
Nomad: A Scalable Operating System for
Clusters of Uni and Multiprocessors ∗

Eduardo Souza de Albuquerque Pinheiro† and Ricardo Bianchini‡

COPPE Systems Engineering
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil 21945-970

{edpin,ricardo}@cos.ufrj.br
Abstract

The recent improvements in workstation and interconnection network performance have popu-
larized the clusters of off-the-shelf workstations. However, the usefulness of these clusters is yet to
be fully exploited, mostly due to the inadequate management of cluster resources implemented by
current distributed operating systems. In order to eliminate this problem and approach the compu-
tational power of large clusters of workstations, in this MSc thesis we propose Nomad, an efficient
operating system for clusters of uni and/or multiprocessors. Nomad includes several important char-
acteristics for modern cluster-oriented operating systems: scalability, efficient resource management
across the cluster, efficient scheduling of parallel and distributed applications, distributed I/O, fault
detection and recovery, protection, and backward compatibility. Some of the mechanisms used by
Nomad, such as process checkpointing and migration, can be found in previously proposed systems.
However, our system stands out for its strategy for disseminating information across the cluster and its
efficient management of all cluster resources. In addition, Nomad is highly scalable as it uses neither
centralized control nor extra messages to implement its functionality, taking advantage of the I/O traf-
fic associated with its distributed file system. Our evaluation of the load balancing aspect of Nomad
shows that the pattern of file accesses in our distributed file system allows for efficient and scalable
load balancing. Our main conclusion is that Nomad will be an interesting and useful platform for
future research on operating systems for clusters of workstations.

1 Introduction

The recent improvements in workstation and network performance have popularized the clusters of off-
the-shelf workstations as a platform for both high-performance and interactive applications. Clusters of
workstations currently have the potential to approach the performance of supercomputers and the ease
of use of mainframes with much cheaper hardware. However, the main obstacles yet to be surpassed by
these clusters as general-purpose computing platforms are two deficiencies of most current distributed
operating systems: their inadequate management of the available resources and their inability to present
an integrated view that can simplify utilization, programming, and management of the cluster as a whole.

Current systems invariably focus on the management of some resources in detriment of others and
are usually not scalable to large cluster configurations. For instance, the systems based on load balancing
(e.g. Sprite [6] and V [4]) consider the number of processes per workstation, but disregard the mem-
ory and I/O behavior. Another example of poor resource management is the scheduling of parallel and
distributed applications: efficient scheduling strategies, such as co-scheduling [11], are simply not im-
plemented in most systems (e.g. Mosix [2]). Even the systems that apply sophisticated load balancing

∗A similar version of this paper was published in the Proceedings of the 1st IEEE Computer Society International Workshop
on Cluster Computing, December 1999.
†Eduardo Pinheiro is now a PhD student at the University of Rochester.
‡Ricardo Bianchini is currently on leave from the Federal University of Rio de Janeiro.

1



techniques (e.g. Mosix) or intelligently schedule applications (e.g. GLUnix [8]) use centralized servers
and/or extraneous messages for these purposes. In fact, the number of extra messages involved in these
systems is proportional to the number of workstations in the cluster. Other examples of inadequate man-
agement of resources abound.

Current systems can also be improved to simplify cluster use, programming, and management. Ide-
ally, the system should provide a cluster-wide single-system image, such that remote resources can be
handled transparently as if they were local. The problem is that most distributed operating systems do
not attempt to hide the fact that the cluster hardware is really composed of multiple independent worksta-
tions and resources. For instance, in most systems the user must explicitly connect to another workstation
in order to have access to its resources (e.g. Solaris [13]).

In the thesis (MSc at the Federal University of Rio de Janeiro) we introduce Nomad, a distributed
operating system for clusters of uni and/or multiprocessors that eliminates these problems. The main goal
of Nomad is to efficiently support (high-performance or interactive) parallel, distributed, and sequential
applications. Besides the characteristics required of all operating systems, such as protection between
processes and backward compatibility with old binaries, Nomad has several important characteristics: it
simplifies the use, programming, and management of the cluster; it manages all cluster resources (CPUs,
memories, and I/O devices); it is highly scalable and efficient; and it provides tolerance and recovery to
workstation failures.

