
A Double-Phase Evolvable Hardware Architecture Learning Platform: Design,
Simulation, and Prototyping Testbed

Bernardo Guerra Pereira Cunha
Flávia Magalhães Freitas Ferreira

Pontifical Catholic University of Minas Gerais
Post-Grad. Prog. of Electrical Engineering

Minas Gerais, Brazil
bernardogpcunha@gmail.com
flaviamagfreitas@gmail.com

Carlos Augusto Paiva da Silva Martins
Pontifical Catholic University of Minas Gerais

Post-Grad. Prog. of Informatics
capsm@pucminas.br

Abstract

The world is changing. Scientists and engineers cre-
ate solutions for daily problems every day. Time is a cru-
cial factor in many contexts, for example, academia. Un-
dergraduate, master, or doctorate tasks in engineering and
computer science tend to use enhanced methods that are
computationally expensive for regular computers. It is the
case of Hardware development. When a research issue
deals with complex and multidisciplinary topics, like Evolv-
able Hardware, things become even worse. In this case,
students and researchers spend a huge amount of time pro-
totyping and making experiments in traditional EDA tools.
This work shows the initial results of a double-phase evolv-
able hardware design learning platform, a combination of a
computational interface for logic simulation and hardware
prototyping.

1. Introduction

EHW (Evolvable Hardware) is a field of knowledge that
emerged in the early 1990’s due to the development of Re-
configurable Computing Devices, such as the Field Pro-
grammable Gate Arrays, or FPGAs. According to Haddow
and Tyrrell [1], it is the embodiment of evolution in a phys-
ical media. EHW has been widely applied in contexts such
as digital image processing [2] [3] and digital circuit design
[4] [5] [6], but there are also applications in signal process-
ing [7], computer networks [8], robotics [9], among other
areas. Evolvable Hardware can also be comprehended as
the intersection of two areas of computing: Reconfigurable
Computing (RC) and Evolutionary Computing (EC) [10].
That is, it is the application of nature-inspired abstractions
in the codification of algorithms (EA) implemented in re-

configurable hardware (RC) [11] [12]. The most recognized
digital devices in the RC literature are the FPGAs [4].

There are critical issues related to hardware development
in general: Firstly, digital designers must have expertise
in the use of the aimed IDE (Integrated Development En-
vironment), and also in some specific concepts related to
electronic design and reconfigurable computing; Further-
more, hardware design is technology-dependent, that is, you
may not change the FPGA distributor (Altera/Intel, Xilinx,
etc.) because the IDEs are different and the projects work
only in the aimed FPGA’s distributor; Finally, digital de-
sign and simulation is something time-consuming. Simulat-
ing microseconds of hardware operation may take seconds
or minutes in traditional hardware development platforms,
as shown in Fig.1. For complex projects, such as Evolv-
able Hardware Architectures, the simulation time can make
it unfeasible to explore the design possibilities. For EHW
students and researchers, it would be necessary to investi-
gate the architecture parameters and explore the evolution-
ary algorithm, even to absorb the concepts and have quick
preliminary results, something not viable to make in tradi-
tional platforms, like Quartus II, the IDE presented in Fig.1.

This paper’s objective is to expose a learning platform
for evolvable hardware architecture learning and develop-
ment. This artifact was implemented in a Master’s De-
gree in Electrical Engineering, whose goal was to develop
an EHW Architecture to solve problems related to com-
binational logic, like in [13]. The learning platform con-
sists of two different approaches, addressing two different
phases of development: one in the research and design, and
another in the testing and execution of the application in
the final device, analyzing the project in the real world.
The first phase removes the necessity of acquiring equip-
ment and coding in Hardware Description Languages, like
VHDL (Very High-Speed Integrated Circuits Hardware De-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 15



Figure 1. Post-synthesis simulation considering the main variables in EHW. Every 100 microseconds
represent a new genotype, considering the time limit of 1 miliseconds.

scription Language). It is also independent of the FPGA
technology and vendor. The student/developer only focuses
on the concepts and the abstraction of the architecture.

