
ISA-Aging
Envelhecimento de Conjuntos de Instruções

Slides baseados na apresentação do artigo 

SHRINK: Reducing the ISA Complexity Via Instruction Recycling 

ISCA 2015

Rodolfo Azevedo

rodolfo@ic.unicamp.br

ERAD-SP 2017





Quiz

Abra a página:

kahoot.it

Aguarde o PIN number



ISA-Aging
Envelhecimento de Conjuntos de Instruções

Slides baseados na apresentação do artigo 

SHRINK: Reducing the ISA Complexity Via Instruction Recycling 

ISCA 2015

Rodolfo Azevedo

rodolfo@ic.unicamp.br

ERAD-SP 2017



EU



Introduction

ISA

Aging

x86 code is bigger than RISC (ARM)



What about other 

architectures?

ARM



What about other 

architectures?
PowerPC



• Intel 8086 family, variable-length format

• Operation code: opcode + other bits to 

uniquely identify an instruction

The x86 instruction set



Example



2.7

4.1
3.8

Average instruction opcode

size by x86 features

• Variable-length format no longer benefits most 

used instruction



AVX & SSE (vs x87)

SPEC2006FP

• Modern compilers use AVX or SSE as default 

ISA for floating point calculations



Solutions?



Breaking Backward

Compatibility

• 3 Radical approaches:

• (A) Reduce all opcodes to 2 bytes

• (B) Reduce all opcodes to 1 or 2 bytes

• 240 instruction encoded using 1-byte 

opcodes

• (C) Convert to a RISC-like ISA encoding

• Use ARM ISA for evaluation



Breaking Backward 

Compatibility

A
2-byte opcodes

B
1 or 2-byte

opcodes

C
RISC-like ISA



Evaluation

• x86 code is bigger than RISC (ARM) for most 

programs

• Solution (B) encoding shows that variable-length is 

better than RISC and x86.

x86

180 176



However...

• Breaking x86 backward compatibility is 

not an option.

• Software base

• Market

• What now?



Recycling

Mechanism



Recycling Mechanism
• Remove outdated and unused instructions

• Re-use opcode space to encode new 

instructions while maintaining backward 

compatibility

Benefits

• Open room for encoding new instructions with 

less bits - improving program size and cache.

• x86 complexity can be reduced, opening 

market for specific domains; e.g. low-end 

embedded devices (Quark?).



Two examples



• ISA release vs 

revisions

/ISA Releases



• ISA release vs 

revisions

/ISA Releases



Emulation

• Old software revision executing on new 

processor revision leads to backward 

compatibility issues

• Solution: software emulation mechanism via 

CPU generated traps.

• Allows non-sequential ISA evolution disputes 

over new extensions (XOP, FMA4, ...): 

vendors could emulate each other instructions 

using the trap mechanism.





Emulation

• Emulation must avoid using outdated 

instructions

• Emulation Routines:

• Operating System

• Firmware



Hardware

ISA

Revision

• 4-bits for ISA revision: extend PTE & TLB (6% 

increase in Core i7 920)

• Processor Front-end



Software Support

• Linker

• Operating System Loader

• Executable header annotated with software 

revision



Evaluation

• Static and Dynamic instruction analysis of 

Linux and Windows from 1995-2012



Static Analysis

• 505 unused instruction opcodes in all disks 

(30% of all 32-bit opcodes)

• 80% multimedia instructions - still on 

adoption

• There were no unused 1 and 2 bytes 

opcodes

• From 1995 to 2012:

• 30 instructions disappeared in Linux and 10

on windows.



Dead Instructions

Last time a specific amount of 

opcodes were last seen



Dead Instructions

22 opcodes were

last seen in Linux by 1996

Last time a specific amount of 

opcodes were last seen



Additional 8 opcodes 

disappeared by Ubuntu 8

Dead Instructions

Last time a specific amount of 

opcodes were last seen



6 opcodes were

last seen in Win95

Dead Instructions

Last time a specific amount of 

opcodes were last seen



Additional 4 opcodes 

disappeared by WinXP

Dead Instructions

Last time a specific amount of 

opcodes were last seen



Dynamic Analysis



Emulation Overhead

• Experiment - Linux kernel trap implementation

• Tolerating a 5% overhead: we can re-encode 

40% of the x86 ISA



Case Study

AVX Re-encoding

• Re-encode most used AVX instructions 

using 1-byte and 2-byte opcodes

• Several scenarios = AVX(n, m):

• n - number of reused 1-byte opcodes

• m - number of reused 2-byte opcodes



SPEC2006FP - Code Size

Relative to the original compiled AVX version

• AVX-(5,6) is 5.3% smaller on 

average



Cache Effects
AVX(5,6)

32K L1 I-Cache



Conclusion
• Static and Dynamic analysis shows that a great 

number of x86 instructions are obsolete.

• Recycling mechanism: re-encoding instructions 

without breaking backward compatibility

• Tolerating a 5% overhead: we can re-encode 

40% of the x86 ISA

• Case study: AVX re-encoding yields 5.3% 

smaller binaries and reduction up to 53% in 

cache misses.



Questions?