The mechanisms used to implement these characteristics include unique cluster-wide process identifi-
cations, process checkpointing and migration, co-scheduling of concurrent applications, and a distributed
file system. Some of these mechanisms, such as process checkpointing and migration, can be found in
other systems. However, Nomad is unique in the particular set of characteristics it includes, in its strategy
for disseminating information across the cluster, and in that it manages all cluster resources, while using
neither extra messages nor centralized servers to implement its functionality. Nomad avoids sending ex-
tra messages by relying on the communication intrinsic to its distributed file system (which is required
for high disk I/O throughput and fault tolerance anyway). For instance, in order to implement process
migration, load information is piggybacked on file access messages.

This paper presents a short introduction to Nomad, its main characteristics, and performance. A com-
plete evaluation of all Nomad’s policies and mechanisms is part of the thesis, but is not presented in this
paper due to space limitations. In terms of performance, here we focus solely on the load balancing as-
pect of Nomad. A preliminary evaluation of this aspect in the context of a prototype implementation
of Nomad shows that the pattern of file accesses produced by Nomad’s distributed file system and real
workloads can effectively be used as a mechanism for distributing load information across the cluster.
In addition, our results show that Nomad can almost eliminate the periods of excessive demand for re-
sources by intelligently migrating processes. Based on these results and on our experience with the other
mechanisms implemented in our system, we believe that Nomad will most likely be an efficient, useful,
and user-friendly operating system for clusters of uni and multiprocessors.

2 Nomad

2.1 Functionality

Single-system image. Nomad simplifies the use, programming, and management of the cluster by pro-
viding a single-system image of it. The user can utilize the system as if it were a single very powerful
workstation. This integrated view is based on cluster-wide unique process identifications and on mak-
ing all aspects of process management (signal delivery, for instance) independent of where processes are
actually running.
Efficient and complete resource management. Nomad efficiently supports high-performance and inter-
active applications with its efficient resource management and scheduling. The distribution of resource
demands is based on the intelligent initial assignment of processes to processors and on dynamic pro-

2



cess migration. When launching a new application, Nomad chooses a lightly loaded workstation to host
the new process(es). But with time, if a workstation becomes overloaded (i.e. one of its resources is ex-
hausted), Nomad chooses the application consuming the most of the exhausted resource to be migrated
to another workstation. The migration itself is initiated by the overloaded workstation, which sends the
chosen application to a destination workstation that is lightly loaded with respect to the resource. In order
to reduce the number of times multiple overloaded workstations migrate processes to the same destina-
tion, each source picks a destination randomly out of the set of workstations that are lightly loaded with
respect to the exhausted resource.

The whole image of the application is migrated to the destination workstation and future system calls
are executed at the destinationworkstation. When making its assignment and migration decisions, Nomad
considers all aspects of a workstation’s load: demand for CPU, memory, disk I/O, and network I/O.
Efficient process scheduling. Process scheduling in Nomad targets high performance in many ways.
Sequential applications running on multiprocessors are scheduled considering the affinity of each pro-
cess for the processor on which it ran last. Concurrent applications are co-scheduled [11] or implicitly
co-scheduled [1]. In co-scheduling all processes belonging to a parallel application (defined as a con-
current application running on a multiprocessor) are scheduled simultaneously. Implicit co-scheduling
is an approximation of co-scheduling for processes of a distributed application (defined as a concurrent
application with processes scattered across many workstations). In contrast with other implementations
of co-scheduling (e.g. [3]), in implicit co-scheduling all scheduling decisions are made locally by each
workstation, without the need for coordination messages or a centralized controller.
Scalability. The scalability of the system is guaranteed since it does not involve centralized servers or
extra messages in its management of resources, scheduling of distributed applications, and fault tolerance
and recovery. In addition, Nomad includes a distributed and redundant file system that provides high-
performance I/O by striping files at the block level across the different disks in the cluster. In essence,
our distributed file system can be seen as a software implementation of RAID [5], where each block is
assigned to a randomly chosen disk, like in the RAMA file system [10]. This assignment of blocks leads
to high disk I/O throughput, while avoiding communication bottlenecks [10]. The redundancy in the file
system allows for fault tolerance. (Note that files that require neither high throughput nor fault tolerance
can be stored locally, bypassing the distributed file system.)

