
Lessons Learned Using ArchC in Computer Architecture Laboratory

Rodolfo Azevedo

Institute of Computing

University of Campinas - Brazil

rodolfo@ic.unicamp.br

Lucas Wanner

Institute of Computing

University of Campinas - Brazil

lucas@ic.unicamp.br

Abstract

This paper presents a set of laboratory experiments

based on the ArchC Architecture Description Language de-

signed to fulfill the practical knowledge on Computer Ar-

chitecture. These activities were designed over the last

years and have been used in our discipline of Laboratory

of Computer Architecture, where seventh semester students

apply the knowledge they acquired in the theory classes. We

present the experiments, covering 10 distinct topics in Com-

puter Architecture, along with specific sections of the text-

book to which they refer. We also show some of the expe-

riences we acquired during the last years both on learning

outcomes and student feedback.

1. Introduction

The Computer Architecture community engaged a quan-

titative/practical approach for most of the research and

teaching in the past decades. At the same time, abstraction

level risen from the basic transistors, to gate level, func-

tional units, and finally processor cores. Deciding the cor-

rect abstraction level to apply to one undergrad laboratory

class is a very interesting challenge, ranging from lower

level HDL processor implementation, to SoC designs, and

even higher level abstract simulators for performance anal-

ysis. No matter the selected approach, it is clear that the

experimental approach provides the best environment for

both strengthening students previous knowledge and engag-

ing students into new challenges.

The most recent ACM Curricula Recommendations lists

desirable learning outcomes for each major area in the body

of knowledge for Computer Science [12]. In Architecture

and Organization, core knowledge includes the use of CAD

tools for the simulation and evaluation of building blocks,

instruction-level parallelism and hazards, I/O, interrupts, ef-

fects of memory latency and cache memories, and other top-

ics relating to performance analysis.

ArchC [1,5,17] is an Architecture Description Language

designed to facilitate the design and evaluation of Instruc-

tion Set Architectures – ISA, by allowing users to create

and extend processors using a simple descriptive language

based on SystemC/C++. The ArchC toolset comes with a

simulator generator that is able to connect to external pe-

ripherals and also simulate cache behaviors. We will ex-

plore some of these features in the following sections of the

paper. ArchC has been used as a basis for research in em-

bedded systems development [4], memory hierarchy opti-

mization [20], rapid prototyping [13], power modeling [10],

multicore scalability [7], platform simulation [19], fast sim-

ulators [9, 21], among others.

Many computer architecture lab courses focus on build-

ing a processor or platform from the ground up, culminat-

ing in, for example, a software-based MIPS interpreter, or

a simple VHDL processor. We find that this strategy shifts

the focus from computer architecture to specific language

or ISA details. Because our students take a practical dig-

ital logic course as well as an assembly language course

prior to the Architecture lab, we are able to focus on core

and advanced issues such as performance accounting, cache

modeling, and superscalar processors.

At Unicamp, we have the following sequence of hard-

ware related disciplines: Digital Logic (1 theory and 1 lab-

oratory), Computer Organization and Assembly Language

(integrated theory and laboratory), and Computer Architec-

ture (1 theory and 1 laboratory). This paper talks about the

last laboratory of this sequence, that students enroll in their

seventh semester. For more than 10 years [16, 18], we have

been using sets of laboratory experiments designed over

ArchC. In this paper, we describe a series of teaching ex-

periments using ArchC, along with collected lessons from

our experience in teaching the course.

2. Teaching experiments with ArchC

In this section we describe a series of teaching experi-

ments using ArchC. These experiments are appropriate for a

two credits laboratory course following Patterson and Hen-

nessy’s Computer Organization and Design textbook [15],

and in some cases may require further web and library re-

search by students. Experiments range from basic perfor-

mance accounting to caches, multicore processors, and pe-

ripherals. While we chose to follow the MIPS architec-

ture described in the textbook, all of the experiments could

easily be adapted to use other architectures supported by

ArchC, including SPARC, PowerPC, ARM, and RISC-V.

