
A GPU-based Architecture for Supporting 3D Interactions
Harlen C. Batagelo, Wu Shin-Ting (advisor)

1Department of Computer Engineering and Industrial Automation
School of Electrical and Computer Engineering

University of Campinas - UNICAMP
13083-970, Campinas, SP, Brazil

{harlen,ting}@dca.fee.unicamp.br

Abstract. Most direct manipulation tasks rely on precise placements of the
cursor on the object of interest. Commonly, this requires the knowledge of
application-dependent geometry attributes of this object computed on the CPU.
We present a simple yet general GPU-based framework for computing such at-
tributes without depending on application-specific algorithms. It provides, for
each pixel of the rendered model, application-defined values and elements of dis-
crete differential geometry computed on the GPU. We show how this framework
can support the implementation of many direct manipulation tasks presented in
the literature, even when the geometry is modified on the GPU.

1. Introduction
Direct manipulation of 3D geometry using 2D pointing devices requires algorithms that
compute local geometry attributes for interaction tasks of selection and constrained po-
sitioning (snapping). Traditionally, CPU-based techniques are used to provide such at-
tributes by performing a series of intersection tests between a selection ray and the geo-
metric models. How these tests are carried out depend on the geometry’s representation
used in the application. In addition, such approach does not take into account the modifi-
cations of geometry that may happen on the GPU, thus producing a gap between what is
visualized and what the user may expect to interact with.

In this work, we employ a new paradigm of obtaining geometric attributes which
does not require application-dependent computations. This is based on the hypothesis that
differential geometry properties and application-defined attributes made available in a per-
pixel basis suffice for many direct manipulation tasks presented in the literature. Gener-
ality may be achieved by using only the data sent to the programmable graphics hardware
in order to estimate the differential geometry quantities. Therefore, direct manipulation
may be accomplished even if a scene database on system memory is not available.

Based on this new paradigm, we propose an interaction framework in which differ-
ential geometry attributes of triangle meshes are efficiently computed in accordance with
all geometry modifications along the rendering pipeline. These data, calculated on the
basis of the current mouse position, are sufficient for placing the cursor on the screen ac-
cording to the user’s actions and intentions. With this architecture, the development of so-
phisticated 3D interactive applications becomes an easier task. From a set of on-the-shelf
functions the application developer only configures which differential geometry attributes
are required for each task, and the framework will estimate them for the primitives sent
to the GPU. The doctorate thesis, videos, related publications and source code of the pro-
posed architecture are available at http://www.dca.fee.unicamp.br/projects/mtk/batagelo/.

SBC 2008 1



2. Related work
In 3D, selection is usually computed by a CPU-based ray casting procedure which con-
sists of propagating a ray in world space from the viewpoint through the cursor’s position,
then testing the intersection between this ray and the geometry stored in a scene database.
The selected geometry is the intersected geometry closest to the projection plane. Be-
sides identification data, additional geometry data computed at the intersection point (e.g.
normal vector and curvatures) may be used for the composition of more complex tasks.

Positioning is often used with constraints that aim at improving the precision of
the cursor placement. Bier introduced the idea of a snap-dragging skitter, a 3D cursor
controlled by a 2D pointing device [Bier 1987]. When constrained by a gravity function,
it automatically snaps to nearby points, curves or surfaces in the scene. The skitter, also
called triad cursor, gives an additional visual cue to the user, as it shows the 3D position
and orientation of the primitive at the snapped point. It, however, requires the local tan-
gent frame at the point of interest. To support this, the traditional ray casting algorithm
should be extended to return additionally the normal vector at the intersection point and
the corresponding primitive identifier. However, since the intersection tests are computed
on the CPU, deformation of geometry performed on the GPU is not taken into account.

Since these selection and positioning algorithms are based on techniques pro-
posed before the advent of programmable graphics hardware, the efficient interaction with
geometry deformed on the GPU has been an open problem, and current workarounds con-
sist of simply duplicating the geometry data and deformation code in system memory in
order to perform the processing on the CPU when events for interaction are triggered. This
problem tends to be worsened, as GPUs can create primitives on geometry processors and
manage scenes that exist only in video memory.