It is important to observe that the distributed file system forces a workstation that needs to access a
file to communicate with a potentially large number of other workstations in the cluster, as opposed to
a single workstation as in NFS-style file systems. Based on this observation, we realized that Nomad
could avoid extra messages in implementing resource management and fault tolerance, by appending the
information that must be disseminated through the cluster to the file access messages. Essentially, Nomad
avoids sending extra messages by extending each file system message with a few extra bytes.
Efficient disseminationof load information. An example of this piggybackingof messages occurs when
Nomad uses file access messages to disseminate the load information necessary to perform process mi-
gration. The load information of each workstation is sent on its file access messages. Thus, a file access
request informs the replier workstation of the requester’s load information, while the access reply informs
the requester of the replier’s load information. (As a fall-back strategy, a workstation running Nomad mul-
ticasts its load information to a few other workstations, if it has gone too long – 30 minutes, say – without
communicating with any other node.)

Note however that the motivation for using the file access pattern to guide the dissemination of load
information is not restricted to the desire to avoid extra messages; another reason is that using this pat-
tern seems like a natural strategy to support load balancing. More specifically, the file access pattern has
two relevant properties as a mechanism for distributing load information: (a) the communication between
workstations occurs in bi-directional (request/reply) form, as necessary for migration; and (b) idle work-
stations (which can be numerous) do not generate messages. Under a striped file system such as Nomad’s,
the file access pattern has the additional property that a significant number of workstations will likely re-
ceive file access messages from each non-idle workstation. These three characteristics and the absence of

3



extra messages make process migration in Nomad potentially more efficient than in other systems (e.g.
Mosix, which is in fact very efficient in terms of migration).
Fault tolerance. Nomad is capable of detecting the failure of one workstation and exclude it from the
cluster until the failure disappears or is repaired. Failure detection is associated with the file access com-
munication involved in Nomad’s distributed file system. If a replier fails to reply to a file access request
after a timeout and retransmissions period, the replier is considered faulty and the access is diverted to
a redundant disk. Any future messages by the requester will now inform other workstations about the
failure. A workstation that is informed about a failure must then destroy any local processes belonging
to distributed applications affected by the failure. When a faulty workstation resumes normal operation,
Nomad tries to recover by adding the workstation back to the cluster, reconstructing the disk according
to the redundancy information, and restoring the processes that were running on the workstation prior to
the failure. The processes belonging to distributed applications are the only ones that are not restored
automatically.

2.2 Architecture

The main goal of the architecture of Nomad is to make it as portable and fault tolerant as possible, but
without compromising our desired functionality. Thus, we decided to divide the Nomad architecture into
two components: a modified version of a Unix operating system and a layer of user-level software (mid-
dleware). As modifying the base operating system kernel significantly would reduce the portability of
Nomad, we decided to keep kernel modifications to a minimum. Basically, all we do to the base kernel is
enlarge it with code to implement process checkpointing and code implementing a few new system calls.
The checkpointing code can checkpoint whole applications, regardless of whether they have open files,
pipes, semaphores, shared memory segments, or access shared libraries.

Since the base operating system interface is a subset of the Nomad interface, the users and applica-
tions can still utilize the base kernel directly, bypassing Nomad altogether, which is useful for backward
compatibility. In addition, each copy of the modified base kernel remains independent of copies running
on other workstations, thus promoting fault tolerance and easier cluster reconfiguration.

The user-level software is composed by a daemon (called the Nomad daemon), standard I/O redirec-
tion daemons, and a set of tools to allow the users and applications to interact with the daemon. Each
of the workstations in the cluster runs a copy of the (modified) base operating system and one Nomad
daemon. The daemon runs in the background with super-user privileges. The daemon performs several
important tasks: (1) it maintains the state of the applications running on top of Nomad; (2) it collects
statistics about the use of local resources; (3) it implements the load balancing policies and mechanisms;
(4) it implements the process scheduling policies; (5) it interacts with the user and remote daemons for
process launching and migration, and distributed signal delivery; and (6) it launches the standard I/O redi-
rection daemon for each application that is launched or migrated away from a user’s workstation. Note
that, even though the Nomad daemon does not interfere with processes launched directly on top of the
base operating system, it does take their resource usage into consideration.

The standard I/O redirection daemons redirect the standard input, output, and error streams to the
terminal where the user started the corresponding application. Both the source and destination of the ap-
plication get a redirection daemon.