Setup Prior to starting class assignments, we guide students

through the setup process for ArchC with a web-based tu-

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.1

torial. The setup process for ArchC requires the installation

of SystemC [3], a cross-compiler, and the ArchC simulation

framework core, as well as the download and compilation

of architectural simulation specifications. All of the experi-

ments described in this paper only require changes to the ar-

chitectural specifications, and not to the ArchC or SystemC

cores. We therefore find it beneficial to provide students

with pre-installed tools in shared network locations, which

reduces the setup process to export environment variables

pointing to appropriate installation directories. Because of

library and compiler version dependencies, ArchC requires

a uniform software environment across hosts sharing the

same installation. Students wishing to setup the tools in

their personal machines may therefore have to complete the

setup process as described in the ArchC documentation [1].

After setup, we ask students to download and compile

the MIPS architectural specification for ArchC. The ArchC

simulator generator (acsim) is then used to read the spec-

ification files a set of source files implementing the simu-

lator, which are in turn built with the help of a makefile.

In order to test the setup process, we ask students to create

a simple “Hello World” application, and to cross-compile

it for MIPS using the ArchC specifications. The final ob-

jective of the setup task is simply to run the simple app on

the simulator, but we find it helpful to include at this stage

a brief discussion on cross-compilation tools, optimization

levels, disassembly using objdump, and step-by-step exe-

cution with gdb.

Basic performance measurement [15, § 1.6] This intro-

ductory experiment is designed to familiarize students with

usage and customization of the simulation tool, as well as to

revise concepts relating to performance measurement, cycle

accounting for different types of instructions, and perfor-

mance comparison across a set of software programs.

The first part of the experiment has the students run-

ning different programs from the MiBench benchmark

suite [2] on the simulator. Students build the simulator us-

ing the previously installed simulator generator (acsim)

with the MIPS architecture simulator specifications, run

pre-compiled binaries on the simulator, and observe pro-

gram outputs. At the end of each run, ArchC outputs basic

simulation statistics, such as the total number of instruc-

tions executed and total simulation time. It is important at

this stage to emphasize the difference between simulation

time (i.e., elapsed wall time from simulation start to finish)

and benchmark execution time. Students are asked to derive

the latter, initially based on the total number of instructions

executed and a simple estimation of cycles per instruction

(e.g, CPI=1.2).

Next, students are asked to modify the simulator to count

the number of specific instructions executed by each bench-

mark. Instruction implementation in ArchC is captured

through a hierarchical structure: first, a general behavior

void ac_behavior(addiu)

{

dbg_printf("addiu r%d, r%d, %d\n", rt, rs, imm

& 0xFFFF);

RB[rt] = RB[rs] + imm;

dbg_printf("Result = %#x\n", RB[rt]);

};

Figure 1. Behavior method for instruction

addiu. The value in the source register is

added to the immediate value and stored in

the destination register.

method, which captures functionality common to all in-

structions (e.g., advancing the program counter), is exe-

cuted. Then, a type behavior method, and finally a specific

instruction behavior method are executed. An example of

the latter is shown in Figure 1 for the add immediate in-

struction. The core behavior of the instruction is adding

the source register (rs) and the immediate value (imm) and

storing the result in the destination register (rd). Arbitrary

SystemC/C++ code may be used to provide additional func-

tionality as needed. In the example, debug statements are

used to generate detailed execution traces. We ask students

write code to count the number of executions of a specific

instruction for different programs (one interesting example

for C programs is the MIPS R-Type add instruction).

Finally, we ask students to quantify benchmark perfor-

mance using a CPI table dividing instructions into dif-

ferent classes (e.g., memory access, branches, and logic-

arithmetic). The ArchC simulator building tool supports

automatic generation of instruction execution counters, so

that the technical work for the assignment consists in pars-

ing simulator output, categorizing instructions, and calcu-

lating the number of cycles for each benchmark based on

the CPI table. This experiment gives the first sense of pro-

cessor performance and its implications to the students.

