
Neural Networks
and HPC synergy

Raphael Cóbe
Rogério Iope

Silvio Stanzanni
Jefferson Fialho

{rmcobe,rogerio,silvio,jfialho}@ncc.unesp.br

Machine Learning

• an algorithm that is able to learn from
data;

• what do we mean by learning?

– Tom Mitchel

“A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by

P, improves with experience E.”

Machine Learning

• allows us to tackle tasks that are too
difficult to solve with fixed programs

• process examples;

• tasks:

• classification, clustering, regression,
translation, …

Machine Learning

• the experience:

• unsupervised

• inference from data structure

• supervised

• learn by examples;

Machine Learning

• The more data, the best!

• Overfitting and Underfitting;

• Common solutions:

• linear regression, k-means, logistic
regression, support vector machines,
etc…

Neural Networks

Neural Networks

• Receive input from other units and decides
whether or not to fire.

• ~ 86 billion neurons in the human nervous
system

• connected with approximately 10^14 -
10^15 synapses

Neurons

Neural Networks

• input signals from its dendrites;

• output signals along its (single) axon;

• interact multiplicatively (e.g.) with
the dendrites of the other neuron based on
the synaptic strength at that synapse
(e.g.);

• learn synapses strengths;

Neurons

w0x0

w0

Neural Networks
• control the influence from one neuron on
another:

• excitatory when weight is positive; or

• inhibitory when weight is negative;

• nucleus is responsible for summing the
incoming signals;

• if the sum is above some threshold, then
fire!

Neurons

Neural Networks
Neurons

Images from Stanford CS231

Neural Networks

• Function approximation machines;

•

• maps input to a category

•

• learn the value of the parameters

y = f

⇤(x)

x

y

y = f(x;w)

w

Neural Networks

• Input, Output, and Hidden layers;

• Hidden as in "not defined by the output";

• Approximate to (training)  
 

y = f

⇤(x)y = f(x;w)

Neural Networks

• Seen as vector-valued, i.e. a vector is
received as input and a new vector is
produced as output;

• (vector-to-vector function);

• Units that work in parallel.

• (vector-to-scalar function);

Hidden Layers

Neural Networks
• Activation Function:

• Describes whether or not the neuron
fires, i.e., if it forwards its value
for the next neuron layer;

• multiply the input by its weights, add the
bias and apply the non-linearity;

• Sigmoid, Hyperbolic Tangent, Rectified
Linear Unit;

Neural Networks

class Neuron(object):
 def forward(inputs):
 """ assume inputs and weights are 1-D
 numpy arrays and bias is a number """

 cell_body_sum = np.sum(inputs * self.weights) + self.bias

 # ReLU activation function
 firing_rate = np.maximum(cell_body_sum, 0, cell_body_sum)
 return firing_rate

Perceptron

• In 1958, Frank Rosenblatt proposed an
algorithm for training the perceptron.

• Simplest form of Neural Network;

• One unique neuron;

• Adjustable Synaptic weights;

• Simple activation function;

Perceptron
• Classifies inputs into two classes, with
neuron output of either -1 or 1;  
 
 
 
 
 
 
 

x1

x2

P y
w1

w2

Perceptron

• Where is the activation function and
the number of inputs

• Always converge on linearly separable
classes;  
 
  net =

PJ1

i=1 wixi � ✓ = w

T
x� ✓

y = �(net)

� J1

Perceptron
• Training Procedure:

• is the learning rate;

• finds a linear function that separates the
classes;  
 
 
 
 

⌘

ep = yp � ŷp

wi(t+ 1) = wi(t) + ⌘xp,iei

Perceptron
• Can’t do:

• separate non linear classes;

• XOR function:  
 
 
 
 

Feedforward Networks
• typically represented by composing many
different functions:  
 
 
 
 

• the depth of the network - the deep in
deep learning! (-;

f(x) = f

(3)(f (2)(f (1)(x)))

Feedforward Networks

• Information flows from , through
computations and finally to

• No feedback!  
 