The last component of the middleware is the tools used by users and applications to interact with
the Nomad daemon. The two main tools are the netspawn and netkill commands. Netspawn is used
to launch applications on top of Nomad, while netkill is used to send signals to processes launched by
Nomad. By default, netspawn interacts with the local daemon, which intelligently selects a workstation
for the application to run on. The main argument to netspawn is the application’s name, but the user
can also specify that the application should not be migrated or, for a distributed application, specify the
number and addresses of workstations to be used. The processes launched with netspawn have cluster-
wide unique identifications that are independent of where they are running.

4



Machine # Procs # Disks Total/Available Mem (MB)
atto 1 1 64/58
brain 4 1 2048/1998
gin 1 1 64/58
kilo 1 1 64/58
ripple 1 1 64/58
rum 1 1 64/58
rye 1 1 64/58
scotch 1 1 64/58
vodka 1 1 64/58

Table 1: Configuration of workstations in the cluster.

Netkill interacts with the local Nomad daemon requesting that a signal be delivered to a certain unique
process identification. The daemon is responsible for checking its internal tables and determining where
the process is running.

2.3 Implementation Status

We now have a prototype implementation of Nomad up and running. The prototype currently supports the
x86/Pentium family of microprocessors using Linux as the base operating system and the Alpha family
of microprocessors using Digital Unix as the base operating system. Our development platform is an 8-
workstation cluster of 4-processor SMPs.

Unfortunately, in the current prototype the disseminationof load information is still implemented with
periodic multicast messages, instead of being piggybacked with file access messages. Due to this limita-
tion, here we present a simulation of the load balancing behavior of a complete implementation of Nomad.

3 Evaluating Load Balancing

As mentioned in the previous section, Nomad uses the file access patterns to guide the dissemination of
load information among workstations in the cluster. However, in order for this strategy to be useful, we
must confirm two of our previous claims that: (a) clusters may suffer from uneven demands for resources;
and (b) under the Nomad striped file system, a significant number of workstations will likely receive load
information from each non-idle workstation. In other words, we must confirm that there is an imbalance
problem to be solved and that file access patterns would spread load information widely enough through-
out the cluster. Furthermore, we would like to know whether this load dissemination strategy coupled
with migration (from overloaded to lightly loaded or idle workstations) can improve the performance of
real workloads. These are the topics of this section.

In order to address these issues, we studied the workload of a production, academic environment.
More specifically, we logged the user-generated file accesses and the (CPU, memory, and disk I/O) load
information of 9 workstations from the main computing laboratory at the University of Rochester for 7
days (from 5/5/99 until 5/11/99). The list of workstations and their configurations is shown in table 1. All
workstations have processors from the Ultra family and were running Solaris version 5.5.1.

During the tracing period, users were allowed to freely use these workstations. The typical workload
was a mix of different types of applications, such as text editors, web browsers, compilers, simulators,
and scientific programs, which matches our target environment.

Let us start by determining what is the demand on the various resources. Figures 1, 2, and 3 show the
demand for CPU, memory, and disk I/O resources, respectively, for representative workstations during
the tracing period.

5



Load Average of Kilo

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time

Lo
ad

 A
ve

ra
ge

Figure 1: CPU requirements on Kilo.

Memory Used by Atto

0

20

40

60

80

100

120

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time

M
em

or
y 

(M
b)

Figure 2: Memory requirements on Atto.

Figure 1 shows the load average for workstation Kilo as a function of time. Each minute plotted has
7 load averages because the different 24-hour periods were overlaid on top of each other. This figure
indicates that Kilo experienced load averages that are greater than the ideal load of 1.0 several times during
the tracing period. However, even in these periods of high CPU demand, the stress put on the system
was not substantial. The same type of CPU behavior was observed of other workstations in the system,
suggesting that a high demand for CPU resources was not a major problem during the tracing period.

Figure 2 shows the memory requirements (i.e. the total amount of virtual memory actually used by
applications) of workstation Atto as a function of time. Again, the 24-hour periods are overlaid in the
figure. The figure indicates that a high demand for memory may be a serious problem for Atto, given
that its amount of available physical memory is only 58 MBytes. A few other workstations in the system
exhibited the same type of memory behavior as this workstation, indicating that the memory requirements
was a potential performance problem for the cluster during the tracing period.