Pipelines and hazard detection [15, §§ 4.7–4.8] This ex-

periment is designed to revise concepts related to pipelin-

ing, data and control hazards, and accurate performance ac-

counting in simulation. In an introductory task, students are

asked to recall why certain instructions in a pipelined pro-

cessor may take more than one cycle to complete, and to

think about the accuracy of the table-based cycle account-

ing method used in the previous experiment.

In the practical activity, we ask students to consult the

textbook and to create a table of hazard types, both for con-

trol and data. Next, we ask them to list which hazards

may be resolved through forwarding, and which instruc-

tions may be affected by each type of hazard. The core ac-

tivity is then to create strategies for hazard detection in the

simulator. This typically involves maintaining some history

of recently executed instructions with their output registers,

and for each new instruction, verifying readiness of source

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.2

registers, and accounting for bubbles or stalls (extra cycles)

when appropriate. Finally, we ask students to compare the

results of the new accurate cycle accounting with the table-

based method used in the previous experiment.

Branch Prediction [15, § 4.8] An advanced variation of the

previous experiment asks the students to implement branch

predictors to reduce stalls and improve performance. Stu-

dents may for example compare performance under three

scenarios: i) with no branch prediction, ii) with a static

branch predictor (branch always taken or always not taken),

and iii) with a simple dynamic branch predictor (e.g., a 2-bit

prediction scheme). We ask the students to put their predic-

tor implementation in the global behavior to be executed for

all instructions and, at the same time, to restrict the amount

of instruction information they have access to. For the pre-

diction part, they do not know which instruction they are

dealing with. Another key challenge for the students to un-

derstand is that they can execute the branch validation code

in the next instruction, already knowing if the control flow

changed. At the end of the experiment, they are asked to up-

date their performance table from the previous experiments

with the extra cost of the branch prediction.

Superscalar issue [15, § 4.10] In the earlier pipelining ex-

periment, students should quickly realize that forwarding

takes care of most data hazards. It may be interesting at this

stage to contrast the performance of single-issue pipelines

with that of superscalar ones. When comparing single-

issue and superscalar pipelines, students may find that many

benchmarks suffer from a large number of data dependen-

cies, and that performance does not necessarily scale with

issue width. This realization may in turn lead into a dis-

cussion on out-of-order execution. Because the textbook

presents only a brief introduction to superscalar pipelines,

it may be beneficial to supplement the reading for this exer-

cise with other sources such as [11, §3], or with examples of

superscalar pipelines in commercial processors. For the su-

perscalar processors, they should understand when multiple

instructions could be executed simultaneously and compare

this approach to the hazard detection. At the end of the ex-

periment, students are asked to derive program performance

considering a specific superscalar implementation.

Memory-mapped I/O and peripherals [15, §4.9] In this

exercise, students are asked to implement a simple periph-

eral and to write software that interacts with the peripheral

through memory-mapped I/O. This is our first opportunity

to show a broader view of functionalities in the simulator

beyond the instruction set emulation components. ArchC

allows for systematic connection of processor cores, mem-

ory, and peripherals in virtual platforms. Transaction-Level

Models (TLM) [6] are used to separate computation from

communication in a platform model. The basic point of

connection of a processor core with other components in a

platform is a TLM channel. The port provides methods for

ac_tlm_rsp ac_tlm_router::transport(const

ac_tlm_req &request) {

if((request.addr < 100*1024*1024)) {

return MEM_port->transport(request);

}else{

return PERIPHERAL_port->transport(request);

}

}

Figure 2. TLM transport example

reading and writing words at specific addresses, and there-

fore are seen by the processor as if it were an ordinary mem-

ory element. For each memory request, ArchC creates a

TLM request package, and calls the slave transport func-

tion through the channel. The slave transport implementa-

tion in turns directs requests to appropriate platform compo-

nents according to request addresses. This allows for simple

connection of new platform components such as memories

and peripherals. Each new component must implement read

and write methods that respond to TLM requests. Figure 2

shows an example of TLM transport. For addresses smaller

than 100MB, the request is directed to the memory port, and

for other addresses it is directed to a peripheral.