These two phases are financially feasible and techni-
cally approachable. They shouldn’t add hardships to the re-
searchers. On the contrary, they are supposed to offer more
technical and scientific mechanisms. The first one includes
modeling the system on a PSE (Problem Solving Environ-
ment) coded and developed in MATLAB, a software simu-
lation program. One of the advantages of this approach is
that MATLAB has graphical interfaces that enable to auto-
mate of the process of coding and testing, and it is more
advantageous to export the results, either in graphics or in
spreadsheets format. The second phase is based on the use
of low-cost hardware to interact with the aimed hardware
device (the FPGA), working as a prototyping verification
testbed. In this paper, it is used an Arduino Uno, plugged
into the terminal of a personal computer, which can tell pre-
cisely how the hardware system is working. Real stimula
can be given to the hardware device to check the FPGA cir-
cuit’s functional behaviors, in real-time.

2. Evolvable Hardware Basic Concepts

The concepts around Evolutionary Computing lays in the
foundations of biology and genetics. First of all, Evolu-
tionary Computing has abstractions from nature-based evo-
lution, such as mutation, crossover and elitism [11]. But
the overall objective of this optimization algorithm is that
the fittest individual or candidate solution survives until the
next generation. The candidate solution is also called geno-
type, and in EHW it represents a set of bits, ’0’ and ’1’. In
the present work’s context, it can be interpreted as a code
that implements a digital circuit. The phenotype is the man-
ifestation of the genotype in the environment, or the descrip-
tion of the circuit’s behavior, applying signals stimula as the
its input. But how does the circuit evolve? Where is the
evolution mechanism?

In order to have an artificial selection, the individuals
must be evaluated. This final result of this process is called
fitness. in digital circuit design, a usual metric for this eval-
uation is the accuracy according to the desired problem’s
truth table and the number of logic gates utilized. This value
is used to determine the genotype(s) that are good enough
to reproduce with other genotypes (crossover). Mutation
is a feature to increase the diversity in the population (the
whole group of individuals in a generation), and elitism is
a feature that increases the chance that the fittest individ-
ual survive to the next generation. As the time goes by, the
quality of the individuals will be improved, and they would
be fitter to execute the finality of the circuit design [4].

3. A double-phase supportive methodology for
hardware development

The present article describes the development of an
Evolvable Hardware Architecture Learning Platform. As
EHW is a complex issue, involving different areas of knowl-
edge (Computer Architecture, Evolutionary Computing,
Reconfigurable Computing), two approaches supported the
process of implementing an EHW Architecture.

The presented methodology could be implemented by
other students, researchers or developers, by undergradua-
tion/ post-graduation students or professionals, in fields like
Electrical Engineering, Computer Science/Engineering and
correlated areas. Fig.2 shows the flow chart for the develop-
ment of an EHW, including the double-phase methodology.

The first phase consists on using the project requirements
and definitions and configurating the virtual environment to
start designing the architecture. In the process, the PSE user
adjusts and simulates the architecture until it presents a rea-
sonable solution to be implemented. It is notable that this
kind of simulation requires less development workforce and
less time to achieve a solution than traditional methodolo-
gies, such as IDEs and electronic CADs (Computer-Aided

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 16



Figure 2. The double-phase methodology flow chart, containing the design simulation in the PSE
(blocks 2 and 3), and the verification testbed (block 7).

Design) tools. The second phase is the use of low-cost hard-
ware to assist testing and validating the architecture design.
This second phase automates the manual process of testing
the implemented architecture or algorithm, because the Ar-
duino was programmed to send verification signals and to
give a response according to what it receives.

Both phases supported the development of the EHW
architecture. They can be used by any Computer Sci-
ence/Engineering student or professional in order to im-
prove their knowledge about the issue or to develop better
EHW solutions in a shorter period of time.