Figure 3 shows the disk I/O requirements (disk interrupts/minute) of workstation Ripple as a function
of time. Again, the 24-hour periods are overlaid in the figure. The figure indicates that Ripple experienced
low I/O demands throughout the tracing period. The other workstations exhibited the same type of be-
havior. Thus, a high demand for I/O resources was not a problem during the tracing period.

These figures demonstrate that the only resource that experienced significant demands was main mem-
ory; other resources were rarely intensively used. Excessive demands for memory may lead to frequent

6



Disk Accesses by Ripple

0

20

40

60

80

100

120

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time

A
cc

es
se

s 
pe

r 
M

in
ut

e

Figure 3: Disk I/O requirements on Ripple.

0

1

2

3

4

5

6

7

8

9

10

16
:1

8

16
:3

2

16
:4

4

16
:5

8

17
:0

7

17
:3

9

17
:5

6

18
:0

8

18
:2

0

18
:3

3

18
:4

4

18
:5

6

19
:0

8

19
:2

2

19
:3

4

19
:4

8

20
:0

8

20
:2

8

20
:4

5

21
:1

6

21
:2

8

22
:2

7

23
:0

0

Time

N
um

be
r 

of
 N

od
es

Knew

Could Help

Figure 4: Number of workstations that learned about and could alleviate the excessive demand on Gin.

page replacements and possibly accesses to disk (page swap-outs). Thus, a system that could more evenly
balance the memory requirements of the cluster should be useful. To confirm this claim and investigate
whether the Nomad strategy for disseminating load information would allow for good load balancing, we
simulated the behavior of the Rochester workload, assuming the Nomad striped file system.

With the information we collected, we were able to simulate the behavior of our striped file system.
Each file access in the traces was fed to a striping function and a new target workstation was computed,
based on the file name and access position. A modified log was then generated with the new target work-
stations of all file accesses. This new log effectively describes the pattern of file accesses and load infor-
mation exchanges had our file system indeed been used.

Figure 4 shows the number of workstations that were aware of (white bar) and could alleviate (dark
bar) the “excessive” demands on workstation Gin. We decide whether demands for CPU, memory, and
disk I/O resources are excessive based on three thresholds: 1.05 load average, less than 3 MBytes of avail-
able physical memory (point at which most Unix implementations start running their page replacement
algorithms for 64-MByte memories), and more than 2100 disk interrupts per minute (70% disk utiliza-
tion approximately), respectively. Workstations that could alleviate Gin’s problems had plenty of the ex-
hausted resource available. Each pair of bars corresponds to one 5-minute period of excessive demand
during the 7-day tracing period.

7



Machine < 1 min 1− 5 mins 5− 20 mins > 20 mins
Atto 1 7 10 25
Brain 0 0 0 0
Gin 12 18 8 12
Kilo 2 10 2 1
Ripple 2 3 3 12
Rum 4 5 7 12
Rye 8 27 10 12
Scotch 6 8 12 5
Vodka 12 22 11 16
Total 47 100 63 95

Table 2: Duration of the periods of overdemand.

The figure shows that more than 92% of the time at least one workstation not only knew about the
problem with Gin, but also could have taken some of its load. Other workstations exhibit similar results
to Gin. In the worst case, 87% of the time there was at least one workstation ready to help. These re-
sults clearly show that Nomad’s strategy for disseminating load information should allow for good load
balancing, since load information is spread widely enough for load to be balanced more evenly.

However, for migration to be useful we must verify that periods of excessive demand persist long
enough to offset the migration overhead. Table 2 lists the number of these periods according to their dif-
ferent durations: less than one minute, from one minute to five minutes, from five minutes to twenty min-
utes, and more than twenty minutes. These results show that the vast majority (85%) of all overdemand
periods last for more than one minute. Overdemand durations of more than one minute are long enough
to offset the overhead of migration, even when processes have very large checkpoints [12]. Furthermore,
note that in terms of time, the overdemand periods of one minute or less account for a negligible percent-
age of the total overdemand time.

