
Benchmarking Wave-to-MIDI Transcription Tools
Henrique B. S. Leão, Germano F. Guimarães, Geber L. Ramalho

and Sérgio V. Cavalcante
Centro de Informática

Universidade Federal de Pernambuco
Cx Postal 7851 CEP 50732-970 Recife-PE Brazil

{hbsl,gfg,glr,svc}@cin.ufpe.br

Abstract

This paper describes a methodology for building a benchmark to evaluate automatic music
transcription tools, i.e., softwares that can extract music information from digital audio signals.
There are numerous applications to these tools, like data acquisition for music virtual libraries
and computer-aided music learning for instance. The main purpose of this benchmark is to
present a method to ranking the current tools, as well as the characterisation of their mistakes and
the respective causes. We expect that the results will be valuable both to users, guiding their
choice for the most suitable tool according to their needs, and to tools’ developers, showing any
essential improvements required.

1 Introduction
An important issue in current computer music research is automatic music transcription, i.e., the
extraction of note information such as pitch, duration and intensity from digital audio signals
[10]. Such a transcription may be applied for several purposes, including data acquisition for
music virtual libraries, automatic music accompaniment systems, computer-aided music learning,
etc.
 Motivated by our interests in music accompaniment systems [11], we started a project
whose initial goal was to implement a transcription tool by improving one of the existing
algorithms. However, after some research on the subject, it was noticed that there is no
methodology or tool either to validate/compare the results of these algorithms, or to characterise
the errors.

The solution to this lack of formal validation framework can be achieved by the use of
benchmark techniques [12]. A benchmark is defined as a set of tests aiming either at measuring a
system performance with respect to given tasks, or at comparing systems that use different
technologies for the same task. A benchmark can also be used as monitoring and diagnosis tools,
since it provides data to discover and correct common errors as well as to assess the impact of
any important change implemented in the system under development.

This article describes a methodology for building a benchmark to evaluate automatic
music transcription tools. The main goal of this benchmark is to provide a ranking of the current
tools, as well as the characterisation of their mistakes and the respective causes. We hope that the
results will be useful both to users, guiding their choice for the most appropriate tool according to
their needs, and to tools’ developers, showing any critical improvements needed.
 Section 2 shows the conceptual project of the benchmark step-by-step. Section 3 discusses
some implementation details and initial results. The results are not conclusive, since the project is

just beginning. However they show that the adopted methodological approach is reasonable. In
Section 4, we make some final remarks and point out directions for the project development.

2 Conceptual Project of the Benchmark
The next Sections present the phases of a methodology we are proposing for general benchmark
construction in chronological order. However, these phases do not need to be accomplished
obligatorily in the presented order. In fact, as in software development methodologies, an initial
prototype is built and then the necessary refinements are continuously implemented following a
spiral process [13]. Each phase is presented both in a general way and as it is applied to the case
of the music transcription benchmark.

2.1 Analysis Subject Definition
The initial phase is dedicated to defining the benchmark subject domain, as well as the objectives
to be achieved. The benchmark goals may include the classification of existent systems, the
identification of pros and cons of each system, etc.

Our case study focuses on the analysis of wave-to-MIDI transcription tools (also known as
WAV2MIDI), i.e., those performing the transcription of audio signals, stored in format PCM,
into MIDI format [8]. The objective of this benchmark is to classify the existent softwares, to
identify their pros and cons, and to relate their common mistakes to the input audio signal
features. For simplicity, at this stage we are not working with polyphonic signals.

2.2 Existent Software Tools and Devices Identification
The next step of the methodology is to list the existent academic or commercial systems working
on the chosen domain. This phase can be optional, mainly if the benchmark tests goal is only the
improvement of a given system.

For our benchmark, there are several available software tools. Table 1 shows some of
them. The “Polyphony” feature indicates that the software can transcribe polyphonic files. “Real-
time” refers to software tools able to capture the sound while it is being generated and convert it
continuously. In this case, each note is transcribed within a period of time that is not noticed by
the user.

Software Real-Time Polyphony Availability Demo Version
Akoff Composer [1] Yes Yes Commercial Yes
Sound2Midi [14] Yes No Commercial Yes
AutoScore [3] Yes Yes Commercial No
Inst2Midi [7] No No Commercial Yes (Solaris)
WaOn [16] No No Free Yes (Linux)
Music Recognizer [9] No No Free Yes
AmazingMidi [2] No Yes Commercial Yes
Digital Ear [4] No No Commercial Yes
IntelliScore Yes Yes Commercial Yes

Table 1- Music transcription softwares

During the initial tests, we are using only three tools, that by ethical reasons they will not
be disclosed, but for the final benchmark we intend to test all softwares listed above, if available.