We ask students to implement a peripheral providing

test-and-set functionality. The peripheral is mapped to a

single memory location. Write operations to the periph-

eral’s address store the written value into a variable. Read

operations return the stored value, and write a value of 1

to the variable. This peripheral can be used to implement

a mutual exclusion abstraction. Entering the critical region

corresponds to a busy loop reading while the value at pe-

ripheral’s address is equal to 1. Leaving the critical region

corresponds to writing a 0 to the peripheral. While this

peripheral is not particularly useful in the single-core sce-

nario, it will later be used in a multicore environment. For

the MIPS processor, students also need to handle the endian

difference among the host processor, an x86, and the simu-

lated MIPS processor. For all previous experiments, ArchC

took care of the endian but for the external peripherals, the

users must be aware of it, making conversions on the read

and write operations.

As an advanced version of this exercise, we may ask

students to replace the peripheral by the two instructions

MIPS use to implement mutual exclusion (ll and sc). For

this method to perform the correct behavior, we rely on the

fact that SystemC is based on discrete event simulation. In

this way, all instructions behaviors are executed individu-

ally without concurrency. This method may be further im-

proved when students design a cache coherency protocol in

a later experiment.

Caches [15, §§ 5.3–5.4] The objective of this experiment is

to revise caches, and to quantify the impact of cache design

choices to program performance. We divide the experiment

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.3

into two parts: first, students generate memory access traces

for analysis with a cache simulator, and then students imple-

ment their choice of cache architecture in the simulator.

For the first part of the experiment, students generate

memory access traces for analysis with a cache simulation

tool such as Dinero [8]. Memory accesses for instruction

fetches may be easily traced through the first-level, global

instruction behavior method. Data memory accesses require

changes to load and store instructions. For Dinero specifi-

cally, traces may be created in a text file, or fed directly into

the simulator, which can be built into ArchC as a library.

Given a memory access trace, Dinero provides performance

analysis for caches with configurable levels, sizes, associa-

tivity, fetch, and write policies. Students are asked to select

a number of cache configurations, and evaluate their perfor-

mance for a set of benchmarks.

Following their initial analysis, students are asked to se-

lect one cache configuration for implementation in ArchC.

The memory implementation in ArchC essentially stores

and retrieves data into an array of size equal to the declared

memory size. For this experiment, students must simply

introduce a cache into the processor–memory path. The

challenge of the exercise lies in correct cache implementa-

tion. In particular, programs must produce identical outputs

across the cached and non-cached platforms, and cache per-

formance should match the one reported by the simulator in

the previous part of the exercise.

A memory performance model could be created after-

wards, improving even further the system performance eval-

uation. At this point, we ask the students to consider only

two fixed delays, one for the L1 cache and another for mem-

ory access. We ask the students to calculate the AMAT (Av-

erage Memory Access Time) for each program they run.

Multicore processors [15, §6.5] The objective of this ex-

ercise is to create a multicore platform, and to write par-

allel software that takes advantage of the multiple cores.

Compared to similar exercises students may have seen be-

fore, for example, in an introductory parallel programming

course, our focus is on the hardware/software mechanisms

that enable parallel applications. In order to complete the

exercise, students must learn to manage data stacks for each

processor, and create basic synchronization and mutual ex-

clusion abstractions.

In the first experiment, we ask the students to design

a dual-core processor based on the MIPS platform and to

correctly execute the initial setup of this processor. ArchC

makes it easy to declare a dual core processor. It is just

a matter of declaring the second processor as in mips

core1("core"), core2("core2"); and connect-

ing both cores to the external bus or memory. The key chal-

lenge of this experiment relies on the booting process. Like

all dual core processors, only one of the cores should start,

executing the startup code, setting up the environment and,

Address Symbol or segment

0x0000000 Data+ BSS segments

...

Stack space for processor 1

...

0x7FF0000 Stack Pointer for processor 1

Argument vector for processor 1

...

Stack space for processor 0

...