 

x f
y

x1

x2

y

Feedforward Networks

• Train using a back-propagation algorithm
from 1969;

• fixes the weights in an output-to-input
direction;

• each level has plays a specific role in
the classification;

• detect the features in the input patterns;

Hidden Layers

Feedforward Networks

• The output of a Feedforward Network:  
 

• The output of the layer:  

How it works

ŷp = o

(M)
p , o1p = xp

net

(m)
p = [W (m�1)]T o(m�1)

p + ✓

(m)

o

(m)
p = �

(m)(net(m)
p)

m

Feedforward Network

• suppose we want to learn the behavior of
the binary XOR operator:

• the input will be a pair of signals with
value either 0 or 1.

• The output should be classified also into
0 or 1;

XOR example

Feedforward Network

• The dataset:  
 
0 0 0  
0 1 1  
1 0 1  
1 1 0

XOR example

The network:
x1 x2 y

y
x1

x2

h1

h2

Feedforward Network

• The architecture: 2 layer network (one
hidden and one for output)

• Rectified linear Unit as activation
function, i.e.

• Why not a linear function?

XOR example

�(net(1)p) = max(net(1)p , 0)

Feedforward Network

• The full expanded solution:  
 
 
 
 

XOR example

y = W

T
2 (max(0,WT

1 x+ ✓1)) + ✓2

Feedforward Network

• Running the example:  
 
 
 
 

XOR example

✓1 =

0
�1

�

W2 =

1
�2

�

W1 =

1 1
1 1

�

✓2 = 0

X =

2

664

0 0
0 1
1 0
1 1

3

775

Feedforward Network

• Running the example:  
 
 
 
 
 
 
 

XOR example

net(1) = W1X + ✓1 =

2

664

0 �1
1 0
1 0
2 1

3

775

�(net(1)) =

2

664

0 0
1 0
1 0
2 1

3

775

Feedforward Network

• Running the example:  
 
 
 
 
 
 
 

XOR example

o

(2) = net

(2) = W2o
(1) + ✓2 =

2

664

0
1
1
0

3

775

Feedforward Networks

• most popular learning rule for performing
supervised learning tasks;

• No only used in Feedforward learning;

• propagates backward the error between the signal
and the network output through the network;

• continuous, nonlinear, differentiable activation
function

• sigmoid functions, hyperbolic tangent;

Back-propagation

Feedforward Networks

• Indexes i,j,k refer to neurons in input,
hidden and output layers;  
 
 
 
 
 
 

Back-propagation

1

2

j

m

x1

x2

xi

xn yl

yk

y2

y1

Feedforward

Back-propagation

wjkwij

Feedforward Networks

• Input signals flow from left to right and
error signals from right to left;  
 
 
 
 
 
 

Back-propagation

1

2

j

m

x1

x2

xi

xn yl

yk

y2

y1

Feedforward

Back-propagation

wjkwij

Feedforward Networks
• represents the weight that connects the input neuron i and

the neuron in the hidden layer j

• the weight between the neuron j in the hidden layer and the
neuron k in the output layer  
 
 
 
 
 
 
 
 
 
 

Back-propagation

1

2

j

m

x1

x2

xi

xn yl

yk

y2

y1

Feedforward

Back-propagation

wjkwij

wij

wjk

Feedforward Networks

• objective function for optimization is
defined as the MSE between the and the
desired output :

Back-propagation

ŷp
yp

ep,k = ŷp,k � yp,k

Feedforward Networks

• first step is to correct the weight
between j and k by minimizing the error;

• error gradient, learning rate;  
 
 
 
 

Back-propagation

wp+1,jk = wp,jk +�wp,jk

�wp,jk = ↵yp,j�(ŷp,k)

�wp,ij = ↵xp,i�(ŷp,j)

Feedforward Networks

• It gets uglier!

Back-propagation

Neural Networks

• Programming APIs:

• PyTorch;

• Theano;

• TensorFlow;

• …

Gets better

Neural Networks
Gets better

def forwardprop(X, w_1, w_2):
 """ Forward-propagation """
 h = T.nnet.sigmoid(T.dot(X, w_1)) # The \sigma function
 yhat = T.nnet.softmax(T.dot(h, w_2)) # The \varphi function
 return yhat

def backprop(cost, params, lr=0.01):
 """ Back-propagation """
 grads = T.grad(cost=cost, wrt=params)
 updates = []
 for p, g in zip(params, grads):
 updates.append([p, p - g * lr])
 return updates

Questions?