2.3 Definition of The Test Vectors Variables
Test vectors variables are those properties used as input for the systems being studied by the
benchmark. The behaviour of the system under test is analysed by modifying those variables to
cover different input scenarios. In other words, the idea is to use different values and
combinations of these variables and measure the impact on the system performance.

The test vector variables and their respective values define an n-dimensional space whose
size depends on the benchmark study domain. The bigger the test space, the harder is the
construction of the benchmark, since a great amount of vectors (scenarios) is needed to cover all
possible combinations.

After scrutinising the literature and the transcription tools’ manuals in order to find what
could in principle influence the performance/precision of the transcription algorithms [5][6], we
have chosen the test vector variables shown on Table 2.

Variable Values

Notes frequency range Low (C0 to F#3), Medium (G3 to C7), High (C#7 to G10)
Events (note and silence) duration Fast (50ms to 100ms), Medium (100ms to 200ms), Long (200ms and

above)
Notes intensity Low (ppp to p), Medium (mp to mf), and High (f-fff)
Timbre Violin, guitar and bass (representing strings), brass and saxophone

(representing brass), flute and clarinet (representing woods), piano
(representing keyboards), etc.

Melodic Continuity (jumps) No (less than a minor third), Small (major third to octave), and Big (more
than an octave)

Table 2 - Test vector variables and value ranges

A music transcription benchmark is particularly hard to be built due to the number of
variables and the fact that variables can influence one another. For instance, low frequency notes
with small duration are more difficult to be correctly transcribed than those with larger duration
or higher frequencies. If one takes all possible combinations of all variables values, associated
with the possible modifications of the transcription tools parameters, the test space becomes quite
large.

To simplify this dimensionality problem, we grouped the values into 3 ranges (as shown in
Table 2) and used a sort of “least-dependence strategy”. This strategy consists of modifying only
one variable value while keeping all other variables fixed at a “default” value where the
algorithms generally have the best performance. In other words, we avoid using more than one
variable in their critical range in order to isolate the impact of one single variable. For instance, to
test the impact of frequency range, we generate a test vector whose notes belong to the three
frequency ranges, have a medium duration and intensity, and presents no jumps in the melody.

2.4 Evaluation Variables Definition
The evaluation variables are those used as the basis for results comparison and analysis after the
submission of the test vectors to the transcription tools. For instance, the benchmarks used for
comparison of computational power of CPUs generally rely on measurements of processing
speed. Hence, the evaluation variable in this case is the time the CPU under test takes to execute
specific tasks.

In our benchmark the evaluation variables to be observed are:
• Inclusion of notes – how many new notes were introduced;
• Exclusion of notes – how many original notes were excluded;

• Modification of notes – how many original notes have any of their characteristics
changed;

These are what we call basic evaluation variables (or error variables), since other errors
may be derived from the observation of these ones. For more details see Section 2.6.

2.5 Test Vectors Definition
During this stage, test vectors are specially developed or derived from real problems to be used in
the benchmark. The test vector format must be chosen so that it can be used as input by the
systems under test. For instance, a benchmark for comparison of real-time scheduling tools may
use test vectors that are composed by sets of processes specially chosen so that they encompass
pre-defined characteristics that are used to stress the pros and cons of each tool.

After producing a test vector, it is necessary to validate it by making sure that it produces a
feasible solution. In the scheduling tool example, it could be necessary to perform scheduling
analysis to know whether the test vectors’ process sets are in fact schedulable.

The test vectors for our music transcription benchmark are wave format files, each
containing a monophonic musical phrase, which are transcribed into and recorded in MIDI-
format files by the transcription tools under evaluation. Each phrase is used to explore a part of
the test space, as it was explained in Section 2.3.

Currently, the wave-format test vectors are being generated by MIDI-to-wave conversion
tools [1][2][9] that have as input MIDI-format test vectors. The actual results obtained from the
wave-to-MIDI transcription tools under evaluation and the expected results stored on the original
MIDI files are then compared and analysed to extract performance information, as it is explained
in the next Section.