Based on these positive results, we simulated the behavior on Nomad. More specifically, we sim-
ulated the migration of a process every time a problem with some workstation is detected by a remote
workstation that can offer help. To simulate the worst possible scenario, we assumed processes with the
smallest possible images (288 KBytes), forcing the largest possible number of migrations when excessive
memory demands is the problem. Every migration penalizes the source and destination workstations with
0.030 and 0.098 seconds, respectively, which are the times taken on these workstations to migrate a 288-
KByte process in our system [12]. We let a period of overdemand stand for 5 seconds (same threshold as
used in Nomad) before migrating a process away from a workstation. To further worsen the scenario, we
assume that migrated processes run (and take up resources) forever at the destination workstations.

Table 3 shows the results of this experiment. From left to right, the columns of the table list the work-
station name, the number of minutes when at least one resource was under excessive demand without
Nomad, the number of minutes when at least one resource was under excessive demand with Nomad,
the percentage reduction in resource overdemand, the number of processes migrated to the workstation,
and the number of processes migrated away from the workstation. The “Total” row lists the sum of the
overdemand periods without and with Nomad, the percentage of this time reduced by Nomad, and the
total number of processes migrated in and out of workstations.

The results in the table clearly demonstrate that, even under a worst case scenario for Nomad, the sys-
tem would have been able to significantly reduce the periods of resource overdemand. All workstations
would have improved their resource utilization with Nomad, except for Brain which did not exhibit any
problems without Nomad. Nevertheless, even in the case of Brain, the period of resource overdemand
caused by Nomad amounted to no more than 2 minutes in 7 days. Overall, the cluster would have expe-
rienced a 99% reduction in the time at least one resource was exhausted by using Nomad. As a result of
this improvement, applications should perform better under our system.

8



Machine Overdemand Overdemand Reduction Migs In Migs Out
Without Nomad With Nomad

Atto 9555.32 1.83 99.98% 0 10
Brain 0.00 0.10 —— 61 0
Gin 941.56 11.54 98.77% 21 30
Kilo 85.02 15.89 81.31% 29 34
Ripple 780.52 2.72 99.65% 24 32
Rum 1455.35 2.86 99.80% 14 22
Rye 1532.04 21.13 98.62% 28 37
Scotch 522.68 5.18 99.01% 45 49
Vodka 1029.37 15.23 98.52% 30 38
Total 15901.86 76.49 99.52% 252 252

Table 3: Results of the simulation of Nomad.

Note however that a definitive evaluation of the actual performance improvements achievable by our
system requires a complete implementation of it. Furthermore, we studied the behavior of Nomad assum-
ing an academic cluster environment that may not be representative of other types of environments, such
as heavy-duty scientific computing installations. A definitive evaluation of the system should take these
other cluster environments into consideration as well.

4 Related Work

The migration strategy designed for Nomad is completely novel. However, several distributed operating
systems (e.g. [6, 9, 8, 2]) share some of the same goals, policies, or mechanisms of Nomad. Here we con-
centrate on the operating systems that are most closely related to Nomad: GLUnix and Mosix. GLUnix
seeks to execute interactive sequential and distributed applications efficiently on a cluster of uniprocessor
workstations, keeping the Unix I/O semantics unchanged, providing static and dynamic load balancing,
and detecting one failure at a time. GLUnix may have scalability problems since it uses a centralized
server to assign unique process identifiers, to co-schedule distributed applications, to keep the state of all
workstations in the cluster, to make decisions about process migration, and to detect failures. GLUnix is
under development at UC Berkeley and, in its current version, does not achieve its goals completely.

Nomad differs from GLUnix in several ways. Nomad considers multiprocessor workstations, consid-
ers all aspects of a workstation’s load, incorporates a distributed file system, works in a non-centralized
fashion without the use of extra messages, and recovers from faults instead of just detecting them.

Mosix is also targeted at the efficient execution of sequential and distributed applications in clusters
of uniprocessor workstations. Load balancing in Mosix is more sophisticated than in GLUnix, but only
CPU and memory usage are considered. Migration decisions are based on load information messages pe-
riodically exchanged among a dynamic subset of workstations. Mosix can either migrate pages or whole
processes. In case of memory problems, Mosix avoids swapping pages to disk by migrating processes to
other workstations, but disregards the CPU utilization at the target workstations. Page migration is done
directly to the target workstation’s memory. However, when the CPU utilization is high on the source
workstation, the whole process is migrated to the destination.

