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Machine Learning

• an algorithm that is able to learn from 
data;

• what do we mean by learning?



– Tom Mitchel

“A computer program is said to learn from 
experience E with respect to some class of 
tasks T and performance measure P, if its 
performance at tasks in T, as measured by 

P, improves with experience E.”



Machine Learning

• allows us to tackle tasks that are too 
difficult to solve with fixed programs

• process examples;

• tasks:

• classification, clustering, regression, 
translation, …



Machine Learning

• the experience: 

• unsupervised 

• inference from data structure

• supervised

• learn by examples;



Machine Learning

• The more data, the best!

• Overfitting and Underfitting;

• Common solutions:

• linear regression, k-means, logistic 
regression, support vector machines, 
etc…



Neural Networks



Neural Networks

• Receive input from other units and decides 
whether or not to fire.

• ~ 86 billion neurons in the human nervous 
system 

• connected with approximately 10^14 - 
10^15 synapses

Neurons



Neural Networks

• input signals from its dendrites;

• output signals along its (single) axon;

• interact multiplicatively (e.g.    ) with 
the dendrites of the other neuron based on 
the synaptic strength at that synapse 
(e.g.   );

• learn synapses strengths;

Neurons
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Neural Networks
• control the influence from one neuron on 
another:

• excitatory when weight is positive; or

• inhibitory when weight is negative;

• nucleus is responsible for summing the 
incoming signals;

• if the sum is above some threshold, then 
fire!

Neurons



Neural Networks
Neurons

Images from Stanford CS231



Neural Networks

• Function approximation machines;

•    

• maps  input to a  category

•   

• learn the value of the   parameters

y = f

⇤(x)

x

y

y = f(x;w)

w



Neural Networks

• Input, Output, and Hidden layers;

• Hidden as in "not defined by the output";

• Approximate          to          (training)  
 

y = f

⇤(x)y = f(x;w)



Neural Networks

• Seen as vector-valued, i.e. a vector is 
received as input and a new vector is 
produced as output;

• (vector-to-vector function);

• Units that work in parallel.

• (vector-to-scalar function);

Hidden Layers



Neural Networks
• Activation Function:

• Describes whether or not the neuron 
fires, i.e., if it forwards its value 
for the next neuron layer;

• multiply the input by its weights, add the 
bias and apply the non-linearity;

• Sigmoid, Hyperbolic Tangent, Rectified 
Linear Unit;



Neural Networks

class Neuron(object):
  def forward(inputs):
    """ assume inputs and weights are 1-D
    numpy arrays and bias is a number """

    cell_body_sum = np.sum(inputs * self.weights) + self.bias

    # ReLU activation function
    firing_rate = np.maximum(cell_body_sum, 0, cell_body_sum)
    return firing_rate



Perceptron

• In 1958, Frank Rosenblatt proposed an 
algorithm for training the perceptron.

• Simplest form of Neural Network;

• One unique neuron;

• Adjustable Synaptic weights;

• Simple activation function;



Perceptron
• Classifies inputs into two classes, with 
neuron output of either -1 or 1;  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Perceptron

• Where  is the activation function and   
the number of inputs

• Always converge on linearly separable 
classes;  
 
  net =

PJ1

i=1 wixi � ✓ = w

T
x� ✓

y = �(net)

� J1



Perceptron
• Training Procedure:

•   is the learning rate;

• finds a linear function that separates the 
classes;  
 
 
 
 

⌘

ep = yp � ŷp

wi(t+ 1) = wi(t) + ⌘xp,iei



Perceptron
• Can’t do:

• separate non linear classes;

• XOR function:  
 
 
 
 



Feedforward Networks
• typically represented by composing many 
different functions:  
 
 
 
 

• the depth of the network - the deep in 
deep learning! (-;

f(x) = f

(3)(f (2)(f (1)(x)))



Feedforward Networks

• Information flows from  , through  
computations and finally to  

• No feedback!  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Feedforward Networks

• Train using a back-propagation algorithm 
from 1969;