The test vectors for our benchmark could also be generated by professional musicians
playing real instruments and following scores containing test-vector musical phrases. This would
eliminate possible mistakes introduced by the MIDI-to-wave conversion tools but could, off
course, introduce human errors. In order to choose the best way to tackle this problem, we are
using analysis tools and devices, such as spectrum analysers to validate our test vectors.

2.6 Analysis Strategies Definition and Implementation
It is necessary to create tools that make it possible the acquisition and analysis of the evaluation
variables defined previously. In order to encompass most variables, the data structure chosen for
our benchmark was a bi-dimensional matrix of bits, where the vertical axis represents the
frequencies and the horizontal axis the time. Currently we are not considering the notes’ intensity
analysis. If it were considered, the data structure would become a three-dimensional matrix (the
third dimension would be the intensity), what would increase substantially the analysis
complexity.

The test vectors contain monophonic musical melodies and so the music transcription tools
under test should produce monophonic results. Thus, the initial idea was to use techniques of
sequence comparison to seek for inserts and exclusions of notes and to analyse any changes
introduced in the notes. However, it was observed that some transcription tools could introduce
notes in any time and of variable length, generating polyphonic spaces that disable the analysis
through sequence comparison techniques. Although the test vectors are not real melodies, they
were produced to provide information about the transcription tools’ limitations.

The analysis tool implemented so far uses as input both a MIDI-format test-vector file and
the MIDI file created from the conversion of the corresponding wave-format test vector by the
transcription tool under test. Both files are turned into matrices of bits. It was verified that some
transcription tools create MIDI files with temporal and/or frequency shifts, what we call general
displacements. So, the analysis tool starts by verifying the existence of any general displacement.
This is accomplished by an exhaustive search for the better match between both MIDI files. To
better understand the problem, compare the original MIDI file on the left side of Figure 2 with
the converted MIDI file on the right.

After finding the better displacement, a comparison is performed between the matrices to
calculate the amount of note inserts, exclusions, and matches. The benchmark tool provides a
graphical visualisation of the results where the matches, inserts and exclusions are presented in
different colours. In order to perform the analysis, it is necessary to define the time granularity,
i.e., the maximum amount of time within which errors are disregarded. For example, in our case
we split the entire test vector in 10ms units. This means that if a note was originally produced
with 100ms and the conversion tool produced a 105ms note, no error is considered. However, if a
125ms note is produced it is considered that the conversion tool produced an error of 2 time units.

In order to characterise the transcription tool under test it is necessary to analyse the
patterns formed by inserts, exclusions and matches. Depending on the test vector used, several
characteristics can be studied, such as: frequency range, maximum allowable jump, minimum
note time duration, accepted instruments (timbre), and so on. At the same time, it was found out
that some errors are recurrent, what suggests an error taxonomy. Listed below there are some
common errors we have found so far:

• Maximum polyphony: maximum number of simultaneous notes in a given moment.
Since the input test vectors are monophonic there should be no polyphony at the
output.

• Harmonic insertion degree: quite often extra notes are inserted with frequencies that
area harmonics of the original notes (see Figure 3).

• Note duration lengthening: some tools either stretch or shorten the note duration in
absolute or relative amounts.

• Note frequency lengthening: similar to the note duration lengthening but regarding
frequency. In this case notes are created with frequencies situated in the vicinities of
the original ones generating non-harmonic polyphony.

• Time shift: this is related to the general displacement discussed before but considers
only the time dimension.

• Frequency shift: similar to the time shift but regarding frequency.

2.7 Tests Environment Definition
It is very important that the environment where the benchmark is run be the same for all tests.
This environment may include details of the auxiliary software tools and hardware equipment.
For instance, when testing performance of data compacting software, where execution time is an
evaluation variable, the tests must be performed in the same hardware platform to avoid
producing false results.

In our case, the environment definition is not very complicated. Since the time to transcribe
musical files is not being considered, the hardware platform is not important. Nevertheless, the

auxiliary software tools must be the same. The same MIDI-to-wave conversion tool generates all
wave-format test vectors and the same software tools perform all analyses.

2.8 Benchmark Validation and Refinement
Like most software development processes [13], benchmark designing is an activity where all
design stages are constantly re-visited. For example, it is possible that, after running some tests,
new error types be found. If considered relevant enough, they are included in the error taxonomy.

In the music transcription benchmark, all errors included in the taxonomy mentioned in
Section 2.6 were found out after running initial benchmarking tests.