3. Case Studies
In this section we present known 3D direct manipulation tasks, emphasizing its imple-
mentation aspects. We consider as representative tasks: picking, snapping, 3D painting
and geometric snapping. The goal is to show that the essential data that they require may
be reduced to per-pixel differential geometry properties and application-defined data. Our
proposal of a GPU-based application-independent interaction framework is based on such
hypothesis.

Picking permits to identify a specific object among all visible and detectable ob-
jects displayed on the screen. Common visual feedback for mouse picking is to highlight
the primitive pointed by a free-movement cursor. In the paradigm of storing per-pixel
interaction data, each pixel of the rendered object contains an identifier (ID) value. The
ID stored in the pixel under the cursor’s hotspot identifies the selected model.

When the individual values of a texture map of a texture mapped object are event-
triggering data, this texture is called an interaction map [Pierce and Pausch 2003]. Pro-
vided that the contents of these maps are encoded for each pixel of the rendered object,
we may define distinct responses for such pixels. In this way, when the free-movement
cursor hovers pixels coincident with the mapped interaction surface, different tasks may
be automatically performed according to the application-defined values of the interaction
map. This is particularly useful for accurate interactions with image-based models and
models where the texture map contains most of the detail.

SBC 2008 2



Snapping to vertices consists of constraining the cursor location to the vertex
which is closest to the current pointer’s location. It may be done by rendering the geome-
try as points, then computing the screen-space distance between the pixels with rendered
vertices and the pixel under the cursor’s hotspot. The cursor is moved to the position of
the nearest pixel with a rendered vertex. The same idea applies for snapping to edges. In
this case, the geometry is rendered in wireframe mode. This can also be used for snapping
to the surface’s contours or other image features by computing the data only to pixels that
coincide with the features. For surface snapping, it is usual to visually feedback through
a triad cursor aligned with the tangent frame of the surface at the position pointed by the
2D cursor, as in Bier’s snap-dragging technique. To do that, each pixel also includes the
differential geometry attributes of depth and tangent frame, besides the identifier.

Painting of 3D objects in a rendered scene may be accomplished by a one-to-
one mapping between brush samples and texture samples. The brush samples are indeed
points in the neighborhood of the cursor’s hotspot. Hence, we may use the texture co-
ordinates of the pixels around the brush position for changing the corresponding texture
map. Painting in screen space is handled similarly. The brush samples are splatted onto
the surface as new primitives that use the 3D position of the rendered surface fragments.

In geometric snapping, when the user selects a vertex of the mesh with the cursor,
the cursor moves to a nearby geometric feature based on the evaluation of a movement
cost function [Yoo and Ha 2004]. This requires the availability of higher-order differential
geometry elements (e.g. principal curvatures and principal directions) for each pixel of
the rendered object.

4. Framework
The case studies support the conjecture that per-pixel geometric attributes and application-
defined attributes are sufficient for interaction tasks composed of selection and con-
strained positioning. It motivated us to validate our idea by implementing a simple snap-
ping architecture which only requires the position and normal vector of the surface at each
selected point [Wu et al. 2003, Batagelo and Wu 2005]. Based on the promising results,
we propose in this work an architecture built on top of the graphics API, that provides
to the programmer a set of commands for supporting the processing of these attributes
stored in off-screen render textures called geometry buffers (g-buffers).

To concretize our proposal, we further investigated an efficient way to estimate dif-
ferential geometry elements for each pixel of the rendered objects. Differently from the
previous snapping architecture, we took advantage of the general purpose stream com-
putation of the GPU in order to implement novel algorithms for estimating differential
geometry properties up to the third order, solely on the basis of the vertex data available
on the GPU [Batagelo and Wu 2007b].

The framework is window system independent in the sense that it only provides
functions to handle the attributes of the focused points, but is not responsible for using
these attributes for interaction feedback. How to receive the events from a window sys-
tem is of charge of the application, which issues the calls to get appropriate data from the
g-buffers for further processing. To accomplish this, the application must initialize the in-
teraction context by specifying the attributes to be computed and the semantics bindings to
be assigned for correct interpretations. Our code has been designed to inherit all interfaces

SBC 2008 3



to the window system that a graphics card supports. Therefore, the framework can get user
interaction data to automatically estimate the differential geometry elements of the model
and to encode them into the g-buffers using an output interface [Batagelo and Wu 2007a].