0x7FFF000 Stack Pointer for processor 0

Argument vector for processor 0

0x8000000 RAM END

Figure 3. Memory map example for two pro-

cessors

finally, signaling to the second processor to start. This task

can be accomplished by creating an external controller and

an enable signal for each processor. Initially, only one core

has its enable signal set. Later, this primary core uses the

external controller to enable the second one. This process

could go on for several cores as necessary.

At this moment, the first core could start its execution

but it is still necessary to setup the execution environment.

As for ArchC MIPS model, this tasks involves setting up

the stack address and split the execution flow between the

cores. The stack setup is easily executed inside the ArchC

model. The correct behavior is to create one stack to each

core and we recommend the simple implementation inside

the processor startup code. As for the execution flow split,

students may use the previous created mutual exclusion pe-

ripheral or an specific booting sequence that independently

enables each core with the respective id.

The last experiment in this exercise asks the students

to emulate the PThread [14] library so that traditional

thread code be executed inside the simulated environment.

For this task, students are required to create/mimic the

pthread create code that enqueue one function to be

executed by another core in the system. We do not require

a scheduler, so each function should be executed to com-

pletion. Each extra core besides the first should wait for a

data structure that is updated by pthread create calls.

Whenever this list is not empty and there is an idle core, the

first function in the list will be executed. This environment

could be incremented by adding extra PThread functions.

Figure 3 shows an example of a memory map for a plat-

form with two processors sharing 128MB of RAM. In ad-

dition to setting up the stack pointer (register R29 in MIPS)

to an appropriate location for each core, the arguments

for main must be copied and setup in accordance with the

MIPS ABI. The first two arguments for a function should

be passed in registers R4 and R5 respectively. For the main

function, the first parameter is the argument count, and the

second parameter is the pointer to the argument vector. As

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.4

#define N 1024

#define NCORES 2

int coreNumber = 0, sum = 0, done = 0, v[N];

int main() {

acquireLock();

int myCoreNumber = coreNumber++;

releaseLock();

int start = myCoreNumber * N/NCORES;

int finish = (myCoreNumber+1) * N/NCORES - 1;

int mysum = partialSum(v,start,finish);

acquireLock();

sum += mysum;

done++;

releaseLock();

if (myCoreNumber == 0) {

while (done != N);

printf("Result: %d\n", sum);

}

}

Figure 4. Example of primitive work division

and synchronization for multicore

a simplification, we can reserve a fixed length of memory

for the argument vector (e.g. 4 KB).

Figure 4 shows a simplified example of memory shar-

ing and synchronization across cores. The partialSums

function, not shown in the example, simply iterates over

a range of the input vector, returning the sum of all el-

ements in the range. Global variables will be placed in

the program’s data segment, and therefore will be shared

across all cores. Local variables are placed relative to each

core’s stack pointer. This way each core may compute a

partial sum over the input vector independently (note that

the simple work division strategy presented in the code

only works for even vector lengths and number of cores).

The acquireLock and releaseLock functions may

be reused from the previous exercise about peripherals in

order to ensure mutually exclusive access when writing to

global variables. Primitive synchronization is performed

through a worked counter (the done variable in the exam-

ple). Students may build upon this simple strategy to build

a PThreads-like interface for parallel programming.

One problem students frequently face in this exercise is

proper stack sizing. If the stack for any core exceeds the

allotted space, there will be data corruption across cores. A

second problem is often found in the evaluation of the cho-

sen parallel program. In many cases, synchronization over-

heads may lead to sub-optimal parallel performance. Re-

placing global locks with local locks protecting specific re-

gions of memory or peripheral often ameliorates this prob-

lem. This issue is also a good opportunity to recall Am-

dahl’s law.

Cache Coherence [15, §5.10] This exercise relates both to

caches and multicore design and requires students to imple-

ment a cache coherence protocol either through directory or

snooping. This implementation increases the system com-

plexity requiring more attention to the details. Usually, the

high level understanding of a cache coherence protocol is

not enough to solve all implementation details and we give

references to the students so that they can better understand

the all required sub-states of the cache coherence protocol.