• fixes the weights in an output-to-input 
direction;

• each level has plays a specific role in 
the classification;

• detect the features in the input patterns;

Hidden Layers



Feedforward Networks

• The output of a Feedforward Network:  
 

• The output of the   layer:  

How it works

ŷp = o

(M)
p , o1p = xp

net

(m)
p = [W (m�1)]T o(m�1)

p + ✓

(m)

o

(m)
p = �

(m)(net(m)
p )
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Feedforward Network

• suppose we want to learn the behavior of 
the binary XOR operator:

• the input will be a pair of signals with 
value either 0 or 1.

• The output should be classified also into 
0 or 1;

XOR example



Feedforward Network

• The dataset:  
 
0  0  0  
0  1  1  
1  0  1  
1  1  0

XOR example

The network:
x1 x2 y

y
x1

x2
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Feedforward Network

• The architecture: 2 layer network (one 
hidden and one for output)

• Rectified linear Unit as activation 
function, i.e. 

• Why not a linear function?

XOR example

�(net(1)p ) = max(net(1)p , 0)



Feedforward Network

• The full expanded solution:  
 
 
 
 

XOR example

y = W

T
2 (max(0,WT

1 x+ ✓1)) + ✓2



Feedforward Network

• Running the example:  
 
 
 
 

XOR example

✓1 =


0
�1

�

W2 =


1
�2

�

W1 =


1 1
1 1

�

✓2 = 0

X =

2

664

0 0
0 1
1 0
1 1

3

775



Feedforward Network

• Running the example:  
 
 
 
 
 
 
 

XOR example

net(1) = W1X + ✓1 =

2

664

0 �1
1 0
1 0
2 1

3

775

�(net(1)) =

2

664

0 0
1 0
1 0
2 1

3

775



Feedforward Network

• Running the example:  
 
 
 
 
 
 
 

XOR example

o

(2) = net
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Feedforward Networks

• most popular learning rule for performing 
supervised learning tasks;

• No only used in Feedforward learning;

• propagates backward the error between the signal 
and the network output through the network;

• continuous, nonlinear, differentiable activation 
function 

• sigmoid functions, hyperbolic tangent;

Back-propagation 



Feedforward Networks

• Indexes i,j,k refer to neurons in input, 
hidden and output layers;  
 
 
 
 
 
 

Back-propagation 
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Feedforward Networks

• Input signals flow from left to right and 
error signals from right to left;  
 
 
 
 
 
 

Back-propagation 
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Feedforward Networks
•    represents the weight that connects the input neuron i and 

the neuron in the hidden layer j

•    the weight between the neuron j in the hidden layer and the 
neuron k in the output layer  
 
 
 
 
 
 
 
 
 
 

Back-propagation 
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Feedforward Networks

• objective function for optimization is 
defined as the MSE between the   and the 
desired output   :

Back-propagation 

ŷp
yp

ep,k = ŷp,k � yp,k



Feedforward Networks

• first step is to correct the weight 
between j and k by minimizing the error;

• error gradient, learning rate;  
 
 
 
 

Back-propagation 

wp+1,jk = wp,jk +�wp,jk

�wp,jk = ↵yp,j�(ŷp,k)

�wp,ij = ↵xp,i�(ŷp,j)



Feedforward Networks

• It gets uglier!

Back-propagation 



Neural Networks

• Programming APIs:

• PyTorch;

• Theano;

• TensorFlow;

• …

Gets better



Neural Networks
Gets better

def forwardprop(X, w_1, w_2):
    """ Forward-propagation """
    h    = T.nnet.sigmoid(T.dot(X, w_1))  # The \sigma function
    yhat = T.nnet.softmax(T.dot(h, w_2))  # The \varphi function
    return yhat

def backprop(cost, params, lr=0.01):
    """ Back-propagation """
    grads   = T.grad(cost=cost, wrt=params)
    updates = []
    for p, g in zip(params, grads):
        updates.append([p, p - g * lr])
    return updates



Questions?