3.1. Phase 1: Evolvable Hardware Logic
Simulation PSE

During the initial research period of the author’s Mas-
ter’s degree, plenty of reading and preliminary/investigatory
implementations were made. Technical implementations
in Evolvable Hardware aren’t usually available on Inter-
net, even in detailed papers. However, by participating in
specific disciplines, the implementation of each basic mod-
ule of the EHW was possible. The process of creating an
EHW Architecture, delivering accurate results, took around
10 months, including hours of coding time, designing, re-
search, brainstormings with colleagues, professors and ad-
visors. Some methodological aspects were still pending
at that time. For example, when the Architecture passed
through tests and analysis, there wasn’t an automatic mech-
anism to averiguate the accuracy/correctness of the result.

The resulting output variables are directly related to the in-
puts, so it is possible to calculate the answers, but the man-
ual process usually took around ten minutes, for one indi-
vidual, due to the VRC circuit’s complexity.

Therefore, a question emerged in the summer break of
the University: what if there was an interface capable of an-
swering back the final output metrics easily and fast? The
programming language chosen to implement this feature
was MATLAB, because it was the language utilized in pre-
vious disciplines and experiences of the researchers. Decid-
ing which language or platform was going to be used was
not the focus at that time, because the interface would be
working as an auxiliar tool. And the best part is that is was
coded in a couple of days, and it is able to deliver the cir-
cuitry output (boolean equation, number of logic gates used,
phenotype, fitness value) in a matter of seconds, given the
inputs (problem’s truth table and the genotype). A remark-
able fact is that the genotype verification is a basic and im-
portant process that was executed until the last experiments
of the research.

Since the MATLAB and VHDL VRC implementations
were completely matched, and the genotype verification
time was reduced from minutes to seconds, another ques-
tion was brought to mind: What if there was a basic evo-
lutionary algorithm interface, flexible and parametrized, in
a way that it would be easier to investigate the parameters
and explore the EHW design space? Considering the prob-
lem mentioned about the time hardware simulation might
take, a basic MATLAB instance of the VHDL EA was im-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 17



Figure 3. PSE tab for circuit evolution. Given the truth table and the number of generations limit, it
evolves and presents the genotype, its fitness, phenotype and the final boolean equation, beyond
the evolution curve.

plemented and tested. As the PSE (Problem Solving En-
vironment) strategy was presented at a previous discipline,
a basic alphanumeric interface was developed to assist the
calculations and validating future features of the EHW Ar-
chitecture.

A PSE is a user-friendly interface that makes the pro-
cess of solving a particular problem easier, and it is usually
used in complex problems development, study, or research
[14],[15],[16].

The concepts of evolutionary computation were still be-
ing assimilated by the author, several implementation is-
sues were answered by using the PSE. For example, an-
swering the question: how could the crossover be better im-
plemented? Fig. 4 represents an attempt to generate better
genotypes from two different ”parents”. Different possi-
bilities and approaches were tested and the interface deliv-
ered the comparison metrics in a tabular and graphic point
of view. Would there be an optimal cutoff bit to start the
crossover? Would there be only one cutoff bit? Would the
order of arrangement be important to the final result? These
questions were also answered in a set of experiments in the

PSE.
Then the PSE interface was developed to represents a

sample of the tested genotypes regarding the validation of
the MATLAB PSE, so future experiments are considered
reliable in terms of the ENA’s characteristics and response.
The PSE also simulates the evolution of a desired gate, as
seen in Fig. 3.

The PSE has many tabs, each one with a distinct ob-
jective. The one presented in Fig. 3 show all the desired
outputs of the EA: The best genotype, its fitness, the num-
ber of logic gates, the phenotype, and the boolean equation,
which is a differential feature (in hardware simulation the
equation cannot be displayed). The user can insert the max-
imum number of generations and the reference vector (truth
table), and, after the evolution is complete, he/she can ver-
ify the circuit simulated in virtual IOs (two switches and a
lamp). In this tab the user can make a global simulation
of the Evolutionary Algorithm, including all the features of
the implemented EA. On the other hand, the tab presented in
Fig.4 provides the exploration of only one aspect of the EA:
the crossover. It was necessary because this feature was is-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 18



Figure 4. Crossover tab in the EHW PSE. Users can export the simulation results in tables and graph-
ics.

sue of several questions in the architecture implementation.