4.1. Processing Flow

Figure 1. Framework’s processing stages (gray shaded region) and the applica-
tion’s render loop. Thick arrows indicate texture data flow.

The processing stages of the framework are integrated into the render loop of the
application, as shown in Figure 1. Each stage is detailed as follows:

1. Modification of vertex attributes: This is performed if the geometry undergoes
a change in its vertex attributes. It starts by the framework invoking a callback
function containing the drawing call of each model. At the vertex processor, an
application-defined deformation shader modifies the original vertex attributes and
produces a final geometry, still in object space. The modified attributes are written
to render textures.

2. Computation of geometric attributes: As in the previous stage, this starts by the
framework running a callback function with the drawing call of each model. The
differential geometry quantities are computed by using the data obtained from
the render textures of the previous stage, and from pre-computed textures with
connectivity data. The results are written to new render textures.

3. Modification of fragment attributes: Also triggered by a callback function, this
stage starts in the vertex processor by sampling the render textures of the pre-
vious stages in order to update the vertex attributes before rasterization. During
rasterization, these per-vertex attributes are linearly interpolated along the primi-
tives. In the fragment processor, these fragment attributes are then modified by an
application-defined function.

4. Encoding of fragment attributes: This is done just after the previous stage, in the
same fragment shader. The modified attributes are encoded as color components
of the g-buffers.

5. Decoding of fragment attributes: On demand, the g-buffers are transferred to
system memory. The attributes are decoded and made available to the application.

4.2. Input interface

The data required for the framework to compute the attributes for interaction are the fol-
lowing, for each model:

SBC 2008 4



• Geometry data: Vertex and index buffers of the original geometry used for the
actual rendering, but with an additional application-defined value that contains a
0-based integer index of each vertex. These indices are used to determine the
addresses of the texels of the render textures that contain the geometry data after
attribute modification. In our implementation, the pointers to these buffers are set
through commands SetVertexBuffer and SetIndexBuffer.

• Attributes to compute: Set of attributes that will be processed and encoded for
each pixel. In our implementation, the command SetAttributes is used to
specify any combination of the following attributes: (1) Depth in normalized de-
vice coordinates; (2) Normal vector in object space; (3) Texture coordinates; (4)
Tangent and bitangent vectors aligned according to the parametrization of the tex-
ture coordinates, in object space; (5) Curvature tensor; (6) Principal curvatures and
principal directions; (7) Tensor of curvature derivative; (8) Application-defined
value. For indexed geometry, the data is shared by all adjacent faces that use
the vertex (e.g. model and vertex IDs). For non-indexed geometry, each vertex
may have a different value for each adjacent face (e.g. face IDs and weights of
barycentric equations).

• Rendering callbacks: Callback functions containing the graphics API commands
for setting up the render states used by the deformation shaders, and API com-
mands for issuing drawing calls using the vertex buffers of the original geome-
try (e.g. glDrawArrays in OpenGL, or DrawPrimitive in Direct3D). In our
implementation, these are set through the commands SetUpdateCallback (for
triggering stages 1 and 2) and SetRenderCallback (for triggering stage 3).

• Semantic bindings: Mapping between the usage semantic of each element of
the original vertex buffer and the semantic interpreted by the framework. The
semantics of the vertex buffer elements are specified by the graphics API. They are
mapped by the command BindSemantics to one of the following semantics of
the framework: (1) Texture coordinates used to compute the tangent and bitangent
vectors; (2) Application-defined value; (3) Vertex index (mandatory binding).

• Deformation shaders. Shader functions that accept as input a data structure con-
taining the non-deformed vertex or fragment attributes and return the same data
structure with the attributes modified. In our implementation, these shaders are
specified with SetVertexDeform and SetPixelDeform.