3 Implementation and Results
Several tools were used for the development and execution of the music transcription benchmark,
some of them are commercial ones while others were specially developed. This tool set is
composed of:

• MIDI-to-wave transcription tool, for wave-format test vector generation. The
WinGroove tool was used [17];

• Spectrum analyser, to validate the quality of the generated wave-format test vectors.
The chosen tool was Spectrogram [15];

• Music Bench, an analysis tool specially developed and able to perform all analyses
previously defined in Section 2.6. It extracts information about note insertion, deletion
and matching, as well as, error classification. The user can define the time granularity
used for analysis. It was developed using Delphi 5 tool suit.

Figure 1 - Music Bench tool showing the original time test vector and the converted MIDI

file generated by the tool A, on the left and on the right, respectively.

So far three wave-to-MIDI transcription tools have been analysed using the music
transcription benchmark proposed in this article (named A, B and C). The test vectors used are

tailored to produce results about timing, frequency, intensity and timbre. The results are still
preliminary but sufficient to draw some conclusions.

The experiment aimed at analysing the tools behaviour with respect to notes duration
changes. The test vector contained several notes with this same frequency (within the default
range), but different duration, from 2 seconds to 5 milliseconds, the next note lasting half of the
former.

Figure 2 - The original test vector and the converted MIDI file generated by the tool A, on
the left and on the right, respectively. The top figure illustrates the beginning of the file and

the bottom one the remainder.

The results obtained for the tool A can be seen in the Figure 1. It shows, on the right-hand
side, the MIDI file generated. It is easy to see that the notes changed their duration and start time

by a small shift, i.e., the notes start and finish a bit later. The silence period between the first and
second notes also almost disappears.

 The test vector used to generate the results shown above was driven to produce results
about the errors produced by the transcription tool related to the note frequency. The vector
contains several notes in an ascending frequency order starting from the lowest possible note in
MIDI-format (note 0) and ending in the highest (note 127). Each note has a period of 0.5 seconds
with the same amount of time of silence between notes, as it can be seen in Figure 2.

The results obtained for each tool can be seen in Figures 2 and 3. Figure 2 shows, on the
right-hand side, the results obtained with the tool A. It is easy to see the frequency range within
which it is able to produce good transcriptions. Below frequency C3, it captures only harmonics
of the real notes (shown on the left side of the figure). Above note C9 it produces what seems to
be random results. In between these notes the results are very good. In fact, these are the best
results among all three tools tested, although there was found a small time shift, what we
considered a minor error.

The results of the tools B and C can be seen in Figure 3. It is possible to see the frequency
limits accepted by each tool as well as the existence of note streams parallel to the original one
that are harmonics of the original sequence. Also these tools produced note frequency
lengthening (see Section 2.6), as it can be verified in the figures.

Figure 3. Midi Files generated, respectively by tools B and C (on the right-hand sides)

Table 3 presents the amount of inserts, exclusions, and matches as well as the time and
frequency shift for each analysed tool using the frequency test vector. The time granularity used
was 10ms.

 Tool A Tool B Tool C
Number of insertion points 8750 21719 29225
Number of exclusion points 2562 2008 2478
Number of matches 3507 4602 3591
Frequency shift 0 0 0
Time shift (ms) 500 0 160

Table 3 - Test results using the frequency-range test vector.

Through these data and the shown figures we arrived to the conclusion that the tool A is the
best of the tested tools for this test vector. It produced a number of inserts much smaller than the

other tools over the entire frequency range. Within the range from C3 to C9 it is far better than
the other tools, not inserting or excluding any notes, and so producing a perfect match with the
original musical phrase.

The results presented on Table 4 show the tools’ performance over intensity variation. It
was defined to test this variation in three different frequency notes: low frequency (G#1 -midi
note 20), average frequency (C5 - midi note 60) and high frequency (D9 - midi note 110). In
addition, these test vectors were produced using different timbres (Piano, Flute, Brass and
Violin). Currently, these test vectors were only analysed in two transcription tools (A and B).