3.2. Phase 2: Evolvable Hardware Physical
Prototyping Testbed

Arduino is a well-known hardware prototyping platform
made for designers, architects, and professionals from ar-
eas of knowledge unrelated to Computing and Engineering.
However, it has demonstrated to be a supportive tool for
teaching programming, electronics, design concepts, both
for school and college education.

As it is a low-cost hardware, easy to use and very popu-
lar, students have been using Arduinos in their DIY projects,
as well as in academical studies. Areas like Internet of
Things (IoT), Digital Control and Telecommunication are
frequently approached by the microcontroller board.

Programming an Arduino is easy and there is an online
repository of codes, and dozens of forums to assist begin-
ners as well as expert developers. Beyond that, the commu-
nication between the Arduino and a Personal Computer was
made easy through terminals, in a way students can monitor
what is happening and also actuate in the experiments. Do-
ing so, it is more feasible to verify the circuitry’s functional

characteristics.
When we simulate in a hardware development environ-

ment, we can only have a glimpse of the circuitry’s behav-
ior. Post-synthesis simulation, as the one presented in Fig.
1, helps validating the timing behavior of the signals, and
it makes possible the visualization of the information flow
through the waveforms. However, some behavior analysis
are only possible when we perform in hardware, and it en-
sures the circuit’s correct operation.

Nevertheless, when we implement a solution in hard-
ware, there is no financially feasible way to monitor and
inspect the signals that are inside the FPGA. Fig. 5

4. Results and Discussion

The input genotypes simulated to validate the MATLAB
interface were generated randomly by Quartus II 16.1 IDE
(Integrated Development Environment utilized to create the
Architecture). The results presented in Table 1 indicates
that the MATLAB algorithm has the same functional perfor-
mance of the EHW Architecture implemented in the FGPA.

Another feature implemented in the PSE is a data visual-
ization tool for the VRC. It is useful to discover if the possi-

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 19



Figure 5. Evolvable Hardware FPGA and a
testing Arduino Uno, emulating physical in-
put stimula.

Hardware MATLAB
Genotype Phenot. Fit. NG Phenot. Fit. NG
2AC4CC 0010 3 2 0010 3 2
00B129 0000 2 7 0000 2 7
1B639D 1111 2 1 1111 2 1
104125 0011 2 5 0011 2 5
54218 0010 3 4 0010 3 4

3BE17C 0000 2 1 0000 2 1
2E8CA1 0010 3 2 0010 3 2
21C96A 0100 3 5 0100 3 5
12D225 1100 2 7 1100 2 7
05F252 0100 3 4 0100 3 4

Table 1. Summary of the simulation re-
sults: post-synthesis hardware simulation
and model verification in Matlab.

ble solutions implemented through the VRC correspond to
the optima circuits or not, and also how the candidate so-
lutions are distributed in the solution space. It also helps
discerning whether a designed VRC is suitable for every

circuit possible. In fact, a well designed VRC should have
the representation of the optimum candidate solution in all
the different problems. Fig. 6 shows an example of the
XOR gate implemented by the VRC, using AND, OR and
NOT gates. The points in red represent the optimal solu-
tions (maximum functional fitness and minimum number of
logic gates), while the blue ones represent the sub-optima
solutions (maximum functional fitness). Each axis on Fig.
6 is a layer of the VRC, consisting of a different set of bits
of the genotypes. So, one point in this three-dimensional
space represents a genotype, a candidate solution for the
aimed problem.

Figure 6. Genotype 3D visualization graphic
exported by the PSE.

Table 2 compares two architectures: One developed and
implemented before the creation and use of the PSE, and
the other after it. The former was coded in VHDL and the
exploration of the parameters of the EA and the architecture
design process itself were made in Quartus II environment,
in a time-consuming simulation process. The latter was also
coded in VHDL, but the exploration of the parameters and
the architecture design were made using the PSE. As the
evolutionary algorithm was explored in the PSE, many op-
timization implementations were made, making the Archi-
tecture use less memory, registers, logic elements and IO
elements. It means that the Arch.2 consumes less energy,
and also it may work along other solutions inside of the
FPGA, depending on a project’s specification. It also oper-
ate at a higher clock frequency, which means that the design
can work in contexts and applications where it is demanded
more a faster processing power.