Besides the data required for each model under interaction, the framework also
requires that the application indicates the screen space coordinates of a rectangular region
of interest (ROI) in which the per-fragment attributes will be computed for all models.
This is set through a command SetROI with arguments composed of the top-left and
bottom-right screen coordinates of the rectangle. This region corresponds to the dimen-
sions of the g-buffers. Primitives outside the ROI are discarded and fragment processing
is reduced to fragments within this region.

4.3. Output interface

The main data returned to the application are the attributes stored for each pixel. This is
done by a command Decode that returns a pointer to the contents of the g-buffers.

SBC 2008 5



Figure 2. Left: Processing time of different attributes. Right: Processing time as
a function of the size of the ROI.

5. Implementation and results
The framework has been implemented as a C++ library in OpenGL and Direct3D. It is
composed of a class that initializes and manages the models under interaction, and another
that contains the data specific to each model. It is portable between Windows and Linux.

The performance of the framework depends mostly on the performance of the ver-
tex shaders used in stages 1 and 3, followed by the number and type of attributes processed
for each vertex. We present processing times for three models of distinct sizes: teapot
(2,082 vertices), horse (48,484 vertices) and bunny model (72,027 vertices). Figure 2
(left) summarizes the average time, in milliseconds, for calculating different attributes
on them. The attributes are: (a) No attributes; (b) Depth; (c) Texture coordinates; (d)
Application-defined value for indexed geometry and (e) non-indexed geometry; (f) Nor-
mal vector; (g) Tangent frame; (h) Curvature tensor; (i) Curvature tensor with principal
directions and curvatures; (j) Tensor of curvature derivative. The test platform was an
AMD Athlon 64 3500+ with 2 GB RAM, and a NVIDIA GeForce 8800 GTX with 768
MB VRAM. In these tests, stage 1 was executed even when no attributes were computed.
The overhead shown in (a) is mainly due to the dynamic flow control instructions and
texture sampling instructions used in the vertex shaders of stages 1 and 3. Although the
overhead for estimating the differential geometry elements is most evident, the efficiency
is much better than a CPU-based estimation, as we show in [Batagelo and Wu 2007b].

Figure 2 (right) shows timing results of a surface snapping task as a function of
the square root of the number of pixels in the ROI. The attributes computed are depth,
application-defined value for indexed geometry, tangent frame and curvature tensor. The
results include the time for decoding and transferring the attributes to the CPU. The per-
formance degrades linearly, which confirms that the bottleneck of the processing flow is
indeed in the vertex processing stages.

The framework was used for prototyping surface-oriented interaction tasks pre-
sented in Section 3. Figure 3 shows snapshots of some of these applications: (a) Picking;
(b) Painting and sculpting a relief mapped quad; (c) Snapping to principal directions; (d)
Geometric snapping. In the following we describe how they differ with respect to the
settings of the commands of the framework’s input interface:

• Picking. We call SetAttributes(APPDEFI) to inform that the per-pixel

SBC 2008 6



Figure 3. Direct manipulation applications implemented with the framework.

data should contain an application-defined value APPDEFI for indexed geometry,
which is the model ID. BindSemantics(TEXCOORD0 7→ APPDEFI) informs
that such value is defined in the first set of texture coordinates (TEXCOORD0) of
the vertex buffer. Finally, we call SetROI to set the ROI to the pixel under the
cursor’s hotspot.

• Interaction maps. SetAttributes(APPDEFI) is called to inform that the per-
pixel attribute is an application-defined value. BindSemantics is not used, since
the application-defined value is not provided by the vertex buffer. Instead, we use
SetPixelDeform to set a fragment shader that samples the interaction map for
obtaining the application-defined value. The ROI is the same as in picking.

• Snap to surface, vertex, edge or borders. For snapping, we call
SetAttributes(DEPTH, TBN) to inform that per-pixel attributes should con-
tain only a DEPTH value and a tangent frame TBN. BindSemantics(TEXCOORD0
7→ TEXCOORD) is used to inform that the texture coordinates (TEXCOORD) for
computing tangent and bitangent vectors are found in the first set of texture co-
ordinates of the vertex buffer. SetROI is called to define the area of influence of
gravity around the cursor’s hotspot. According to the type of snapping desired,
the callback functions set with the command SetRenderCallback will trigger
the rendering of geometry with filled triangles (for surface snapping), wireframe
(for edge snapping) or points only (for vertex snapping). For snapping to borders,
filled triangles are used, but SetPixelDeform defines a fragment shader that
filters the fragments which do not lie on the borders of the rendered model.