Uncore Accelerators The final experiment in the course

asks the students to create an off-core accelerator and use it

in order to speed-up the execution of a chosen application.

Examples include floating-point co-processors, multimedia,

cryptographic, or vector processing accelerators. Students

must implement the peripheral for ArchC, define a timing

model and software/hardware interface protocol, and create

application-level abstractions or drivers to take advantage of

the accelerator. Alternatively, the exercise may ask the stu-

dents to implement a complex peripheral, such as a frame-

buffer based display, a network interface card, or a sound

card. In this case, the complexity exercise shifts from pro-

gram acceleration to peripheral implementation.

3. Lessons Learned

In this section, we highlight lessons learned in teaching

Computer Architecture Lab using ArchC.

Infrastructure matters: we found that oftentimes infras-

tructure issues take valuable time away from content and

experiments. Releases of ArchC and SystemC have depen-

dencies to specific compiler and library versions, and mix-

ing and matching tools across versions often leads to errors

that are perceived as cryptic by students. Due to inevitable

differences in environments in students personal machines,

it is beneficial to setup a uniform laboratory environment,

complete with all the required tools and a pre-compiled ver-

sion of ArchC. We typically allow students to setup ArchC

in their own machines, but support only the pre-installed

version. Recently, we also offered a virtual machine setup

to the students. Because experiments usually require extra-

class time to complete, there should be remote access avail-

able to students. Some experiments, such as generating

memory traces, may have significant memory and storage

requirements. Finally, while a small class may be manage-

able by a single instructor, in larger classes a teaching assis-

tant may be needed to provide support for tools.

Programming skills: by the time our students take

the Architecture Lab course, they have completed several

semesters of programming-intensive courses. Nevertheless,

we found that oftentimes, ArchC is the first large codebase

students have worked with. Most of the experiments in our

course require only small changes to the ArchC models, but

students often struggle with finding appropriate places in

code to make the changes, as well as with debugging issues

such as segmentation faults or incorrect simulator behav-

ior. In our first exercise, we typically include a brief crash-

course on basic tools such as binutils and gdb. Students also

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.5

have difficulty moving from the high-level specification of

the problem we provide to a viable implementation strategy.

Attention to details: students typically take our lab

course right after completing the prerequisite Computer Ar-

chitecture course, and we found that most of the knowledge

from the previous course is retained. Students can typi-

cally describe concepts such as benchmarks, CPI, pipeline,

cache, and superscalar. Nevertheless, in translating these

concepts to code, attention to detail is oftentimes lacking,

perhaps due to the nature of the simulator, which by design

uses arbitrary C code to simulate architectural functional-

ities. For example, students have designed caches with a

number of blocks that is not a power of two. Sometimes, in

the theory course, we only focus on higher level structures

without implementation detail, like the cache coherence ex-

ample, where sub-states are required for correct implemen-

tation but not discussed in the theory course.

Structuring of work: the experiments described in this

paper may be structured both as individual exercises focus-

ing on each functionality, as well as group projects encom-

passing two or three experiments. We found that it is bene-

ficial to structure the more fundamental experiments as in-

dividual exercises, and the more complex ones as projects

for groups of 3 or 4 students. While groups may suffer

from an imbalanced distribution of work, they allow stu-

dents to aim for more ambitious results. Interesting student

projects encompassing peripherals, accelerators, and multi-

core platforms have included a Playstation One simulator,

an efficient Mandelbrot set generator, electronic voting sys-

tem, digital TV platforms, and so on.

Student feedback: every semester, students respond to a

course feedback survey. Our feedback has generally been

positive, but recurring complaints include a higher-than-

expected course load (ours is a two-credits course), and the

aforementioned infrastructure issues. Many students like

the practical nature of the course, particularly for advanced

concepts such as cache modeling and superscalar proces-

sors. Following are two quotes from student evaluations:

“The challenge of implementing the hardware system used

in the theory course is very interesting and improved my

understanding of Computer Architecture.” “Projects are in-

teresting and instigating, mostly by being open ended.”

