-[k]-vertex-labelling of wheels. As previously stated, the graph
W3 = K, does not admit a gap-[k]-vertex-labelling for any k. It remains to consider x2 (WV),)
for n > 4, which is established in the next theorem.

Theorem 4. Let G = W,,, n > 4. Then, Xf/(G) =3, ifnis even and n > 8, and Xf/(G) =4,
otherwise.

Proof. Let G = W,,, n > 4, with V(W,,) = {v,...,v,} and d(v,) = n — 1. Since 6(G) > 2,
X (G) > x(G) = x(Cy) + 1. Forn = 4, assign labels 4,1,4,1,3 to vertices vy, .. .,vs,
respectively, obtaining a gap-[4]-vertex-labelling of W;. Now, for n > 5, assign label 2 to
vertices vy, v1, v2 and v,,. Assign labels 4, 1, alternately, to the remaining vertices v;, 3 < 7 < n.
Note that ¢, (v;) = 2 — (imod 2), 2 < i < n, ¢:(vy) = 2 — (nmod 2), ¢;(v1) = 0, and
¢r(v,) = 3. This is a gap-[4]-vertex-labelling of G, and the result follows.

Now, consider the case n > 8, n = 0 (mod 2). Assign labels 2, 1, alternately, to
vertices v;, 0 < ¢ < n — 6. Assign label 3 to vertex v,,_3. Assign label 2 to the remaining
vertices v,,_5, Un_4, Un_2, Un_1, Un. Note that ¢, (v;) = 1+ (imod 2), 0 < i < n, and
¢r(v,) = 2. Therefore, (7, c;) is a gap-[3]-vertex-labelling of G.

In order to complete the proof, it remains to consider the cases of n = 4 and n =

6. Since these are small cases, one can see, by inspection, that there are no gap-[3]-vertex-
labellings of W, or Wy by considering the possible colours of v,,. L

3. Concluding remarks

In this work, we studied x2 (G) and x% (G) for cycles, crowns and wheels and observed that
the edge-labelling variant is less restrictive than the vertex one. This occurs because a labelled
edge only affects the colours of its endpoints, whereas a labelled vertex affects its entire neigh-
bourhood. Moreover, for the classes considered in this work, it is possible to assign different
labels to a certain edge, maintaining the resulting vertex colouring, whereas such a property is
not true for gap-|k]-vertex-labellings.
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