• 3D painting. For 3D painting in texture space, we call
SetAttributes(TEXCOORD) to inform that the per-pixel attribute should
contain only the mapped texture coordinates. BindSemantics (TEXCOORD0

7→ TEXCOORD) is used to inform that such coordinates are found in the first set
of texture coordinates of the vertex buffer. SetROI sets the paint brush region.

• Geometric snapping. SetAttributes(DEPTH, CURV) is called to inform that
the per-pixel attributes should be composed of a depth value, principal curvatures
and principal directions (CURV). BindSemantics is not used, and SetROI is
called as in snapping to surfaces, vertices, edges or borders.

6. Conclusion
In spite of the increased flexibility of today’s GPUs for performing geometry modeling
and animation tasks without the intervention of the CPU, few efforts have been made for
handling direct manipulation with 3D geometry deformed in a programmable rendering

SBC 2008 7



pipeline. The more flexible and powerful are the GPUs, the wider is the gap between what
the event handler of a window system is able to process on CPUs and what is rendered.

The major contribution of this work is the design of an interaction framework that
circumvents this ever growing distance between an action triggering and its visual feed-
back. It supports the implementation of direct manipulation tools which consistently take
into account deformation of geometry on the GPU. The main idea is to use the actual ren-
dering pipeline to process the attributes required for each interaction task and then to store
such attributes in the image-space domain as encoded pixel colors. Since the direct ma-
nipulation is performed on the basis of pixel data, it may work with any primitive handled
by the rendering pipeline (triangle meshes, point-based and image-based models).

Our framework does not require a scene database in system memory for comput-
ing the attributes. Instead, geometric information is obtained directly from the primitives
stored in video memory. Algorithms have been devised for computing first, second and
third order differential geometry quantities on the GPU after the deformations performed
in the per-vertex level. This supplementary contribution is indeed useful for many other
applications. We have implemented the proposed framework as a C++ library in OpenGL
and Direct3D, along with sample tools that demonstrate that it can be used to implement
a number of surface-oriented direct manipulation tasks presented in the literature. Due to
the special interest that this work has raised in the community of visualization of medical
data and data of fluid dynamics simulation, we now plan to extend the architecture to
handle volumetric data rendered with isosurfaces extraction techniques. This may require
the availability of geometric attributes in a volume region around a 3D cursor.

References
Batagelo, H. C. and Wu, S.-T. (2005). What you see is what you snap: snapping to

geometry deformed on the GPU. In Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games, pages 81–86. ACM Press.

Batagelo, H. C. and Wu, S.-T. (2007a). Application-independent 3D interaction using
geometry attributes computed on the GPU. In Proceedings of the 20th Brazilian Sym-
posium on Computer Graphics and Image Processing, pages 19–26. IEEE CS Press.

Batagelo, H. C. and Wu, S.-T. (2007b). Estimating curvatures and their derivatives
on meshes of arbitrary topology from sampling directions. The Visual Computer,
23(9,11):803–812.

Bier, E. A. (1987). Skitters and jacks: interactive 3D positioning tools. In Proceedings of
the 1986 Workshop on Interactive 3D Graphics, pages 183–196. ACM Press.

Pierce, J. S. and Pausch, R. (2003). Specifying interaction surfaces using interaction maps.
In Proceedings of the 2003 Symposium on Interactive 3D Graphics, pages 189–192.
ACM Press.

Wu, S.-T., Abrantes, M., Tost, D., and Batagelo, H. C. (2003). Picking and snapping
for 3D input devices. In Proceedings of the 16th Brazilian Symposium on Computer
Graphics and Image Processing, pages 140–147. IEEE CS Press.

Yoo, K.-H. and Ha, J.-S. (2004). Computational Science - ICCS 2004, volume 3039/2004
of Lecture Notes in Computer Science, chapter Geometric Snapping for 3D Meshes,
pages 90–97. Springer Berlin / Heidelberg.

SBC 2008 8