4. Conclusions

This paper presented a set of experiments covering 10

distinct topics on Computer Architecture that we have been

using at University of Campinas. All experiments were

based on ArchC, an Architecture Description Language, al-

lowing the students to strengthen their knowledge from the

theory classes.

We found that they way we designed the experiments

allowed us to focus on the Computer Architecture concepts

rather than a specific hardware description language or low

level simulator.

References
[1] ArchC project website. http://www.archc.org.
[2] MiBench embedded benchmark suite. http://vhosts.

eecs.umich.edu/mibench//.
[3] SystemC project website. http://accellera.org/

downloads/standards/systemc.
[4] R. Azevedo, S. Rigo, and G. Araujo. Projeto e Desenvolvi-

mento de Sistemas Embarcados Multiprocessados, pages

331–386. Ed. PUC-Rio, 2006.
[5] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo,

C. Araujo, and E. Barros. The archc architecture descrip-

tion language and tools. Intl. J. Par. Program., 33(5), 2005.
[6] L. Cai and D. Gajski. Transaction level modeling: an

overview. In CODES+ISSS, 2003.
[7] L. Duenha, G. Madalozzo, T. Santiago, F. Moraes, and

R. Azevedo. Mpsocbench: A benchmark for high-level eval-

uation of multiprocessor system-on-chip tools and method-

ologies. J. of Parallel and Distributed Comp., 95, 2016.
[8] J. Elder and M. D. Hill. Dinero IV trace-driven unipro-

cessor cache simulator. http://www.cs.wisc.edu/

˜markhill/DineroIV/, 2003.
[9] M. Garcia, R. Azevedo, and S. Rigo. Optimizing simulation

in multiprocessor platforms using dynamic-compiled simu-

lation. In WSCAD-SSC, pages 80–87, 2012.
[10] M. Guedes, R. Auler, E. Borin, and R. Azevedo. An ArchC

approach for automatic energy consumption characteriza-

tion of processors. In RSP, pages 57–63, 2012.
[11] J. L. Hennessy and D. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, 5th ed., 2011.
[12] Joint Task Force on Computing Curricula, ACM and IEEE.

Curriculum Guidelines for Undergraduate Degree Pro-

grams in Computer Science. ACM, 2013.
[13] F. Kronbauer, A. Baldassin, B. Albertini, P. Centoducatte,

S. Rigo, G. Araujo, and R. Azevedo. A flexible platform

framework for rapid transactional memory systems proto-

typing and evaluation. In RSP ’07, pages 123–129, 2007.
[14] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Program-

ming. O’Reilly, 1996.
[15] D. Patterson and J. L. Hennessy. Computer Organization &

Design: The Hardware/Software Interface. 5th ed., 2013.
[16] S. Rigo, R. Azevedo, P. Centoducatte, and G. Araujo. Uma

nova abordagem para um curso de projeto de sistemas com-

putacionais. In WEAC, 2006.
[17] S. Rigo, R. Azevedo, and L. Santos. Electronic system level

design: An open-source approach, 2011.
[18] S. Rigo, M. Juliato, R. Azevedo, G. Araujo, and P. Centodu-

catte. Teaching computer architecture using an architecture

description language. In Proc. workshop on Comp. architec-

ture education (WCAE). ACM, 2004.
[19] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil,

G. Blanc, C. Bechara, and R. David. SESAM: An MPSoC

simulation environment for dynamic application processing.

In Intl. Conf. on Comp. and Information Technology, 2010.
[20] P. Viana, E. Barros, S. Rigo, R. Azevedo, and G. Araujo.

Modeling and simulating memory hierarchies in a platform-

based design methodology. In DATE ’04, page 10734, 2004.
[21] H. Wagstaff, M. Gould, B. Franke, and N. Topham. Early

partial evaluation in a jit-compiled, retargetable instruction

set simulator generated from a high-level architecture de-

scription. In DAC, May 2013.

International Journal of Computer Architecture Education (IJCAE)

v.5, n.1, December 2016 - p.6