Nomad also differs from Mosix in several ways. Nomad considers multiprocessors, considers a larger
set of cluster resources, incorporates a distributed file system, never migrates pages, considers the load
on the target workstation before migrating a process to it, and co-schedules concurrent applications. In
terms of their migration strategies, Nomad uses the file access patterns to guide the dissemination of load
information, while not involving any extra messages to implement the actual load information exchanges.
Although for many cluster configurations it is unlikely that the extra messages in Mosix should cause seri-
ous overheads, our work shows that these extra messages are unnecessary given a distributed file system.

9



5 Conclusion and Future Work

This paper presented a short introduction to Nomad, an efficient operating system for clusters of uni and/or
multiprocessors designed and implemented in the context of an MSc thesis at the Federal University of
Rio de Janeiro. The main goal of Nomad is to efficiently support (high-performance or interactive) paral-
lel, distributed, and sequential applications. Nomad includes several important characteristics for modern
cluster-oriented operating systems, including scalability, efficient resource management across the clus-
ter, efficient scheduling of parallel and distributed applications, distributed I/O, and fault detection and
recovery. Nomad does not involve any extra messages for resource management, distributed scheduling,
and fault tolerance, taking advantage of the I/O traffic associated with its distributed file system.

A preliminary evaluation of the load balancing aspect of Nomad showed that the pattern of file ac-
cesses produced by Nomad’s distributed file system and real workloads can effectively be used as a mech-
anism for distributing load information across the cluster. In addition, our results show that Nomad can
almost eliminate the periods of excessive demand for resources by intelligently migrating processes.

Based on these results, we expect the complete implementation of Nomad to be efficient and to be-
come an interesting foundation for research on distributed operating systems for clusters of workstations.
Our future work includes completing the implementation and evaluation of the system. Right after this,
the Nomad source code will be made available to the public for non-commercial use.

References

[1] Andrea C. Arpaci-Dussau, David E. Culler, and Alan M. Mainwaring. Scheduling with Implicit Information
in Distributed Systems. In Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, Madison, Wisconsin, June 1998.

[2] Amnon Barak and Oren La’adan. The MOSIX Multicomputer Operating System for High Performance Clus-
ter Computing. Journal of Future Generation Computer Systems, 13(4-5):361–372, Mar 1998.

[3] Eliseu M. Chaves and Valmir C. Barbosa. Time sharing in Hypercube Multiprocessors. In Proceedings of 4th
IEEE Symposium on Parallel and Distributed Processing, pages 354–359, Arlington, TX, Dec 1992.

[4] David R. Cheriton. The V Distributed System. Communications of the ACM, 31(3):314–333, Mar 1988.

[5] Toni Cortes. Software RAID and Parallel File Systems. In Rajkumar Buyya, editor, High Performance Cluster
Computing: Architectures and Systems. Prentice Hall, 1999.

[6] Fred Douglis and J. Ousterhout. Transparent Process Migration: Design and Alternatives and the Sprite Im-
plementation. Software: Practice and Experience, 21(8):757–785, Aug 1991.

[7] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shubert, Frank Berry, Anne Marie Merritt,
Ed Gronke, and Chris Dodd. The Virtual Interface Architecture. IEEE Micro, 18(2), 1998.

[8] D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat, and T. Anderson. GLUnix: a Global Layer Unix for a
Network of Workstations. Software: Practice and Experience, Feb 1998.

[9] Yousef A. Kalidi, José M. Barnabéu, Vlada Matena, Ken Shirriff, and Moti Thadani. Solaris MC: A Multi
Computer OS. In Proceedings of 1996 USENIX Conference, January 1996.

[10] E. L. Miller and R. H. Katz. RAMA: An Easy-to-Use, High Performance Parallel File System. Parallel
Computing, 4(23):419–446, June 1997.

[11] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proceedings of the 3rd International
Conference on Distributed Computing Systems, pages 22–30, May 1982.

[12] Eduardo Pinheiro. Nomad: An Efficient Operating System for Clusters of Uni and Multiprocessors. Master’s
thesis, COPPE Systems Engineering, Federal University of Rio de Janeiro, August 1999. In Portuguese.

[13] Sun Systems. Sunos and Solaris Reference Manuals. Sun Systems, Inc.

10