Furthermore, valuable conclusions were taken after the
use of the PSE. Punctual misconceptions were highlighted,
the process of collecting the results in the PSE is automatic,
while the one in the Hardware IDE isn’t.

Fig. 7 is a brief representation of the data visualization
you can have on the Arduino platform. The information
presented in the terminal must be the same coded and shown
by the 7-segment displays of the FPGA. Fig. 5 attests the
validation of the results, since the number of logic gates,

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 20



Parameter Arch.1 Arch.2

Max Frequency (MHz) 84.53 133.37
Total Logic Elements 9285 537

Percentage 19 1
Total Registers 3342 200

Total Memory bits 2334 156
Percentage 0.1391 0.0093
IO Usage 239 74

Table 2. Comparison between the two pro-
posed models of architectures for EHW

the phenotype and the problem correspond with the ones on
Fig. 7. The only difference is that it is possible to insert
more information on a terminal, in comparison with a 6-
figured 7-segment display.

Figure 7. PC-Arduino monitor interface: an-
other way to verify the circuitry’s functional
correspondence and behavior.

Figure 8. Evolvable Hardware set to evolve
the XOR gate, in a MAX 10 FPGA, device
10M50DAF484C7G.

Another advantage seen in the use of an Arduino Uno
to make the tests is that it was faster and more systematic
than a human-made set of tests. For problems involving a
low number of inputs, it is not a problem. But for a higher
number, the quantity of combinations possible grows expo-
nentially, so it would be harder to test all the possible com-
binations in a systematic way, and it would take much more
time.

5. Conclusions

This article presents a learning platform for Evolvable
Hardware Design, in a double-phase approach. EHW is
a complex and interdisciplinary issue involving Reconfig-
urable Computing and Evolutionary Computing. The first
phase approaches the simulation of the EHW architecture,
and delivers a Problem-Solving Environment to assist the
development process. The second phase gives support to the
physical implementation of EHW architectures. It consists
of a low-cost auxiliar hardware device, an Arduino UNO,
to be a more accessible interface for project verification and
FPGA testing.

The results indicates that a first phase is good for re-
search and investigation before the EHW implementation.
It helps the student or researcher to explore different ap-
proaches he/she could follow in designing the architecture
because in the PSE the simulation time is lower than usual
hardware development tools. In addition, it is less time con-
suming for research, comparing to traditional tools. Using
the first phase approach the user can compare different EA
tunning without worrying about hardware implementation
issues, and is capable of improving the algorithm. The sec-
ond phase is also a supporter for students and developers
during the testing part of the project. Since hardware ver-
ification tools are usually expensive, a low-cost hardware
interface like an Arduino UNO can perform the real-time
analysis of what is happening inside the FPGA. This is
also an extra way to validate the design, after using post-
synthesis simulations in the IDE and the FPGA display in-
terface, like in Fig.8.

Both phases are essential for complex hardware devel-
opment designs, mostly in contexts where the students or
developers cannot afford professional software acquisition
or expensive hardware equipment. The presented results
shows that a traditional approach, without the double-phase
learning platform and only using the hardware IDE, can use
17 times the number of logic elements, around 16 times
the number of total registers and almost 15 times the total
memory bits, comparing with the implementation achieved
through the double-phase learning platform using.

Future researches include the use of remote experimenta-
tion to deliver a space where electrical and computing engi-
neering students and research can utilize FPGAs to develop

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 21



their own EHW implementations, without the necessity to
buy an FPGA to start developing their own projects.

References

[1] Pauline C Haddow and Andy M Tyrrell. Challenges
of evolvable hardware: past, present and the path to
a promising future. Genetic Programming and Evolv-
able Machines, 12:183–215, 2011.