Transcription Tool: A
Musical Instrument Note Matches Insertions Exclusions Freq. Shift Time Shift (ms)
Piano Low 0 23410 3302 0 0
 Average 2631 2050 671 0 650
 High 0 866 3302 0 0
Flute Low 0 1323 3302 0 0
 Average 2743 2049 533 0 680
 High 0 4443 3302 0 0
Brass Low 0 11567 3302 0 0
 Average 2202 9803 1100 0 650
 High 0 4432 3302 0 0
Violin Low - - - - -
 Average 2710 2140 592 0 700
 High 0 4915 3302 0 0
Transcription tool: B
Musical Instrument Note Matches Insertions Exclusions Freq. Shift Time Shift (ms)
Piano Low 0 3701 3302 0 0
 Average 1034 1378 2268 0 180
 High 0 3571 3302 0 0
Flute Low 0 0 3302 0 0
 Average 1079 2862 2197 0 130
 High 0 2265 3302 0 0
Brass Low 0 4242 3302 0 0
 Average 0 1886 3302 0 0
 High 0 13406 3302 0 0
Violin Low 0 2105 3302 0 0
 Average 2203 1948 1099 0 0
 High 0 3313 3302 0 0

Table 4 - Test results using the intensity and timbre test vectors.

Through the results analysis, is possible to see that both tools have difficulties in

transcribing low and high notes. The tool A have more matches in all tests, but the time shift is
bigger. It also seems to have a similar performance in all instruments used as input, while the tool
B have difficulties in transcribing Brass sounds.

4 Final considerations
This paper presented the steps taken so far towards the development of a benchmark for the
comparison of wave-to-MIDI transcription tools. The main goal of this benchmark is to provide a
classification of the current available tools, with a characterisation of their features and errors.
We think that the results will be useful both to users, guiding their choice for the most
appropriate tool according to their needs, and to tools’ developers, showing any critical
improvements needed. Besides the benchmarking results, transcription error taxonomy is being
produced as a side effect of the development process. Although this is an ongoing research the
initial results presented let us think that we are in the right track.

During the development of this work, an attempt was made to define a general methodology
for benchmarking design, since we have not found any work on this area. This methodology is
still being defined and needs to be validated by implementing other benchmarks and also
comparing the existing benchmarks with what could be obtained by applying the methodology.

In regards to the music transcription benchmark development there are still many tasks to be
done such as error taxonomy improvement, and implementation of analysis tools and test vector
generation that follow that taxonomy. Also, we think of using web technologies for automatic
submission and benchmarking of softwares. The idea is that the tool developer can receive test
vector files, use them as input to his/her tool and send back the generated files to be automatically
analysed. The results would be sent back by email.

5 References
[1] Akoff Sound Labs, Inc., http://www.akoff.com

[2] AmazingMidi. Araki Software, http://www.pluto.dti.ne.jp/~araki/amazing

[3] AutoScore. Driftwood, http://www.dw.com.au/autoscore/index.htm

[4] Digital Ear. Epinoisis Software., http://digitalear.iwarp.com

[5] Goldstein, J. 1973, “An optimum processor theory for the central formation of the pitch of
complex tones.” Journal of the Acoustical Society of America 54(6): 1946-1516

[6] Hermes, D. 1992. “Pitch analysis.” In M. Cooke e S. Beet, eds. Visual Representations of
Speech Signals. New York: John Wiley and Sons

[7] Inst2Midi. Nerds.de GbR Schmitt D., Thöne S., http://www.nerds.de/nerds/english/-
index.html

[8] MMA – MIDI Manufacturers Association (1996), The Complete MIDI 1.0 Detailed
Specification. Los Angeles, CA

[9] Music Recognizer. Andreenko S., Kurgansky D., http://www.chat.ru/~andreenk

[10] Rabiner, L.R., Cheng, M. J., Rosengerg A. E., & McGonegal, C. A. (1976). A comparative
performance study of several pitch detection algorithms. IEEE Transaction on Acoustics,
Speech and Signal Processing, vol. ASSP-24, No. 5, (Oct 1976), pp 399-418

[11] Ramalho, G., Rolland, P.-Y., & Ganascia, J.-G. (1999). An Artificially Intelligent Jazz
Performer. Journal of New Music Research 28(2). pp. 105-128. Swets & Zeitlinger:
Amsterdam

[12] Reinhold P. Weicker, "A detailed look at some popular benchmarks", Parallel Computing,
No. 17 (1991), 1153-1172

[13] Sommerville, I. Software Engineering, 4th Edition, Addison-Wesley, 1992.

[14] Sound2Midi. AudioWorks Ltd., http://www.audioworks.com

[15] Spectrogram, http://www.mnsinc.com/rshorne/gram.html

[16] WaOn. Ichiki, K., http://www.geocities.com/SiliconValley/Ridge/4180/waon.html

[17] WinGroove, http://www.cc.rim.or.jp/~hiroki/english/