[2] M A Almeida and E C Pedrino. Hybrid evolv-
able hardware for automatic generation of image fil-
ters. INTEGRATED COMPUTER-AIDED ENGI-
NEERING, 25:289–303, 2018.

[3] Rui Yao, Ping Zhu, Junjie Du, Meiqun Wang, and
Zhaihe Zhou. A general low-cost fast hybrid reconfig-
uration architecture for fpga-based self-adaptive sys-
tem. IEICE TRANSACTIONS ON INFORMATION
AND SYSTEMS, E101D:616–626, 3 2018.

[4] Lukas Sekanina. Evolutionary hardware design. vol-
ume 8067. SPIE-INT SOC OPTICAL ENGINEER-
ING, 2011. Conference on VLSI Circuits and Sys-
tems V, Prague, CZECH REPUBLIC, APR¡br/¿18-20,
2011.

[5] Wang Jin and Chong-Ho Lee. Virtual reconfig-
urable architecture for evolving combinational logic
circuits. JOURNAL OF CENTRAL SOUTH UNIVER-
SITY, 21:1862–1870, 2014.

[6] Derek Whitley, Jason Yoder, and Nicklas Carpenter.
Intrinsic evolution of analog circuits using field pro-
grammable gate arrays. Artificial Life, 28(4):499–516,
2022.

[7] M Lovay, G Peretti, and E Romero. Implementa-
tion of an adaptive filter using an evolvable hardware
strategy. IEEE LATIN AMERICA TRANSACTIONS,
13:927–934, 2015.

[8] D Grochol, L Sekanina, M Zadnik, J Korenek, and
V Kosar. Evolutionary circuit design for fast fpga-
based classification of network application protocols.
APPLIED SOFT COMPUTING, 38:933–941, 1 2016.

[9] Phil Husbands, Yoonsik Shim, Michael Garvie, Alex
Dewar, Norbert Domcsek, Paul Graham, James
Knight, Thomas Nowotny, and Andrew Philippides.
Recent advances in evolutionary and bio-inspired
adaptive robotics: Exploiting embodied dynamics.
Applied Intelligence, 51(9):6467–6496, 2021.

[10] William B Langdon. Genetic programming and evolv-
able machines at 20. Genetic Programming and Evolv-
able Machines, 21(1):205–217, 2020.

[11] F Cancare, S Bhandari, D B Bartolini, M Carminati,
and M D Santambrogio. A bird’s eye view of fpga-
based evolvable hardware. pages 169–175, 2011.

[12] X Yao and T Higuchi. Promises and challenges of
evolvable hardware. IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and Re-
views), 29:87–97, 1999.

[13] Lucas Augusto Müller de Souza, José Eduardo Hen-
riques da Silva, Luciano Jerez Chaves, and
Heder Soares Bernardino. A benchmark suite
for designing combinational logic circuits via meta-
heuristics. Applied Soft Computing, 91:106246,
2020.

[14] Ju-Hwan Kim, Ho-Jun Lee, Sang-Ho Kim, and Jeong-
Oog Lee. A problem solving environment portal for
multidisciplinary design optimization. ADVANCES IN
ENGINEERING SOFTWARE, 40:623–629, 2009.

[15] Gyongyver Molnar and Bello Csapo. Exploration and
learning strategies in an interactive problem-solving
environment at the beginning of higher education
studies. pages 283–292. IKAM-INST KNOWLEDGE
ASSET MANAGEMENT, 2017. 12th International
Forum on Knowledge Asset Dynamics (IFKAD),
St.¡br/¿Petersbur, RUSSIA, JUN 07-09, 2017.

[16] M H Eres, G E Pound, Z Jian, J L Wason, F L Xu,
A J Keane, and S J Cox. Implementation and utilisa-
tion of a grid-enabled problem solving environment in
matlab. FUTURE GENERATION COMPUTER SYS-
TEMS, 21:920–929, 6 2005.

International Journal of Computer Architecture Education (IJCAE) 2316-9915

v.11, n.1, December 2022 - p. 22


